//===- CallGraphSort.cpp --------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// Implementation of Call-Chain Clustering from: Optimizing Function Placement /// for Large-Scale Data-Center Applications /// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf /// /// The goal of this algorithm is to improve runtime performance of the final /// executable by arranging code sections such that page table and i-cache /// misses are minimized. /// /// Definitions: /// * Cluster /// * An ordered list of input sections which are layed out as a unit. At the /// beginning of the algorithm each input section has its own cluster and /// the weight of the cluster is the sum of the weight of all incomming /// edges. /// * Call-Chain Clustering (C³) Heuristic /// * Defines when and how clusters are combined. Pick the highest weighted /// input section then add it to its most likely predecessor if it wouldn't /// penalize it too much. /// * Density /// * The weight of the cluster divided by the size of the cluster. This is a /// proxy for the ammount of execution time spent per byte of the cluster. /// /// It does so given a call graph profile by the following: /// * Build a weighted call graph from the call graph profile /// * Sort input sections by weight /// * For each input section starting with the highest weight /// * Find its most likely predecessor cluster /// * Check if the combined cluster would be too large, or would have too low /// a density. /// * If not, then combine the clusters. /// * Sort non-empty clusters by density /// //===----------------------------------------------------------------------===// #include "CallGraphSort.h" #include "OutputSections.h" #include "SymbolTable.h" #include "Symbols.h" using namespace llvm; using namespace lld; using namespace lld::elf; namespace { struct Edge { int from; uint64_t weight; }; struct Cluster { Cluster(int sec, size_t s) : sections{sec}, size(s) {} double getDensity() const { if (size == 0) return 0; return double(weight) / double(size); } std::vector sections; size_t size = 0; uint64_t weight = 0; uint64_t initialWeight = 0; Edge bestPred = {-1, 0}; }; class CallGraphSort { public: CallGraphSort(); DenseMap run(); private: std::vector clusters; std::vector sections; void groupClusters(); }; // Maximum ammount the combined cluster density can be worse than the original // cluster to consider merging. constexpr int MAX_DENSITY_DEGRADATION = 8; // Maximum cluster size in bytes. constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024; } // end anonymous namespace using SectionPair = std::pair; // Take the edge list in Config->CallGraphProfile, resolve symbol names to // Symbols, and generate a graph between InputSections with the provided // weights. CallGraphSort::CallGraphSort() { MapVector &profile = config->callGraphProfile; DenseMap secToCluster; auto getOrCreateNode = [&](const InputSectionBase *isec) -> int { auto res = secToCluster.insert(std::make_pair(isec, clusters.size())); if (res.second) { sections.push_back(isec); clusters.emplace_back(clusters.size(), isec->getSize()); } return res.first->second; }; // Create the graph. for (std::pair &c : profile) { const auto *fromSB = cast(c.first.first->repl); const auto *toSB = cast(c.first.second->repl); uint64_t weight = c.second; // Ignore edges between input sections belonging to different output // sections. This is done because otherwise we would end up with clusters // containing input sections that can't actually be placed adjacently in the // output. This messes with the cluster size and density calculations. We // would also end up moving input sections in other output sections without // moving them closer to what calls them. if (fromSB->getOutputSection() != toSB->getOutputSection()) continue; int from = getOrCreateNode(fromSB); int to = getOrCreateNode(toSB); clusters[to].weight += weight; if (from == to) continue; // Remember the best edge. Cluster &toC = clusters[to]; if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) { toC.bestPred.from = from; toC.bestPred.weight = weight; } } for (Cluster &c : clusters) c.initialWeight = c.weight; } // It's bad to merge clusters which would degrade the density too much. static bool isNewDensityBad(Cluster &a, Cluster &b) { double newDensity = double(a.weight + b.weight) / double(a.size + b.size); return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION; } static void mergeClusters(Cluster &into, Cluster &from) { into.sections.insert(into.sections.end(), from.sections.begin(), from.sections.end()); into.size += from.size; into.weight += from.weight; from.sections.clear(); from.size = 0; from.weight = 0; } // Group InputSections into clusters using the Call-Chain Clustering heuristic // then sort the clusters by density. void CallGraphSort::groupClusters() { std::vector sortedSecs(clusters.size()); std::vector secToCluster(clusters.size()); for (size_t i = 0; i < clusters.size(); ++i) { sortedSecs[i] = i; secToCluster[i] = &clusters[i]; } llvm::stable_sort(sortedSecs, [&](int a, int b) { return clusters[a].getDensity() > clusters[b].getDensity(); }); for (int si : sortedSecs) { // clusters[si] is the same as secToClusters[si] here because it has not // been merged into another cluster yet. Cluster &c = clusters[si]; // Don't consider merging if the edge is unlikely. if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight) continue; Cluster *predC = secToCluster[c.bestPred.from]; if (predC == &c) continue; if (c.size + predC->size > MAX_CLUSTER_SIZE) continue; if (isNewDensityBad(*predC, c)) continue; // NOTE: Consider using a disjoint-set to track section -> cluster mapping // if this is ever slow. for (int si : c.sections) secToCluster[si] = predC; mergeClusters(*predC, c); } // Remove empty or dead nodes. Invalidates all cluster indices. llvm::erase_if(clusters, [](const Cluster &c) { return c.size == 0 || c.sections.empty(); }); // Sort by density. llvm::stable_sort(clusters, [](const Cluster &a, const Cluster &b) { return a.getDensity() > b.getDensity(); }); } DenseMap CallGraphSort::run() { groupClusters(); // Generate order. DenseMap orderMap; ssize_t curOrder = 1; for (const Cluster &c : clusters) for (int secIndex : c.sections) orderMap[sections[secIndex]] = curOrder++; if (!config->printSymbolOrder.empty()) { std::error_code ec; raw_fd_ostream os(config->printSymbolOrder, ec, sys::fs::F_None); if (ec) { error("cannot open " + config->printSymbolOrder + ": " + ec.message()); return orderMap; } // Print the symbols ordered by C3, in the order of increasing curOrder // Instead of sorting all the orderMap, just repeat the loops above. for (const Cluster &c : clusters) for (int secIndex : c.sections) // Search all the symbols in the file of the section // and find out a Defined symbol with name that is within the section. for (Symbol *sym: sections[secIndex]->file->getSymbols()) if (!sym->isSection()) // Filter out section-type symbols here. if (auto *d = dyn_cast(sym)) if (sections[secIndex] == d->section) os << sym->getName() << "\n"; } return orderMap; } // Sort sections by the profile data provided by -callgraph-profile-file // // This first builds a call graph based on the profile data then merges sections // according to the C³ huristic. All clusters are then sorted by a density // metric to further improve locality. DenseMap elf::computeCallGraphProfileOrder() { return CallGraphSort().run(); }