//===- Passes/GOTPass.cpp - Adds GOT entries ------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This linker pass transforms all GOT kind references to real references. // That is, in assembly you can write something like: // movq foo@GOTPCREL(%rip), %rax // which means you want to load a pointer to "foo" out of the GOT (global // Offsets Table). In the object file, the Atom containing this instruction // has a Reference whose target is an Atom named "foo" and the Reference // kind is a GOT load. The linker needs to instantiate a pointer sized // GOT entry. This is done be creating a GOT Atom to represent that pointer // sized data in this pass, and altering the Atom graph so the Reference now // points to the GOT Atom entry (corresponding to "foo") and changing the // Reference Kind to reflect it is now pointing to a GOT entry (rather // then needing a GOT entry). // // There is one optimization the linker can do here. If the target of the GOT // is in the same linkage unit and does not need to be interposable, and // the GOT use is just a load (not some other operation), this pass can // transform that load into an LEA (add). This optimizes away one memory load // which at runtime that could stall the pipeline. This optimization only works // for architectures in which a (GOT) load instruction can be change to an // LEA instruction that is the same size. The method isGOTAccess() // should only return true for "canBypassGOT" if this optimization is supported. // //===----------------------------------------------------------------------===// #include "lld/Core/DefinedAtom.h" #include "lld/Core/File.h" #include "lld/Core/LLVM.h" #include "lld/Core/Pass.h" #include "lld/Core/Reference.h" #include "llvm/ADT/DenseMap.h" namespace lld { void GOTPass::perform(File& mergedFile) { // Use map so all pointers to same symbol use same GOT entry. llvm::DenseMap targetToGOT; // Scan all references in all atoms. for(const DefinedAtom *atom : mergedFile.defined()) { for (const Reference *ref : *atom) { // Look at instructions accessing the GOT. bool canBypassGOT; if ( this->isGOTAccess(ref->kind(), canBypassGOT) ) { const Atom* target = ref->target(); assert(target != nullptr); const DefinedAtom* defTarget = dyn_cast(target); bool replaceTargetWithGOTAtom = false; if ( target->definition() == Atom::definitionSharedLibrary ) { // Accesses to shared library symbols must go through GOT. replaceTargetWithGOTAtom = true; } else if ( (defTarget != nullptr) && (defTarget->interposable() != DefinedAtom::interposeNo) ) { // Accesses to interposable symbols in same linkage unit // must also go through GOT. assert(defTarget->scope() != DefinedAtom::scopeTranslationUnit); replaceTargetWithGOTAtom = true; } else { // Target does not require indirection. So, if instruction allows // GOT to be by-passed, do that optimization and don't create // GOT entry. replaceTargetWithGOTAtom = !canBypassGOT; } if ( replaceTargetWithGOTAtom ) { // Replace the target with a reference to a GOT entry. const DefinedAtom* gotEntry = nullptr; auto pos = targetToGOT.find(target); if ( pos == targetToGOT.end() ) { // This is no existing GOT entry. Create a new one. gotEntry = this->makeGOTEntry(*target); assert(gotEntry != nullptr); assert(gotEntry->contentType() == DefinedAtom::typeGOT); targetToGOT[target] = gotEntry; } else { // Reuse an existing GOT entry. gotEntry = pos->second; assert(gotEntry != nullptr); } // Switch reference to GOT atom. (const_cast(ref))->setTarget(gotEntry); } // Update reference kind to reflect // that target is now a GOT entry or a direct accesss. this->updateReferenceToGOT(ref, replaceTargetWithGOTAtom); } } } // add all created GOT Atoms to master file for (auto it=targetToGOT.begin(), end=targetToGOT.end(); it != end; ++it) { mergedFile.addAtom(*it->second); } } }