//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit Aggregate Expr nodes as LLVM code. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "clang/AST/ASTContext.h" #include "clang/AST/StmtVisitor.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/Support/Compiler.h" #include "llvm/Intrinsics.h" using namespace clang; using namespace CodeGen; //===----------------------------------------------------------------------===// // Aggregate Expression Emitter //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor { CodeGenFunction &CGF; llvm::IRBuilder<> &Builder; llvm::Value *DestPtr; bool VolatileDest; public: AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest) : CGF(cgf), Builder(CGF.Builder), DestPtr(destPtr), VolatileDest(volatileDest) { } //===--------------------------------------------------------------------===// // Utilities //===--------------------------------------------------------------------===// /// EmitAggLoadOfLValue - Given an expression with aggregate type that /// represents a value lvalue, this method emits the address of the lvalue, /// then loads the result into DestPtr. void EmitAggLoadOfLValue(const Expr *E); void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, QualType EltTy); void EmitAggregateClear(llvm::Value *DestPtr, QualType Ty); void EmitNonConstInit(InitListExpr *E); //===--------------------------------------------------------------------===// // Visitor Methods //===--------------------------------------------------------------------===// void VisitStmt(Stmt *S) { CGF.ErrorUnsupported(S, "aggregate expression"); } void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } // l-values. void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { EmitAggLoadOfLValue(E); } void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { EmitAggLoadOfLValue(E); } // Operators. // case Expr::UnaryOperatorClass: // case Expr::CastExprClass: void VisitImplicitCastExpr(ImplicitCastExpr *E); void VisitCallExpr(const CallExpr *E); void VisitStmtExpr(const StmtExpr *E); void VisitBinaryOperator(const BinaryOperator *BO); void VisitBinAssign(const BinaryOperator *E); void VisitOverloadExpr(const OverloadExpr *E); void VisitBinComma(const BinaryOperator *E); void VisitObjCMessageExpr(ObjCMessageExpr *E); void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { EmitAggLoadOfLValue(E); } void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { // FIXME: Implement! CGF.ErrorUnsupported(E, "aggregate expression (Objective-C property reference)"); } void VisitConditionalOperator(const ConditionalOperator *CO); void VisitInitListExpr(InitListExpr *E); void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { Visit(DAE->getExpr()); } void VisitVAArgExpr(VAArgExpr *E); void EmitInitializationToLValue(Expr *E, LValue Address); void EmitNullInitializationToLValue(LValue Address, QualType T); // case Expr::ChooseExprClass: }; } // end anonymous namespace. //===----------------------------------------------------------------------===// // Utilities //===----------------------------------------------------------------------===// void AggExprEmitter::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); // Aggregate assignment turns into llvm.memset. const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); if (DestPtr->getType() != BP) DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); // Get size and alignment info for this aggregate. std::pair TypeInfo = CGF.getContext().getTypeInfo(Ty); // FIXME: Handle variable sized types. const llvm::Type *IntPtr = llvm::IntegerType::get(CGF.LLVMPointerWidth); llvm::Value *MemSetOps[4] = { DestPtr, llvm::ConstantInt::getNullValue(llvm::Type::Int8Ty), // TypeInfo.first describes size in bits. llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), llvm::ConstantInt::get(llvm::Type::Int32Ty, TypeInfo.second/8) }; Builder.CreateCall(CGF.CGM.getMemSetFn(), MemSetOps, MemSetOps+4); } void AggExprEmitter::EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, QualType Ty) { assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); // Aggregate assignment turns into llvm.memmove. const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); if (DestPtr->getType() != BP) DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); if (SrcPtr->getType() != BP) SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); // Get size and alignment info for this aggregate. std::pair TypeInfo = CGF.getContext().getTypeInfo(Ty); // FIXME: Handle variable sized types. const llvm::Type *IntPtr = llvm::IntegerType::get(CGF.LLVMPointerWidth); llvm::Value *MemMoveOps[4] = { DestPtr, SrcPtr, // TypeInfo.first describes size in bits. llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), llvm::ConstantInt::get(llvm::Type::Int32Ty, TypeInfo.second/8) }; Builder.CreateCall(CGF.CGM.getMemMoveFn(), MemMoveOps, MemMoveOps+4); } /// EmitAggLoadOfLValue - Given an expression with aggregate type that /// represents a value lvalue, this method emits the address of the