//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for statements. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Expr.h" #include "clang/AST/Stmt.h" #include "clang/Parse/Scope.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/LangOptions.h" #include "clang/Lex/IdentifierTable.h" using namespace clang; Sema::StmtResult Sema::ParseExprStmt(ExprTy *expr) { Expr *E = static_cast(expr); assert(E && "ParseExprStmt(): missing expression"); return E; } Sema::StmtResult Sema::ParseNullStmt(SourceLocation SemiLoc) { return new NullStmt(SemiLoc); } Sema::StmtResult Sema::ParseDeclStmt(DeclTy *decl) { if (decl) return new DeclStmt(static_cast(decl)); else return true; // error } Action::StmtResult Sema::ParseCompoundStmt(SourceLocation L, SourceLocation R, StmtTy **elts, unsigned NumElts, bool isStmtExpr) { Stmt **Elts = reinterpret_cast(elts); // If we're in C89 mode, check that we don't have any decls after stmts. If // so, emit an extension diagnostic. if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) { // Note that __extension__ can be around a decl. unsigned i = 0; // Skip over all declarations. for (; i != NumElts && isa(Elts[i]); ++i) /*empty*/; // We found the end of the list or a statement. Scan for another declstmt. for (; i != NumElts && !isa(Elts[i]); ++i) /*empty*/; if (i != NumElts) { Decl *D = cast(Elts[i])->getDecl(); Diag(D->getLocation(), diag::ext_mixed_decls_code); } } // Warn about unused expressions in statements. for (unsigned i = 0; i != NumElts; ++i) { Expr *E = dyn_cast(Elts[i]); if (!E) continue; // Warn about expressions with unused results. if (E->hasLocalSideEffect() || E->getType()->isVoidType()) continue; // The last expr in a stmt expr really is used. if (isStmtExpr && i == NumElts-1) continue; /// DiagnoseDeadExpr - This expression is side-effect free and evaluated in /// a context where the result is unused. Emit a diagnostic to warn about /// this. if (const BinaryOperator *BO = dyn_cast(E)) Diag(BO->getOperatorLoc(), diag::warn_unused_expr, BO->getLHS()->getSourceRange(), BO->getRHS()->getSourceRange()); else if (const UnaryOperator *UO = dyn_cast(E)) Diag(UO->getOperatorLoc(), diag::warn_unused_expr, UO->getSubExpr()->getSourceRange()); else Diag(E->getExprLoc(), diag::warn_unused_expr, E->getSourceRange()); } return new CompoundStmt(Elts, NumElts, L, R); } Action::StmtResult Sema::ParseCaseStmt(SourceLocation CaseLoc, ExprTy *lhsval, SourceLocation DotDotDotLoc, ExprTy *rhsval, SourceLocation ColonLoc, StmtTy *subStmt) { Stmt *SubStmt = static_cast(subStmt); Expr *LHSVal = ((Expr *)lhsval), *RHSVal = ((Expr *)rhsval); assert((LHSVal != 0) && "missing expression in case statement"); SourceLocation ExpLoc; // C99 6.8.4.2p3: The expression shall be an integer constant. if (!LHSVal->isIntegerConstantExpr(Context, &ExpLoc)) { Diag(ExpLoc, diag::err_case_label_not_integer_constant_expr, LHSVal->getSourceRange()); return SubStmt; } // GCC extension: The expression shall be an integer constant. if (RHSVal && !RHSVal->isIntegerConstantExpr(Context, &ExpLoc)) { Diag(ExpLoc, diag::err_case_label_not_integer_constant_expr, RHSVal->getSourceRange()); RHSVal = 0; // Recover by just forgetting about it. } if (SwitchStack.empty()) { Diag(CaseLoc, diag::err_case_not_in_switch); return SubStmt; } CaseStmt *CS = new CaseStmt(LHSVal, RHSVal, SubStmt, CaseLoc); SwitchStack.back()->addSwitchCase(CS); return CS; } Action::StmtResult Sema::ParseDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, StmtTy *subStmt, Scope *CurScope) { Stmt *SubStmt = static_cast(subStmt); if (SwitchStack.empty()) { Diag(DefaultLoc, diag::err_default_not_in_switch); return SubStmt; } DefaultStmt *DS = new DefaultStmt(DefaultLoc, SubStmt); SwitchStack.back()->addSwitchCase(DS); return