//===--- Parser.cpp - C Language Family Parser ----------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Parser interfaces. // //===----------------------------------------------------------------------===// #include "clang/Parse/Parser.h" #include "clang/Parse/DeclSpec.h" #include "clang/Parse/Scope.h" using namespace clang; Parser::Parser(Preprocessor &pp, Action &actions) : PP(pp), Actions(actions), Diags(PP.getDiagnostics()) { Tok.setKind(tok::eof); CurScope = 0; NumCachedScopes = 0; ParenCount = BracketCount = BraceCount = 0; ObjcImpDecl = 0; } /// Out-of-line virtual destructor to provide home for Action class. Action::~Action() {} void Parser::Diag(SourceLocation Loc, unsigned DiagID, const std::string &Msg) { Diags.Report(Loc, DiagID, &Msg, 1); } /// MatchRHSPunctuation - For punctuation with a LHS and RHS (e.g. '['/']'), /// this helper function matches and consumes the specified RHS token if /// present. If not present, it emits the specified diagnostic indicating /// that the parser failed to match the RHS of the token at LHSLoc. LHSName /// should be the name of the unmatched LHS token. SourceLocation Parser::MatchRHSPunctuation(tok::TokenKind RHSTok, SourceLocation LHSLoc) { if (Tok.getKind() == RHSTok) return ConsumeAnyToken(); SourceLocation R = Tok.getLocation(); const char *LHSName = "unknown"; diag::kind DID = diag::err_parse_error; switch (RHSTok) { default: break; case tok::r_paren : LHSName = "("; DID = diag::err_expected_rparen; break; case tok::r_brace : LHSName = "{"; DID = diag::err_expected_rbrace; break; case tok::r_square: LHSName = "["; DID = diag::err_expected_rsquare; break; case tok::greater: LHSName = "<"; DID = diag::err_expected_greater; break; } Diag(Tok, DID); Diag(LHSLoc, diag::err_matching, LHSName); SkipUntil(RHSTok); return R; } /// ExpectAndConsume - The parser expects that 'ExpectedTok' is next in the /// input. If so, it is consumed and false is returned. /// /// If the input is malformed, this emits the specified diagnostic. Next, if /// SkipToTok is specified, it calls SkipUntil(SkipToTok). Finally, true is /// returned. bool Parser::ExpectAndConsume(tok::TokenKind ExpectedTok, unsigned DiagID, const char *Msg, tok::TokenKind SkipToTok) { if (Tok.getKind() == ExpectedTok) { ConsumeAnyToken(); return false; } Diag(Tok, DiagID, Msg); if (SkipToTok != tok::unknown) SkipUntil(SkipToTok); return true; } //===----------------------------------------------------------------------===// // Error recovery. //===----------------------------------------------------------------------===// /// SkipUntil - Read tokens until we get to the specified token, then consume /// it (unless DontConsume is true). Because we cannot guarantee that the /// token will ever occur, this skips to the next token, or to some likely /// good stopping point. If StopAtSemi is true, skipping will stop at a ';' /// character. /// /// If SkipUntil finds the specified token, it returns true, otherwise it /// returns false. bool Parser::SkipUntil(const tok::TokenKind *Toks, unsigned NumToks, bool StopAtSemi, bool DontConsume) { // We always want this function to skip at least one token if the first token // isn't T and if not at EOF. bool isFirstTokenSkipped = true; while (1) { // If we found one of the tokens, stop and return true. for (unsigned i = 0; i != NumToks; ++i) { if (Tok.getKind() == Toks[i]) { if (DontConsume) { // Noop, don't consume the token. } else { ConsumeAnyToken(); } return true; } } switch (Tok.getKind()) { case tok::eof: // Ran out of tokens. return false; case tok::l_paren: // Recursively skip properly-nested parens. ConsumeParen(); SkipUntil(tok::r_paren, false); break; case tok::l_square: // Recursively skip properly-nested square brackets. ConsumeBracket(); SkipUntil(tok::r_square, false); break; case