Commit Graph

6 Commits

Author SHA1 Message Date
Greg Clayton 3e06bd90b5 Put more smarts into the RegisterContext base class. Now the base class has
a method:

    void RegisterContext::InvalidateIfNeeded (bool force);

Each time this function is called, when "force" is false, it will only call
the pure virtual "virtual void RegisterContext::InvalideAllRegisters()" if
the register context's stop ID doesn't match that of the process. When the
stop ID doesn't match, or "force" is true, the base class will clear its
cached registers and the RegisterContext will update its stop ID to match
that of the process. This helps make it easier to correctly flush the register
context (possibly from multiple locations depending on when and where new
registers are availabe) without inadvertently clearing the register cache 
when it doesn't need to be.

Modified the ProcessGDBRemote plug-in to be much more efficient when it comes
to:
- caching the expedited registers in the stop reply packets (we were ignoring
  these before and it was causing us to read at least three registers every
  time we stopped that were already supplied in the stop reply packet).
- When a thread has no stop reason, don't keep asking for the thread stopped
  info. Prior to this fix we would continually send a qThreadStopInfo packet
  over and over when any thread stop info was requested. We now note the stop
  ID that the stop info was requested for and avoid multiple requests.

Cleaned up some of the expression code to not look for ClangExpressionVariable
objects up by name since they are now shared pointers and we can just look for
the exact pointer match and avoid possible errors.

Fixed an bug in the ValueObject code that would cause children to not be 
displayed.

llvm-svn: 123127
2011-01-09 21:07:35 +00:00
Greg Clayton 5ccbd294b2 Fixed issues with RegisterContext classes and the subclasses. There was
an issue with the way the UnwindLLDB was handing out RegisterContexts: it
was making shared pointers to register contexts and then handing out just
the pointers (which would get put into shared pointers in the thread and
stack frame classes) and cause double free issues. MallocScribble helped to
find these issues after I did some other cleanup. To help avoid any
RegisterContext issue in the future, all code that deals with them now
returns shared pointers to the register contexts so we don't end up with
multiple deletions. Also now that the RegisterContext class doesn't require
a stack frame, we patched a memory leak where a StackFrame object was being
created and leaked.

Made the RegisterContext class not have a pointer to a StackFrame object as
one register context class can be used for N inlined stack frames so there is
not a 1 - 1 mapping. Updates the ExecutionContextScope part of the 
RegisterContext class to never return a stack frame to indicate this when it
is asked to recreate the execution context. Now register contexts point to the
concrete frame using a concrete frame index. Concrete frames are all of the
frames that are actually formed on the stack of a thread. These concrete frames
can be turned into one or more user visible frames due to inlining. Each 
inlined stack frame has the exact same register context (shared via shared
pointers) as any parent inlined stack frames all the way up to the concrete 
frame itself.

So now the stack frames and the register contexts should behave much better.

llvm-svn: 122976
2011-01-06 22:15:06 +00:00
Jason Molenda ab4f1924db Check in the native lldb unwinder.
Not yet enabled as the default unwinder but there are no known
backtrace problems with the code at this point.

Added 'log enable lldb unwind' to help diagnose backtrace problems;
this output needs a little refining but it's a good first step.

eh_frame information is currently read unconditionally - the code
is structured to allow this to be delayed until it's actually needed.
There is a performance hit when you have to parse the eh_frame
information for any largeish executable/library so it's necessary
to avoid if possible.

It's confusing having both the UnwindPlan::RegisterLocation struct
and the RegisterConextLLDB::RegisterLocation struct, I need to rename
one of them.

The writing of registers isn't done in the RegisterConextLLDB subclass
yet; neither is the running of complex DWARF expressions from eh_frame
(e.g. used for _sigtramp on Mac OS X).

llvm-svn: 117256
2010-10-25 11:12:07 +00:00
Greg Clayton 0603aa9dc8 There are now to new "settings set" variables that live in each debugger
instance:

settings set frame-format <string>
settings set thread-format <string>

This allows users to control the information that is seen when dumping
threads and frames. The default values are set such that they do what they
used to do prior to changing over the the user defined formats.