lvalue, /// then loads the result into DestPtr. void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { LValue LV = CGF.EmitLValue(E); assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc"); llvm::Value *SrcPtr = LV.getAddress(); // If the result is ignored, don't copy from the value. if (DestPtr == 0) // FIXME: If the source is volatile, we must read from it. return; EmitAggregateCopy(DestPtr, SrcPtr, E->getType()); } //===----------------------------------------------------------------------===// // Visitor Methods //===----------------------------------------------------------------------===// void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) { assert(CGF.getContext().typesAreCompatible( E->getSubExpr()->getType().getUnqualifiedType(), E->getType().getUnqualifiedType()) && "Implicit cast types must be compatible"); Visit(E->getSubExpr()); } void AggExprEmitter::VisitCallExpr(const CallExpr *E) { RValue RV = CGF.EmitCallExpr(E); assert(RV.isAggregate() && "Return value must be aggregate value!"); // If the result is ignored, don't copy from the value. if (DestPtr == 0) // FIXME: If the source is volatile, we must read from it. return; EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); } void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { RValue RV = CGF.EmitObjCMessageExpr(E); assert(RV.isAggregate() && "Return value must be aggregate value!"); // If the result is ignored, don't copy from the value. if (DestPtr == 0) // FIXME: If the source is volatile, we must read from it. return; EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); } void AggExprEmitter::VisitOverloadExpr(const OverloadExpr *E) { RValue RV = CGF.EmitCallExpr(E->getFn(), E->arg_begin(), E->arg_end(CGF.getContext())); assert(RV.isAggregate() && "Return value must be aggregate value!"); // If the result is ignored, don't copy from the value. if (DestPtr == 0) // FIXME: If the source is volatile, we must read from it. return; EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); } void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { CGF.EmitAnyExpr(E->getLHS()); CGF.EmitAggExpr(E->getRHS(), DestPtr, false); } void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); } void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { CGF.ErrorUnsupported(E, "aggregate binary expression"); } void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { // For an assignment to work, the value on the right has // to be compatible with the value on the left. assert(CGF.getContext().typesAreCompatible( E->getLHS()->getType().getUnqualifiedType(), E->getRHS()->getType().getUnqualifiedType()) && "Invalid assignment"); LValue LHS = CGF.EmitLValue(E->getLHS()); // Codegen the RHS so that it stores directly into the LHS. CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/); if (DestPtr == 0) return; // If the result of the assignment is used, copy the RHS there also. EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType()); } void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { llvm::BasicBlock *LHSBlock = llvm::BasicBlock::Create("cond.?"); llvm::BasicBlock *RHSBlock = llvm::BasicBlock::Create("cond.:"); llvm::BasicBlock *ContBlock = llvm::BasicBlock::Create("cond.cont"); llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); CGF.EmitBlock(LHSBlock); // Handle the GNU extension for missing LHS. assert(E->getLHS() && "Must have LHS for aggregate value"); Visit(E->getLHS()); Builder.CreateBr(ContBlock); LHSBlock = Builder.GetInsertBlock(); CGF.EmitBlock(RHSBlock); Visit(E->getRHS()); Builder.CreateBr(ContBlock); RHSBlock = Builder.GetInsertBlock(); CGF.EmitBlock(ContBlock); } void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { llvm::Value *ArgValue = CGF.EmitLValue(VE->getSubExpr()).getAddress(); llvm::Value *V = Builder.CreateVAArg(ArgValue, CGF.ConvertType(VE->getType())); if (DestPtr) // FIXME: volatility Builder.CreateStore(V, DestPtr); } void AggExprEmitter::EmitNonConstInit(InitListExpr *E) { const llvm::PointerType *APType = cast(DestPtr->getType()); const llvm::Type *DestType = APType->getElementType(); if (const llvm::ArrayType *AType = dyn_cast(DestType)) { unsigned NumInitElements = E->getNumInits(); unsigned i; for (i = 0; i != NumInitElements; ++i) { llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); Expr *Init = E->getInit(i); if (isa(Init)) CGF.EmitAggExpr(Init, NextVal, VolatileDest); else // FIXME: volatility Builder.CreateStore(CGF.EmitScalarExpr(Init), NextVal); } // Emit remaining default initializers unsigned NumArrayElements = AType->getNumElements(); QualType QType = E->getInit(0)->getType(); const llvm::Type *EType = AType->getElementType(); for (/*Do not initialize i*/; i < NumArrayElements; ++i) { llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); if (EType->isSingleValueType()) // FIXME: volatility Builder.CreateStore(llvm::Constant::getNullValue(EType), NextVal); else EmitAggregateClear(NextVal, QType); } } else assert(false && "Invalid