DS; } Action::StmtResult Sema::ParseLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation ColonLoc, StmtTy *subStmt) { Stmt *SubStmt = static_cast(subStmt); // Look up the record for this label identifier. LabelStmt *&LabelDecl = LabelMap[II]; // If not forward referenced or defined already, just create a new LabelStmt. if (LabelDecl == 0) return LabelDecl = new LabelStmt(IdentLoc, II, SubStmt); assert(LabelDecl->getID() == II && "Label mismatch!"); // Otherwise, this label was either forward reference or multiply defined. If // multiply defined, reject it now. if (LabelDecl->getSubStmt()) { Diag(IdentLoc, diag::err_redefinition_of_label, LabelDecl->getName()); Diag(LabelDecl->getIdentLoc(), diag::err_previous_definition); return SubStmt; } // Otherwise, this label was forward declared, and we just found its real // definition. Fill in the forward definition and return it. LabelDecl->setIdentLoc(IdentLoc); LabelDecl->setSubStmt(SubStmt); return LabelDecl; } Action::StmtResult Sema::ParseIfStmt(SourceLocation IfLoc, ExprTy *CondVal, StmtTy *ThenVal, SourceLocation ElseLoc, StmtTy *ElseVal) { Expr *condExpr = (Expr *)CondVal; assert(condExpr && "ParseIfStmt(): missing expression"); DefaultFunctionArrayConversion(condExpr); QualType condType = condExpr->getType(); if (!condType->isScalarType()) // C99 6.8.4.1p1 return Diag(IfLoc, diag::err_typecheck_statement_requires_scalar, condType.getAsString(), condExpr->getSourceRange()); return new IfStmt(IfLoc, condExpr, (Stmt*)ThenVal, (Stmt*)ElseVal); } Action::StmtResult Sema::StartSwitchStmt(ExprTy *cond) { Expr *Cond = static_cast(cond); // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr. UsualUnaryConversions(Cond); SwitchStmt *SS = new SwitchStmt(Cond); SwitchStack.push_back(SS); return SS; } /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have /// the specified width and sign. If an overflow occurs, detect it and emit /// the specified diagnostic. void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val, unsigned NewWidth, bool NewSign, SourceLocation Loc, unsigned DiagID) { // Perform a conversion to the promoted condition type if needed. if (NewWidth > Val.getBitWidth()) { // If this is an extension, just do it. llvm::APSInt OldVal(Val); Val.extend(NewWidth); // If the input was signed and negative and the output is unsigned, // warn. if (!NewSign && OldVal.isSigned() && OldVal.isNegative()) Diag(Loc, DiagID, OldVal.toString(), Val.toString()); Val.setIsSigned(NewSign); } else if (NewWidth < Val.getBitWidth()) { // If this is a truncation, check for overflow. llvm::APSInt ConvVal(Val); ConvVal.trunc(NewWidth); ConvVal.setIsSigned(NewSign); ConvVal.extend(Val.getBitWidth()); ConvVal.setIsSigned(Val.isSigned()); if (ConvVal != Val) Diag(Loc, DiagID, Val.toString(), ConvVal.toString()); // Regardless of whether a diagnostic was emitted, really do the // truncation. Val.trunc(NewWidth); Val.setIsSigned(NewSign); } else if (NewSign != Val.isSigned()) { // Convert the sign to match the sign of the condition. This can cause // overflow as well: unsigned(INTMIN) llvm::APSInt OldVal(Val); Val.setIsSigned(NewSign); if (Val.isNegative()) // Sign bit changes meaning. Diag(Loc, DiagID, OldVal.toString(), Val.toString()); } } namespace { struct CaseCompareFunctor { bool operator()(const std::pair &LHS, const llvm::APSInt &RHS) { return LHS.first < RHS; } bool operator()(const std::pair &LHS, const std::pair &RHS) { return LHS.first < RHS.first; } bool operator()(const llvm::APSInt &LHS, const std::pair &RHS) { return LHS < RHS.first; } }; } Action::StmtResult Sema::FinishSwitchStmt(SourceLocation SwitchLoc, StmtTy *Switch, ExprTy *Body) { Stmt *BodyStmt = (Stmt*)Body; SwitchStmt *SS = SwitchStack.back(); assert(SS == (SwitchStmt*)Switch && "switch