This allows users with terminals that can display color to make different
items different colors using the escape control codes. A few alias examples
that will colorize your thread and frame prompts are:

settings set frame-format 'frame #${frame.index}: \033[0;33m${frame.pc}\033[0m{ \033[1;4;36m${module.file.basename}\033[0;36m ${function.name}{${function.pc-offset}}\033[0m}{ \033[0;35mat \033[1;35m${line.file.basename}:${line.number}}\033[0m\n'

settings set thread-format 'thread #${thread.index}: \033[1;33mtid\033[0;33m = ${thread.id}\033[0m{, \033[0;33m${frame.pc}\033[0m}{ \033[1;4;36m${module.file.basename}\033[0;36m ${function.name}{${function.pc-offset}}\033[0m}{, \033[1;35mstop reason\033[0;35m = ${thread.stop-reason}\033[0m}{, \033[1;36mname = \033[0;36m${thread.name}\033[0m}{, \033[1;32mqueue = \033[0;32m${thread.queue}}\033[0m\n'

A quick web search for "colorize terminal output" should allow you to see what
you can do to make your output look like you want it.

The "settings set" commands above can of course be added to your ~/.lldbinit
file for permanent use.

Changed the pure virtual 
    void ExecutionContextScope::Calculate (ExecutionContext&);
To:
    void ExecutionContextScope::CalculateExecutionContext (ExecutionContext&);
    
I did this because this is a class that anything in the execution context
heirarchy inherits from and "target->Calculate (exe_ctx)" didn't always tell
you what it was really trying to do unless you look at the parameter.

llvm-svn: 115485
2010-10-04 01:05:56 +00:00
Jason Molenda fbcb7f2c4e The first part of an lldb native stack unwinder.
The Unwind and RegisterContext subclasses still need
to be finished; none of this code is used by lldb at
this point (unless you call into it by hand).

The ObjectFile class now has an UnwindTable object.

The UnwindTable object has a series of FuncUnwinders
objects (Function Unwinders) -- one for each function
in that ObjectFile we've backtraced through during this
debug session.

The FuncUnwinders object has a few different UnwindPlans.
UnwindPlans are a generic way of describing how to find
the canonical address of a given function's stack frame
(the CFA idea from DWARF/eh_frame) and how to restore the
caller frame's register values, if they have been saved
by this function.

UnwindPlans are created from different sources.  One source is the
eh_frame exception handling information generated by the compiler
for unwinding an exception throw.  Another source is an assembly
language inspection class (UnwindAssemblyProfiler, uses the Plugin
architecture) which looks at the instructions in the funciton
prologue and describes the stack movements/register saves that are
done.

Two additional types of UnwindPlans that are worth noting are
the "fast" stack UnwindPlan which is useful for making a first
pass over a thread's stack, determining how many stack frames there
are and retrieving the pc and CFA values for each frame (enough
to create StackFrameIDs).  Only a minimal set of registers is
recovered during a fast stack walk.  

The final UnwindPlan is an architectural default unwind plan.
These are provided by the ArchDefaultUnwindPlan class (which uses
the plugin architecture).  When no symbol/function address range can
be found for a given pc value -- when we have no eh_frame information
and when we don't have a start address so we can't examine the assembly
language instrucitons -- we have to make a best guess about how to 
unwind.  That's when we use the architectural default UnwindPlan.
On x86_64, this would be to assume that rbp is used as a stack pointer
and we can use that to find the caller's frame pointer and pc value.
It's a last-ditch best guess about how to unwind out of a frame.

There are heuristics about when to use one UnwindPlan versues the other --
this will all happen in the still-begin-written UnwindLLDB subclass of
Unwind which runs the UnwindPlans.

llvm-svn: 113581
2010-09-10 07:49:16 +00:00
Chris Lattner 30fdc8d841 Initial checkin of lldb code from internal Apple repo.
llvm-svn: 105619
2010-06-08 16:52:24 +00:00