initializer"); } void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { // FIXME: Are initializers affected by volatile? if (E->getType()->isComplexType()) { CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); } else if (CGF.hasAggregateLLVMType(E->getType())) { CGF.EmitAnyExpr(E, LV.getAddress(), false); } else { CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); } } void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { if (!CGF.hasAggregateLLVMType(T)) { // For non-aggregates, we can store zero llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); } else { // Otherwise, just memset the whole thing to zero. This is legal // because in LLVM, all default initializers are guaranteed to have a // bit pattern of all zeros. // There's a potential optimization opportunity in combining // memsets; that would be easy for arrays, but relatively // difficult for structures with the current code. llvm::Value *MemSet = CGF.CGM.getIntrinsic(llvm::Intrinsic::memset_i64); uint64_t Size = CGF.getContext().getTypeSize(T); const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); llvm::Value* DestPtr = Builder.CreateBitCast(LV.getAddress(), BP, "tmp"); Builder.CreateCall4(MemSet, DestPtr, llvm::ConstantInt::get(llvm::Type::Int8Ty, 0), llvm::ConstantInt::get(llvm::Type::Int64Ty, Size/8), llvm::ConstantInt::get(llvm::Type::Int32Ty, 0)); } } void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { // FIXME: For constant expressions, call into const expr emitter so // that we can emit a memcpy instead of storing the individual // members. This is purely for perf; both codepaths lead to // equivalent (although not necessarily identical) code. It's worth // noting that LLVM keeps on getting smarter, though, so it might // not be worth bothering. // Handle initialization of an array. if (E->getType()->isArrayType()) { const llvm::PointerType *APType = cast(DestPtr->getType()); const llvm::ArrayType *AType = cast(APType->getElementType()); uint64_t NumInitElements = E->getNumInits(); if (E->getNumInits() > 0) { QualType T1 = E->getType(); QualType T2 = E->getInit(0)->getType(); if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() == CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) { EmitAggLoadOfLValue(E->getInit(0)); return; } } uint64_t NumArrayElements = AType->getNumElements(); QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); ElementType =CGF.getContext().getAsArrayType(ElementType)->getElementType(); unsigned CVRqualifier = ElementType.getCVRQualifiers(); for (uint64_t i = 0; i != NumArrayElements; ++i) { llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); if (i < NumInitElements) EmitInitializationToLValue(E->getInit(i), LValue::MakeAddr(NextVal, CVRqualifier)); else EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), ElementType); } return; } assert(E->getType()->isRecordType() && "Only support structs/unions here!"); // Do struct initialization; this code just sets each individual member // to the approprate value. This makes bitfield support automatic; // the disadvantage is that the generated code is more difficult for // the optimizer, especially with bitfields. unsigned NumInitElements = E->getNumInits(); RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); unsigned NumMembers = SD->getNumMembers() - SD->hasFlexibleArrayMember(); unsigned CurInitVal = 0; bool isUnion = E->getType()->isUnionType(); // Here we iterate over the fields; this makes it simpler to both // default-initialize fields and skip over unnamed fields. for (unsigned CurFieldNo = 0; CurFieldNo != NumMembers; ++CurFieldNo) { FieldDecl *CurField = SD->getMember(CurFieldNo); if (CurField->getIdentifier() == 0) { // Initializers can't initialize unnamed fields, e.g. "int : 20;" continue; } // FIXME: volatility LValue FieldLoc = CGF.EmitLValueForField(DestPtr, CurField, isUnion,0); if (CurInitVal < NumInitElements) { // Store the initializer into the field // This will probably have to get a bit smarter when we support // designators in initializers EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); } else { // We're out of initalizers; default-initialize to null EmitNullInitializationToLValue(FieldLoc, CurField->getType()); } // Unions only initialize one field. // (things can get weird with designators, but they aren't // supported yet.) if (E->getType()->isUnionType()) break; } } //===----------------------------------------------------------------------===// // Entry Points into this File //===----------------------------------------------------------------------===// /// EmitAggExpr - Emit the computation of the specified expression of /// aggregate type. The result is computed into DestPtr. Note that if /// DestPtr is null, the value of the aggregate expression is not needed. void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, bool VolatileDest) { assert(E && hasAggregateLLVMType(E->getType()) && "Invalid aggregate expression to emit"); AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast(E)); }