tok::l_brace: // Recursively skip properly-nested braces. ConsumeBrace(); SkipUntil(tok::r_brace, false); break; // Okay, we found a ']' or '}' or ')', which we think should be balanced. // Since the user wasn't looking for this token (if they were, it would // already be handled), this isn't balanced. If there is a LHS token at a // higher level, we will assume that this matches the unbalanced token // and return it. Otherwise, this is a spurious RHS token, which we skip. case tok::r_paren: if (ParenCount && !isFirstTokenSkipped) return false; // Matches something. ConsumeParen(); break; case tok::r_square: if (BracketCount && !isFirstTokenSkipped) return false; // Matches something. ConsumeBracket(); break; case tok::r_brace: if (BraceCount && !isFirstTokenSkipped) return false; // Matches something. ConsumeBrace(); break; case tok::string_literal: case tok::wide_string_literal: ConsumeStringToken(); break; case tok::semi: if (StopAtSemi) return false; // FALL THROUGH. default: // Skip this token. ConsumeToken(); break; } isFirstTokenSkipped = false; } } //===----------------------------------------------------------------------===// // Scope manipulation //===----------------------------------------------------------------------===// /// EnterScope - Start a new scope. void Parser::EnterScope(unsigned ScopeFlags) { if (NumCachedScopes) { Scope *N = ScopeCache[--NumCachedScopes]; N->Init(CurScope, ScopeFlags); CurScope = N; } else { CurScope = new Scope(CurScope, ScopeFlags); } } /// ExitScope - Pop a scope off the scope stack. void Parser::ExitScope() { assert(CurScope && "Scope imbalance!"); // Inform the actions module that this scope is going away. Actions.PopScope(Tok.getLocation(), CurScope); Scope *OldScope = CurScope; CurScope = OldScope->getParent(); if (NumCachedScopes == ScopeCacheSize) delete OldScope; else ScopeCache[NumCachedScopes++] = OldScope; } //===----------------------------------------------------------------------===// // C99 6.9: External Definitions. //===----------------------------------------------------------------------===// Parser::~Parser() { // If we still have scopes active, delete the scope tree. delete CurScope; // Free the scope cache. for (unsigned i = 0, e = NumCachedScopes; i != e; ++i) delete ScopeCache[i]; } /// Initialize - Warm up the parser. /// void Parser::Initialize() { // Prime the lexer look-ahead. ConsumeToken(); // Create the translation unit scope. Install it as the current scope. assert(CurScope == 0 && "A scope is already active?"); EnterScope(Scope::DeclScope); // Install builtin types. // TODO: Move this someplace more useful. { const char *Dummy; //__builtin_va_list DeclSpec DS; bool Error = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, SourceLocation(), Dummy); // TODO: add a 'TST_builtin' type? Error |= DS.SetTypeSpecType(DeclSpec::TST_int, SourceLocation(), Dummy); assert(!Error && "Error setting up __builtin_va_list!"); Declarator D(DS, Declarator::FileContext); D.SetIdentifier(PP.getIdentifierInfo("__builtin_va_list"),SourceLocation()); Actions.ActOnDeclarator(CurScope, D, 0); } if (Tok.getKind() == tok::eof && !getLang().CPlusPlus) // Empty source file is an extension in C Diag(Tok, diag::ext_empty_source_file); // Initialization for Objective-C context sensitive keywords recognition. // Referenced in Parser::isObjCTypeQualifier. if (getLang().ObjC1) { ObjcTypeQuals[objc_in] = &PP.getIdentifierTable().get("in"); ObjcTypeQuals[objc_out] = &PP.getIdentifierTable().get("out"); ObjcTypeQuals[objc_inout] = &PP.getIdentifierTable().get("inout"); ObjcTypeQuals[objc_oneway] = &PP.getIdentifierTable().get("oneway"); ObjcTypeQuals[objc_bycopy] = &PP.getIdentifierTable().get("bycopy"); ObjcTypeQuals[objc_byref] = &PP.getIdentifierTable().get("byref"); } if (getLang().ObjC2) { ObjcPropertyAttrs[objc_readonly] = &PP.getIdentifierTable().get("readonly"); ObjcPropertyAttrs[objc_getter] = &PP.getIdentifierTable().get("getter"); ObjcPropertyAttrs[objc_setter] = &PP.getIdentifierTable().get("setter"); ObjcPropertyAttrs[objc_assign] = &PP.getIdentifierTable().get("assign"); ObjcPropertyAttrs[objc_readwrite] = &PP.getIdentifierTable().get("readwrite"); ObjcPropertyAttrs[objc_retain] = &PP.getIdentifierTable().get("retain"); ObjcPropertyAttrs[objc_copy] = &PP.getIdentifierTable().get("copy"); ObjcPropertyAttrs[objc_nonatomic] = &PP.getIdentifierTable().get("nonatomic"); } } /// ParseTopLevelDecl - Parse one top-level declaration, return whatever the /// action tells us to. This returns true if the EOF was encountered. bool Parser::ParseTopLevelDecl(DeclTy*& Result) { Result = 0; if (Tok.getKind() == tok::eof) return true; Result = ParseExternalDeclaration(); return false; } /// Finalize - Shut down the parser. /// void Parser::Finalize() { ExitScope(); assert(CurScope == 0 && "Scope imbalance!"); } /// ParseTranslationUnit: /// translation-unit: [C99 6.9] /// external-declaration /// translation-unit external-declaration void Parser::ParseTranslationUnit() { Initialize(); DeclTy *Res; while (!ParseTopLevelDecl(Res)) /*parse them all*/; Finalize(); } /// ParseExternalDeclaration: /// external-declaration: [C99 6.9] /// function-definition /// declaration /// [EXT] ';' /// [GNU] asm-definition /// [GNU] __extension__ external-declaration /// [OBJC] objc-class-definition /// [OBJC] objc-class-declaration /// [OBJC] objc-alias-declaration /// [OBJC] objc-protocol-definition /// [OBJC] objc-method-definition /// [OBJC] @end /// /// [GNU] asm-definition: /// simple-asm-expr ';' /// Parser::DeclTy *Parser::ParseExternalDeclaration() { switch (Tok.getKind()) { case tok::semi: Diag(Tok, diag::ext_top_level_semi); ConsumeToken(); // TODO: Invoke action for top-level semicolon. return 0; case tok::kw___extension__: { ConsumeToken(); // FIXME: Disable extension warnings. DeclTy *RV = ParseExternalDeclaration(); // FIXME: Restore extension warnings. return RV; } case tok::kw_asm: ParseSimpleAsm(); ExpectAndConsume(tok::semi, diag::err_expected_semi_after, "top-level asm block"); // TODO: Invoke action for top-level asm. return 0; case tok::at: // @ is not a legal token unless objc is enabled, no need to check. return ParseObjCAtDirectives(); case tok::minus: if (getLang().ObjC1) { ParseObjCInstanceMethodDefinition(); } else { Diag(Tok, diag::err_expected_external_declaration); ConsumeToken(); } return 0; case tok::plus: if (getLang().ObjC1) { ParseObjCClassMethodDefinition(); } else { Diag(Tok, diag::err_expected_external_declaration); ConsumeToken(); } return 0; case tok::kw_namespace: case tok::kw_typedef: // A function definition cannot start with a these keywords. return ParseDeclaration(Declarator::FileContext); default: // We can't tell whether this is a function-definition or declaration yet. return ParseDeclarationOrFunctionDefinition(); } } /// ParseDeclarationOrFunctionDefinition - Parse either a function-definition or /// a declaration. We can't tell which we have until we read up to the /// compound-statement in function-definition. /// /// function-definition: [C99 6.9.1] /// declaration-specifiers[opt] declarator declaration-list[opt] /// compound-statement /// declaration: [C99 6.7] /// declaration-specifiers init-declarator-list[opt] ';' /// [!C99] init-declarator-list ';' [TODO: warn in c99 mode] /// [OMP] threadprivate-directive [TODO] /// Parser::DeclTy *Parser::ParseDeclarationOrFunctionDefinition() { // Parse the common declaration-specifiers piece. DeclSpec DS; ParseDeclarationSpecifiers(DS); // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };" // declaration-specifiers init-declarator-list[opt] ';' if (Tok.getKind() == tok::semi) { ConsumeToken(); return Actions.ParsedFreeStandingDeclSpec(CurScope, DS); } // ObjC2 allows prefix attributes on class interfaces. if (getLang().ObjC2 && Tok.getKind() == tok::at) { SourceLocation AtLoc = ConsumeToken(); // the "@" if (Tok.getIdentifierInfo()->getObjCKeywordID() == tok::objc_interface) return ParseObjCAtInterfaceDeclaration(AtLoc, DS.getAttributes()); } // Parse the first declarator. Declarator DeclaratorInfo(DS, Declarator::FileContext); ParseDeclarator(DeclaratorInfo); // Error parsing the declarator? if (DeclaratorInfo.getIdentifier() == 0) { // If so, skip until the semi-colon or a }. SkipUntil(tok::r_brace, true); if (Tok.getKind() == tok::semi) ConsumeToken(); return 0; } // If the declarator is the start of a function definition, handle it. if (Tok.getKind() == tok::equal || // int X()= -> not a function def Tok.getKind() == tok::comma || // int X(), -> not a function def Tok.getKind() == tok::semi || // int X(); -> not a function def Tok.getKind() == tok::kw_asm || // int X() __asm__ -> not a fn def Tok.getKind() == tok::kw___attribute) {// int X() __attr__ -> not a fn def // FALL THROUGH. } else if (DeclaratorInfo.isFunctionDeclarator() && (Tok.getKind() == tok::l_brace || // int X() {} isDeclarationSpecifier())) { // int X(f) int f; {} return ParseFunctionDefinition(DeclaratorInfo); } else { if (DeclaratorInfo.isFunctionDeclarator()) Diag(Tok, diag::err_expected_fn_body); else Diag(Tok, diag::err_expected_after_declarator); SkipUntil(tok::semi); return 0; } // Parse the init-declarator-list for a normal declaration. return ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo); } /// ParseFunctionDefinition - We parsed and verified that the specified /// Declarator is well formed. If this is a K&R-style function, read the /// parameters declaration-list, then start the compound-statement. /// /// declaration-specifiers[opt] declarator declaration-list[opt] /// compound-statement [TODO] /// Parser::DeclTy *Parser::ParseFunctionDefinition(Declarator &D) { const DeclaratorChunk &FnTypeInfo = D.getTypeObject(0); assert(FnTypeInfo.Kind == DeclaratorChunk::Function && "This isn't a function declarator!"); const DeclaratorChunk::FunctionTypeInfo &FTI = FnTypeInfo.Fun; // If this declaration was formed with a K&R-style identifier list for the // arguments, parse declarations for all of the args next. // int foo(a,b) int a; float b; {} if (!FTI.hasPrototype && FTI.NumArgs != 0) ParseKNRParamDeclarations(D); // Enter a scope for the function body. EnterScope(Scope::FnScope|Scope::DeclScope); // Tell the actions module that we have entered a function definition with the // specified Declarator for the function. DeclTy *Res = Actions.ParseStartOfFunctionDef(CurScope, D); // We should have an opening brace now. if (Tok.getKind() != tok::l_brace) { Diag(Tok, diag::err_expected_fn_body); // Skip over garbage, until we get to '{'. Don't eat the '{'. SkipUntil(tok::l_brace, true, true); // If we didn't find the '{', bail out. if (Tok.getKind() != tok::l_brace) { ExitScope(); return 0; } } // Do not enter a scope for the brace, as the arguments are in the same scope // (the function body) as the body itself. Instead, just read the statement // list and put it into a CompoundStmt for safe keeping. StmtResult FnBody = ParseCompoundStatementBody(); if (FnBody.isInvalid) { ExitScope(); return 0; } // Leave the function body scope. ExitScope(); // TODO: Pass argument information. return Actions.ParseFunctionDefBody(Res, FnBody.Val); } /// ParseKNRParamDeclarations - Parse 'declaration-list[opt]' which provides /// types for a function with a K&R-style identifier list for arguments. void Parser::ParseKNRParamDeclarations(Declarator &D) { // We know that the top-level of this declarator is a function. DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; // Read all the argument declarations. while (isDeclarationSpecifier()) { SourceLocation DSStart = Tok.getLocation(); // Parse the common declaration-specifiers piece. DeclSpec DS; ParseDeclarationSpecifiers(DS); // C99 6.9.1p6: 'each declaration in the declaration list shall have at // least one declarator'. // NOTE: GCC just makes this an ext-warn. It's not clear what it does with // the declarations though. It's trivial to ignore them, really hard to do // anything else with them. if (Tok.getKind() == tok::semi) { Diag(DSStart, diag::err_declaration_does_not_declare_param); ConsumeToken(); continue; } // C99 6.9.1p6: Declarations shall contain no storage-class specifiers other // than register. if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && DS.getStorageClassSpec() != DeclSpec::SCS_register) { Diag(DS.getStorageClassSpecLoc(), diag::err_invalid_storage_class_in_func_decl); DS.ClearStorageClassSpecs(); } if (DS.isThreadSpecified()) { Diag(DS.getThreadSpecLoc(), diag::err_invalid_storage_class_in_func_decl); DS.ClearStorageClassSpecs(); } // Parse the first declarator attached to this declspec. Declarator ParmDeclarator(DS, Declarator::KNRTypeListContext); ParseDeclarator(ParmDeclarator); // Handle the full declarator list. while (1) { DeclTy *AttrList; // If attributes are present, parse them. if (Tok.getKind() == tok::kw___attribute) // FIXME: attach attributes too. AttrList = ParseAttributes(); // Ask the actions module to compute the type for this declarator. Action::TypeResult TR = Actions.ActOnParamDeclaratorType(CurScope, ParmDeclarator); if (!TR.isInvalid && // A missing identifier has already been diagnosed. ParmDeclarator.getIdentifier()) { // Scan the argument list looking for the correct param to apply this // type. for (unsigned i = 0; ; ++i) { // C99 6.9.1p6: those declarators shall declare only identifiers from // the identifier list. if (i == FTI.NumArgs) { Diag(ParmDeclarator.getIdentifierLoc(), diag::err_no_matching_param, ParmDeclarator.getIdentifier()->getName()); break; } if (FTI.ArgInfo[i].Ident == ParmDeclarator.getIdentifier()) { // Reject redefinitions of parameters. if (FTI.ArgInfo[i].TypeInfo) { Diag(ParmDeclarator.getIdentifierLoc(), diag::err_param_redefinition, ParmDeclarator.getIdentifier()->getName()); } else { FTI.ArgInfo[i].TypeInfo = TR.Val; } break; } } } // If we don't have a comma, it is either the end of the list (a ';') or // an error, bail out. if (Tok.getKind() != tok::comma) break; // Consume the comma. ConsumeToken(); // Parse the next declarator. ParmDeclarator.clear(); ParseDeclarator(ParmDeclarator); } if (Tok.getKind() == tok::semi) { ConsumeToken(); } else { Diag(Tok, diag::err_parse_error); // Skip to end of block or statement SkipUntil(tok::semi, true); if (Tok.getKind() == tok::semi) ConsumeToken(); } } // The actions module must verify that all arguments were declared. } /// ParseAsmStringLiteral - This is just a normal string-literal, but is not /// allowed to be a wide string, and is not subject to character translation. /// /// [GNU] asm-string-literal: /// string-literal /// void Parser::ParseAsmStringLiteral() { if (!isTokenStringLiteral()) { Diag(Tok, diag::err_expected_string_literal); return; } ExprResult Res = ParseStringLiteralExpression(); if (Res.isInvalid) return; // TODO: Diagnose: wide string literal in 'asm' } /// ParseSimpleAsm /// /// [GNU] simple-asm-expr: /// 'asm' '(' asm-string-literal ')' /// void Parser::ParseSimpleAsm() { assert(Tok.getKind() == tok::kw_asm && "Not an asm!"); ConsumeToken(); if (Tok.getKind() != tok::l_paren) { Diag(Tok, diag::err_expected_lparen_after, "asm"); return; } SourceLocation Loc = ConsumeParen(); ParseAsmStringLiteral(); MatchRHSPunctuation(tok::r_paren, Loc); }