stack missing push/pop!"); SS->setBody(BodyStmt, SwitchLoc); SwitchStack.pop_back(); Expr *CondExpr = SS->getCond(); QualType CondType = CondExpr->getType(); if (!CondType->isIntegerType()) { // C99 6.8.4.2p1 Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer, CondType.getAsString(), CondExpr->getSourceRange()); return true; } // Get the bitwidth of the switched-on value before promotions. We must // convert the integer case values to this width before comparison. unsigned CondWidth = Context.getTypeSize(CondType, SwitchLoc); bool CondIsSigned = CondType->isSignedIntegerType(); // Accumulate all of the case values in a vector so that we can sort them // and detect duplicates. This vector contains the APInt for the case after // it has been converted to the condition type. typedef llvm::SmallVector, 64> CaseValsTy; CaseValsTy CaseVals; // Keep track of any GNU case ranges we see. The APSInt is the low value. std::vector > CaseRanges; DefaultStmt *TheDefaultStmt = 0; bool CaseListIsErroneous = false; for (SwitchCase *SC = SS->getSwitchCaseList(); SC; SC = SC->getNextSwitchCase()) { if (DefaultStmt *DS = dyn_cast(SC)) { if (TheDefaultStmt) { Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined); Diag(TheDefaultStmt->getDefaultLoc(), diag::err_first_label); // FIXME: Remove the default statement from the switch block so that // we'll return a valid AST. This requires recursing down the // AST and finding it, not something we are set up to do right now. For // now, just lop the entire switch stmt out of the AST. CaseListIsErroneous = true; } TheDefaultStmt = DS; } else { CaseStmt *CS = cast(SC); // We already verified that the expression has a i-c-e value (C99 // 6.8.4.2p3) - get that value now. llvm::APSInt LoVal(32); CS->getLHS()->isIntegerConstantExpr(LoVal, Context); // Convert the value to the same width/sign as the condition. ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned, CS->getLHS()->getLocStart(), diag::warn_case_value_overflow); // If this is a case range, remember it in CaseRanges, otherwise CaseVals. if (CS->getRHS()) CaseRanges.push_back(std::make_pair(LoVal, CS)); else CaseVals.push_back(std::make_pair(LoVal, CS)); } } // Sort all the scalar case values so we can easily detect duplicates. std::stable_sort(CaseVals.begin(), CaseVals.end()); if (!CaseVals.empty()) { for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) { if (CaseVals[i].first == CaseVals[i+1].first) { // If we have a duplicate, report it. Diag(CaseVals[i+1].second->getLHS()->getLocStart(), diag::err_duplicate_case, CaseVals[i].first.toString()); Diag(CaseVals[i].second->getLHS()->getLocStart(), diag::err_duplicate_case_prev); // FIXME: We really want to remove the bogus case stmt from the substmt, // but we have no way to do this right now. CaseListIsErroneous = true; } } } // Detect duplicate case ranges, which usually don't exist at all in the first // place. if (!CaseRanges.empty()) { // Sort all the case ranges by their low value so we can easily detect // overlaps between ranges. std::stable_sort(CaseRanges.begin(), CaseRanges.end()); // Scan the ranges, computing the high values and removing empty ranges. std::vector HiVals; for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { CaseStmt *CR = CaseRanges[i].second; llvm::APSInt HiVal(32); CR->getRHS()->isIntegerConstantExpr(HiVal, Context); // Convert the value to the same width/sign as the condition. ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned, CR->getRHS()->getLocStart(), diag::warn_case_value_overflow); // If the low value is bigger than the high value, the case is empty. if (CaseRanges[i].first > HiVal) { Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range, SourceRange(CR->getLHS()->getLocStart(), CR->getRHS()->getLocEnd())); CaseRanges.erase(CaseRanges.begin()+i); --i, --e; continue; } HiVals.push_back(HiVal); } // Rescan the ranges, looking for overlap with singleton values and other // ranges. Since the range list is sorted, we only need to compare case // ranges with their neighbors. for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { llvm::APSInt &CRLo = CaseRanges[i].first; llvm::APSInt &CRHi = HiVals[i]; CaseStmt *CR = CaseRanges[i].second; // Check to see whether the case range overlaps with any singleton cases. CaseStmt *OverlapStmt = 0; llvm::APSInt OverlapVal(32); // Find the smallest value >= the lower bound. If I is in the case range, // then we have overlap. CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(), CaseVals.end(), CRLo, CaseCompareFunctor()); if (I != CaseVals.end() && I->first < CRHi) { OverlapVal = I->first; // Found overlap with scalar. OverlapStmt = I->second; } // Find the smallest value bigger than the upper bound. I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor()); if (I != CaseVals.begin() && (I-1)->first >= CRLo) { OverlapVal = (I-1)->first; // Found overlap with scalar. OverlapStmt = (I-1)->second; } // Check to see if this case stmt overlaps with the subsequent case range. if (i && CRLo <= HiVals[i-1]) { OverlapVal = HiVals[i-1]; // Found overlap with range. OverlapStmt = CaseRanges[i-1].second; } if (OverlapStmt) { // If we have a duplicate, report it. Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case, OverlapVal.toString()); Diag(OverlapStmt->getLHS()->getLocStart(), diag::err_duplicate_case_prev); // FIXME: We really want to remove the bogus case stmt from the substmt, // but we have no way to do this right now. CaseListIsErroneous = true; } } } // FIXME: If the case list was broken is some way, we don't have a good system // to patch it up. Instead, just return the whole substmt as broken. if (CaseListIsErroneous) return true; return SS; } Action::StmtResult Sema::ParseWhileStmt(SourceLocation WhileLoc, ExprTy *Cond, StmtTy *Body) { Expr *condExpr = (Expr *)Cond; assert(condExpr && "ParseWhileStmt(): missing expression"); DefaultFunctionArrayConversion(condExpr); QualType condType = condExpr->getType(); if (!condType->isScalarType()) // C99 6.8.5p2 return Diag(WhileLoc, diag::err_typecheck_statement_requires_scalar, condType.getAsString(), condExpr->getSourceRange()); return new WhileStmt(condExpr, (Stmt*)Body, WhileLoc); } Action::StmtResult Sema::ParseDoStmt(SourceLocation DoLoc, StmtTy *Body, SourceLocation WhileLoc, ExprTy *Cond) { Expr *condExpr = (Expr *)Cond; assert(condExpr && "ParseDoStmt(): missing expression"); DefaultFunctionArrayConversion(condExpr); QualType condType = condExpr->getType(); if (!condType->isScalarType()) // C99 6.8.5p2 return Diag(DoLoc, diag::err_typecheck_statement_requires_scalar, condType.getAsString(), condExpr->getSourceRange()); return new DoStmt((Stmt*)Body, condExpr, DoLoc); } Action::StmtResult Sema::ParseForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, StmtTy *first, ExprTy *second, ExprTy *third, SourceLocation RParenLoc, StmtTy *body) { Stmt *First = static_cast(first); Expr *Second = static_cast(second); Expr *Third = static_cast(third); Stmt *Body = static_cast(body); if (DeclStmt *DS = dyn_cast_or_null(First)) { // C99 6.8.5p3: The declaration part of a 'for' statement shall only declare // identifiers for objects having storage class 'auto' or 'register'. for (Decl *D = DS->getDecl(); D; D = D->getNextDeclarator()) { BlockVarDecl *BVD = dyn_cast(D); if (BVD && !BVD->hasLocalStorage()) BVD = 0; if (BVD == 0) Diag(D->getLocation(), diag::err_non_variable_decl_in_for); // FIXME: mark decl erroneous! } } if (Second) { DefaultFunctionArrayConversion(Second); QualType SecondType = Second->getType(); if (!SecondType->isScalarType()) // C99 6.8.5p2 return Diag(ForLoc, diag::err_typecheck_statement_requires_scalar, SecondType.getAsString(), Second->getSourceRange()); } return new ForStmt(First, Second, Third, Body, ForLoc); } Action::StmtResult Sema::ParseGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, IdentifierInfo *LabelII) { // Look up the record for this label identifier. LabelStmt *&LabelDecl = LabelMap[LabelII]; // If we haven't seen this label yet, create a forward reference. if (LabelDecl == 0) LabelDecl = new LabelStmt(LabelLoc, LabelII, 0); return new GotoStmt(LabelDecl, GotoLoc, LabelLoc); } Action::StmtResult Sema::ParseIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc, ExprTy *DestExp) { // FIXME: Verify that the operand is convertible to void*. return new IndirectGotoStmt((Expr*)DestExp); } Action::StmtResult Sema::ParseContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) { Scope *S = CurScope->getContinueParent(); if (!S) { // C99 6.8.6.2p1: A break shall appear only in or as a loop body. Diag(ContinueLoc, diag::err_continue_not_in_loop); return true; } return new ContinueStmt(ContinueLoc); } Action::StmtResult Sema::ParseBreakStmt(SourceLocation BreakLoc, Scope *CurScope) { Scope *S = CurScope->getBreakParent(); if (!S) { // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body. Diag(BreakLoc, diag::err_break_not_in_loop_or_switch); return true; } return new BreakStmt(BreakLoc); } Action::StmtResult Sema::ParseReturnStmt(SourceLocation ReturnLoc, ExprTy *rex) { Expr *RetValExp = static_cast(rex); QualType lhsType = CurFunctionDecl->getResultType(); if (lhsType->isVoidType()) { if (RetValExp) // C99 6.8.6.4p1 (ext_ since GCC warns) Diag(ReturnLoc, diag::ext_return_has_expr, CurFunctionDecl->getIdentifier()->getName(), RetValExp->getSourceRange()); return new ReturnStmt(ReturnLoc, RetValExp); } else { if (!RetValExp) { const char *funcName = CurFunctionDecl->getIdentifier()->getName(); if (getLangOptions().C99) // C99 6.8.6.4p1 (ext_ since GCC warns) Diag(ReturnLoc, diag::ext_return_missing_expr, funcName); else // C90 6.6.6.4p4 Diag(ReturnLoc, diag::warn_return_missing_expr, funcName); return new ReturnStmt(ReturnLoc, (Expr*)0); } } // we have a non-void function with an expression, continue checking QualType rhsType = RetValExp->getType(); // C99 6.8.6.4p3(136): The return statement is not an assignment. The // overlap restriction of subclause 6.5.16.1 does not apply to the case of // function return. AssignmentCheckResult result = CheckSingleAssignmentConstraints(lhsType, RetValExp); // decode the result (notice that extensions still return a type). switch (result) { case Compatible: break; case Incompatible: Diag(ReturnLoc, diag::err_typecheck_return_incompatible, lhsType.getAsString(), rhsType.getAsString(), RetValExp->getSourceRange()); break; case PointerFromInt: // check for null pointer constant (C99 6.3.2.3p3) if (!RetValExp->isNullPointerConstant(Context)) { Diag(ReturnLoc, diag::ext_typecheck_return_pointer_int, lhsType.getAsString(), rhsType.getAsString(), RetValExp->getSourceRange()); } break; case IntFromPointer: Diag(ReturnLoc, diag::ext_typecheck_return_pointer_int, lhsType.getAsString(), rhsType.getAsString(), RetValExp->getSourceRange()); break; case IncompatiblePointer: Diag(ReturnLoc, diag::ext_typecheck_return_incompatible_pointer, lhsType.getAsString(), rhsType.getAsString(), RetValExp->getSourceRange()); break; case CompatiblePointerDiscardsQualifiers: Diag(ReturnLoc, diag::ext_typecheck_return_discards_qualifiers, lhsType.getAsString(), rhsType.getAsString(), RetValExp->getSourceRange()); break; } if (RetValExp) CheckReturnStackAddr(RetValExp, lhsType, ReturnLoc); return new ReturnStmt(ReturnLoc, (Expr*)RetValExp); }