//===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit Expr nodes with complex types as LLVM code. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "clang/AST/AST.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/ADT/SmallString.h" #include "llvm/Support/Compiler.h" using namespace clang; using namespace CodeGen; //===----------------------------------------------------------------------===// // Complex Expression Emitter //===----------------------------------------------------------------------===// typedef CodeGenFunction::ComplexPairTy ComplexPairTy; namespace { class VISIBILITY_HIDDEN ComplexExprEmitter : public StmtVisitor { CodeGenFunction &CGF; llvm::LLVMBuilder &Builder; public: ComplexExprEmitter(CodeGenFunction &cgf) : CGF(cgf), Builder(CGF.Builder) { } //===--------------------------------------------------------------------===// // Utilities //===--------------------------------------------------------------------===// /// EmitLoadOfLValue - Given an expression with complex type that represents a /// value l-value, this method emits the address of the l-value, then loads /// and returns the result. ComplexPairTy EmitLoadOfLValue(const Expr *E) { LValue LV = CGF.EmitLValue(E); // FIXME: Volatile return EmitLoadOfComplex(LV.getAddress(), false); } /// EmitLoadOfComplex - Given a pointer to a complex value, emit code to load /// the real and imaginary pieces. ComplexPairTy EmitLoadOfComplex(llvm::Value *SrcPtr, bool isVolatile); /// EmitStoreOfComplex - Store the specified real/imag parts into the /// specified value pointer. void EmitStoreOfComplex(ComplexPairTy Val, llvm::Value *ResPtr, bool isVol); /// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType. ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, QualType DestType); //===--------------------------------------------------------------------===// // Visitor Methods //===--------------------------------------------------------------------===// ComplexPairTy VisitStmt(Stmt *S) { S->dump(); assert(0 && "Stmt can't have complex result type!"); return ComplexPairTy(); } ComplexPairTy VisitExpr(Expr *S); ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); // l-values. ComplexPairTy VisitDeclRefExpr(const Expr *E) { return EmitLoadOfLValue(E); } ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); } // FIXME: CompoundLiteralExpr ComplexPairTy EmitCast(Expr *Op, QualType DestTy); ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { // Unlike for scalars, we don't have to worry about function->ptr demotion // here. return EmitCast(E->getSubExpr(), E->getType()); } ComplexPairTy VisitCastExpr(CastExpr *E) { return EmitCast(E->getSubExpr(), E->getType()); } ComplexPairTy VisitCallExpr(const CallExpr *E); // Operators. ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre); ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { return VisitPrePostIncDec(E, false, false); } ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { return VisitPrePostIncDec(E, true, false); } ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { return VisitPrePostIncDec(E, false, true); } ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { return VisitPrePostIncDec(E, true, true); } ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { return Visit(E->getSubExpr()); } ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); ComplexPairTy VisitUnaryNot (const UnaryOperator *E); // LNot,SizeOf,AlignOf,Real,Imag never return complex. ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { return Visit(E->getSubExpr()); } struct BinOpInfo { ComplexPairTy LHS; ComplexPairTy RHS; QualType Ty; // Computation Type. }; BinOpInfo EmitBinOps(const BinaryOperator *E); ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, ComplexPairTy (ComplexExprEmitter::*Func) (const BinOpInfo &)); ComplexPairTy EmitBinAdd(const BinOpInfo &Op); ComplexPairTy EmitBinSub(const BinOpInfo &Op); ComplexPairTy EmitBinMul(const BinOpInfo &Op); ComplexPairTy EmitBinDiv(const BinOpInfo &Op); ComplexPairTy VisitBinMul(const BinaryOperator *E) { return EmitBinMul(EmitBinOps(E)); } ComplexPairTy VisitBinAdd(const BinaryOperator *E) { return EmitBinAdd(EmitBinOps(E)); } ComplexPairTy VisitBinSub(const BinaryOperator *E) { return EmitBinSub(EmitBinOps(E)); } ComplexPairTy VisitBinDiv(const BinaryOperator *E) { return EmitBinDiv(EmitBinOps(E)); } // Compound assignments. ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); } ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); } ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); } ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); } // GCC rejects rem/and/or/xor for integer complex. // Logical and/or always return int, never complex. // No comparisons produce a complex result. ComplexPairTy VisitBinAssign (const BinaryOperator *E); ComplexPairTy VisitBinComma (const BinaryOperator *E); ComplexPairTy VisitConditionalOperator(const ConditionalOperator *CO); ComplexPairTy VisitChooseExpr(ChooseExpr *CE); }; } // end anonymous namespace. //===----------------------------------------------------------------------===// // Utilities //===----------------------------------------------------------------------===// /// EmitLoadOfComplex - Given an RValue reference for a complex, emit code to /// load the real and imaginary pieces, returning them as Real/Imag. ComplexPairTy ComplexExprEmitter::EmitLoadOfComplex(llvm::Value *SrcPtr, bool isVolatile) { llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0); llvm::Constant *One = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1); llvm::SmallString<64> Name(SrcPtr->getNameStart(), SrcPtr->getNameStart()+SrcPtr->getNameLen()); Name += ".realp"; llvm::Value *RealPtr = Builder.CreateGEP(SrcPtr, Zero, Zero, Name.c_str()); Name.pop_back(); // .realp -> .real llvm::Value *Real = Builder.CreateLoad(RealPtr, isVolatile, Name.c_str()); Name.resize(Name.size()-4); // .real -> .imagp Name += "imagp"; llvm::Value *ImagPtr = Builder.CreateGEP(SrcPtr, Zero, One, Name.c_str()); Name.pop_back(); // .imagp -> .imag llvm::Value *Imag = Builder.CreateLoad(ImagPtr, isVolatile, Name.c_str()); return ComplexPairTy(Real, Imag); } /// EmitStoreOfComplex - Store the specified real/imag parts into the /// specified value pointer. void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, llvm::Value *Ptr, bool isVolatile) { llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0); llvm::Constant *One = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1); llvm::Value *RealPtr = Builder.CreateGEP(Ptr, Zero, Zero, "real"); llvm::Value *ImagPtr = Builder.CreateGEP(Ptr, Zero, One, "imag"); Builder.CreateStore(Val.first, RealPtr, isVolatile); Builder.CreateStore(Val.second, ImagPtr, isVolatile); } //===----------------------------------------------------------------------===// // Visitor Methods //===----------------------------------------------------------------------===// ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { fprintf(stderr, "Unimplemented complex expr!\n"); E->dump(); const llvm::Type *EltTy = CGF.ConvertType(E->getType()->getAsComplexType()->getElementType()); llvm::Value *U = llvm::UndefValue::get(EltTy); return ComplexPairTy(U, U); } ComplexPairTy ComplexExprEmitter:: VisitImaginaryLiteral(const ImaginaryLiteral *IL) { llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); } ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { llvm::Value *AggPtr = CGF.EmitCallExpr(E).getAggregateAddr(); return EmitLoadOfComplex(AggPtr, false); } /// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType. ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, QualType DestType) { // Get the src/dest element type. SrcType = cast(SrcType.getCanonicalType())->getElementType(); DestType = cast(DestType.getCanonicalType())->getElementType(); // C99 6.3.1.6: When a value of complextype is converted to another // complex type, both the real and imaginary parts followthe conversion // rules for the corresponding real types. Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType); Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType); return Val; } ComplexPairTy ComplexExprEmitter::EmitCast(Expr *Op, QualType DestTy) { // Two cases here: cast from (complex to complex) and (scalar to complex). if (Op->getType()->isComplexType()) return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy); // C99 6.3.1.7: When a value of real type is converted to a complex type, the // real part of the complex result value is determined by the rules of // conversion to the corresponding real type and the imaginary part of the // complex result value is a positive zero or an unsigned zero. llvm::Value *Elt = CGF.EmitScalarExpr(Op); // Convert the input element to the element type of the complex. DestTy = cast(DestTy.getCanonicalType())->getElementType(); Elt = CGF.EmitScalarConversion(Elt, Op->getType(), DestTy); // Return (realval, 0). return ComplexPairTy(Elt, llvm::Constant::getNullValue(Elt->getType())); } ComplexPairTy ComplexExprEmitter::VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre) { LValue LV = CGF.EmitLValue(E->getSubExpr()); // FIXME: Handle volatile! ComplexPairTy InVal = EmitLoadOfComplex(LV.getAddress(), false); int AmountVal = isInc ? 1 : -1; llvm::Value *NextVal; if (isa(InVal.first->getType())) NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal); else NextVal = llvm::ConstantFP::get(InVal.first->getType(), AmountVal); // Add the inc/dec to the real part. NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); ComplexPairTy IncVal(NextVal, InVal.second); // Store the updated result through the lvalue. EmitStoreOfComplex(IncVal, LV.getAddress(), false); /* FIXME: Volatile */ // If this is a postinc, return the value read from memory, otherwise use the // updated value. return isPre ? IncVal : InVal; } ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { ComplexPairTy Op = Visit(E->getSubExpr()); llvm::Value *ResR = Builder.CreateNeg(Op.first, "neg.r"); llvm::Value *ResI = Builder.CreateNeg(Op.second, "neg.i"); return ComplexPairTy(ResR, ResI); } ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { // ~(a+ib) = a + i*-b ComplexPairTy Op = Visit(E->getSubExpr()); llvm::Value *ResI = Builder.CreateNeg(Op.second, "conj.i"); return ComplexPairTy(Op.first, ResI); } ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { llvm::Value *ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); llvm::Value *ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); return ComplexPairTy(ResR, ResI); } ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { llvm::Value *ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); llvm::Value *ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); return ComplexPairTy(ResR, ResI); } ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { llvm::Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); llvm::Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second,"mul.rr"); llvm::Value *ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); llvm::Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); llvm::Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); llvm::Value *ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); return ComplexPairTy(ResR, ResI); } ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr, "tmp"); // a*c llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi, "tmp"); // b*d llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2, "tmp"); // ac+bd llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr, "tmp"); // c*c llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi, "tmp"); // d*d llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5, "tmp"); // cc+dd llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr, "tmp"); // b*c llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi, "tmp"); // a*d llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8, "tmp"); // bc-ad llvm::Value *DSTr, *DSTi; if (Tmp3->getType()->isFloatingPoint()) { DSTr = Builder.CreateFDiv(Tmp3, Tmp6, "tmp"); DSTi = Builder.CreateFDiv(Tmp9, Tmp6, "tmp"); } else { if (Op.Ty->getAsComplexType()->getElementType()->isUnsignedIntegerType()) { DSTr = Builder.CreateUDiv(Tmp3, Tmp6, "tmp"); DSTi = Builder.CreateUDiv(Tmp9, Tmp6, "tmp"); } else { DSTr = Builder.CreateSDiv(Tmp3, Tmp6, "tmp"); DSTi = Builder.CreateSDiv(Tmp9, Tmp6, "tmp"); } } return ComplexPairTy(DSTr, DSTi); } ComplexExprEmitter::BinOpInfo ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { BinOpInfo Ops; Ops.LHS = Visit(E->getLHS()); Ops.RHS = Visit(E->getRHS()); Ops.Ty = E->getType(); return Ops; } // Compound assignments. ComplexPairTy ComplexExprEmitter:: EmitCompoundAssign(const CompoundAssignOperator *E, ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType(); // Load the LHS and RHS operands. LValue LHSLV = CGF.EmitLValue(E->getLHS()); BinOpInfo OpInfo; OpInfo.Ty = E->getComputationType(); // We know the LHS is a complex lvalue. OpInfo.LHS = EmitLoadOfComplex(LHSLV.getAddress(), false);// FIXME: Volatile. OpInfo.LHS = EmitComplexToComplexCast(OpInfo.LHS, LHSTy, OpInfo.Ty); // It is possible for the RHS to be complex or scalar. OpInfo.RHS = EmitCast(E->getRHS(), OpInfo.Ty); // Expand the binary operator. ComplexPairTy Result = (this->*Func)(OpInfo); // Truncate the result back to the LHS type. Result = EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy); // Store the result value into the LHS lvalue. EmitStoreOfComplex(Result, LHSLV.getAddress(), false); // FIXME: VOLATILE return Result; } ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { assert(E->getLHS()->getType().getCanonicalType() == E->getRHS()->getType().getCanonicalType() && "Invalid assignment"); // Emit the RHS. ComplexPairTy Val = Visit(E->getRHS()); // Compute the address to store into. LValue LHS = CGF.EmitLValue(E->getLHS()); // Store into it. // FIXME: Volatility! EmitStoreOfComplex(Val, LHS.getAddress(), false); return Val; } ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { CGF.EmitStmt(E->getLHS()); return Visit(E->getRHS()); } ComplexPairTy ComplexExprEmitter:: VisitConditionalOperator(const ConditionalOperator *E) { llvm::BasicBlock *LHSBlock = new llvm::BasicBlock("cond.?"); llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("cond.:"); llvm::BasicBlock *ContBlock = new llvm::BasicBlock("cond.cont"); llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); CGF.EmitBlock(LHSBlock); // Handle the GNU extension for missing LHS. assert(E->getLHS() && "Must have LHS for complex value"); ComplexPairTy LHS = Visit(E->getLHS()); Builder.CreateBr(ContBlock); LHSBlock = Builder.GetInsertBlock(); CGF.EmitBlock(RHSBlock); ComplexPairTy RHS = Visit(E->getRHS()); Builder.CreateBr(ContBlock); RHSBlock = Builder.GetInsertBlock(); CGF.EmitBlock(ContBlock); // Create a PHI node for the real part. llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), "cond.r"); RealPN->reserveOperandSpace(2); RealPN->addIncoming(LHS.first, LHSBlock); RealPN->addIncoming(RHS.first, RHSBlock); // Create a PHI node for the imaginary part. llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), "cond.i"); ImagPN->reserveOperandSpace(2); ImagPN->addIncoming(LHS.second, LHSBlock); ImagPN->addIncoming(RHS.second, RHSBlock); return ComplexPairTy(RealPN, ImagPN); } ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { llvm::APSInt CondVal(32); bool IsConst = E->getCond()->isIntegerConstantExpr(CondVal, CGF.getContext()); assert(IsConst && "Condition of choose expr must be i-c-e"); IsConst=IsConst; // Emit the LHS or RHS as appropriate. return Visit(CondVal != 0 ? E->getLHS() : E->getRHS()); } //===----------------------------------------------------------------------===// // Entry Point into this File //===----------------------------------------------------------------------===// /// EmitComplexExpr - Emit the computation of the specified expression of /// complex type, ignoring the result. ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E) { assert(E && E->getType()->isComplexType() && "Invalid complex expression to emit"); return ComplexExprEmitter(*this).Visit(const_cast(E)); } /// EmitComplexExprIntoAddr - Emit the computation of the specified expression /// of complex type, storing into the specified Value*. void CodeGenFunction::EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, bool DestIsVolatile) { assert(E && E->getType()->isComplexType() && "Invalid complex expression to emit"); ComplexExprEmitter Emitter(*this); ComplexPairTy Val = Emitter.Visit(const_cast(E)); Emitter.EmitStoreOfComplex(Val, DestAddr, DestIsVolatile); }