Revert "RegScavenging: Add scavengeRegisterBackwards()"

The ppc64 multistage bot fails on this.

This reverts commit r279124.

Also Revert "CodeGen: Add/Factor out LiveRegUnits class; NFCI" because it depends on the previous change
This reverts commit r279171.

llvm-svn: 279199
This commit is contained in:
Matthias Braun 2016-08-19 03:03:24 +00:00
parent aef7de8492
commit fdc4c6b426
10 changed files with 233 additions and 575 deletions

View File

@ -1,116 +0,0 @@
//===- llvm/CodeGen/LiveRegUnits.h - Register Unit Set ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// A set of register units. It is intended for register liveness tracking.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVEREGUNITS_H
#define LLVM_CODEGEN_LIVEREGUNITS_H
#include "llvm/ADT/BitVector.h"
#include "llvm/Target/TargetRegisterInfo.h"
namespace llvm {
class MachineInstr;
class MachineBasicBlock;
/// A set of register units used to track register liveness.
class LiveRegUnits {
const TargetRegisterInfo *TRI;
BitVector Units;
public:
/// Constructs a new empty LiveRegUnits set.
LiveRegUnits() : TRI(nullptr) {}
/// Constructs and initialize an empty LiveRegUnits set.
LiveRegUnits(const TargetRegisterInfo &TRI) {
init(TRI);
}
/// Initialize and clear the set.
void init(const TargetRegisterInfo &TRI) {
this->TRI = &TRI;
Units.reset();
Units.resize(TRI.getNumRegUnits());
}
/// Clears the set.
void clear() { Units.reset(); }
/// Returns true if the set is empty.
bool empty() const { return Units.empty(); }
/// Adds register units covered by physical register \p Reg.
void addReg(unsigned Reg) {
for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit)
Units.set(*Unit);
}
/// \brief Adds register units covered by physical register \p Reg that are
/// part of the lanemask \p Mask.
void addRegMasked(unsigned Reg, LaneBitmask Mask) {
for (MCRegUnitMaskIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
LaneBitmask UnitMask = (*Unit).second;
if (UnitMask == 0 || (UnitMask & Mask) != 0)
Units.set((*Unit).first);
}
}
/// Removes all register units covered by physical register \p Reg.
void removeReg(unsigned Reg) {
for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit)
Units.reset(*Unit);
}
/// Removes register units not preserved by the regmask \p RegMask.
/// The regmask has the same format as the one in the RegMask machine operand.
void removeRegsNotPreserved(const uint32_t *RegMask);
/// Returns true if no part of physical register \p Reg is live.
bool available(unsigned Reg) const {
for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
if (Units.test(*Unit))
return false;
}
return true;
}
/// Updates liveness when stepping backwards over the instruction \p MI.
void stepBackward(const MachineInstr &MI);
/// Adds registers living out of block \p MBB.
/// Live out registers are the union of the live-in registers of the successor
/// blocks and pristine registers. Live out registers of the end block are the
/// callee saved registers.
void addLiveOuts(const MachineBasicBlock &MBB);
/// Adds registers living into block \p MBB.
void addLiveIns(const MachineBasicBlock &MBB);
/// Adds all register units marked in the bitvector \p RegUnits.
void addUnits(const BitVector &RegUnits) {
Units |= RegUnits;
}
/// Removes all register units marked in the bitvector \p RegUnits.
void removeUnits(const BitVector &RegUnits) {
Units.reset(RegUnits);
}
/// Return the internal bitvector representation of the set.
const BitVector &getBitVector() const {
return Units;
}
};
} // namespace llvm
#endif

View File

@ -19,7 +19,6 @@
#define LLVM_CODEGEN_REGISTERSCAVENGING_H
#include "llvm/ADT/BitVector.h"
#include "llvm/CodeGen/LiveRegUnits.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
@ -59,7 +58,10 @@ class RegScavenger {
/// A vector of information on scavenged registers.
SmallVector<ScavengedInfo, 2> Scavenged;
LiveRegUnits LiveUnits;
/// The current state of each reg unit immediately before MBBI.
/// One bit per register unit. If bit is not set it means any
/// register containing that register unit is currently being used.
BitVector RegUnitsAvailable;
// These BitVectors are only used internally to forward(). They are members
// to avoid frequent reallocations.
@ -155,24 +157,12 @@ public:
/// available and do the appropriate bookkeeping. SPAdj is the stack
/// adjustment due to call frame, it's passed along to eliminateFrameIndex().
/// Returns the scavenged register.
/// This function performs worse if kill flags are incomplete, consider using
/// scavengeRegisterBackwards() instead!
unsigned scavengeRegister(const TargetRegisterClass *RegClass,
MachineBasicBlock::iterator I, int SPAdj);
unsigned scavengeRegister(const TargetRegisterClass *RegClass, int SPAdj) {
return scavengeRegister(RegClass, MBBI, SPAdj);
}
/// Make a register of the specific register class available from the current
/// position backwards to the place before \p To. If \p RestoreAfter is true
/// this includes the instruction following the current position.
/// SPAdj is the stack adjustment due to call frame, it's passed along to
/// eliminateFrameIndex().
/// Returns the scavenged register.
unsigned scavengeRegisterBackwards(const TargetRegisterClass &RC,
MachineBasicBlock::iterator To,
bool RestoreAfter, int SPAdj);
/// Tell the scavenger a register is used.
void setRegUsed(unsigned Reg, LaneBitmask LaneMask = ~0u);
private:
@ -181,11 +171,11 @@ private:
/// setUsed / setUnused - Mark the state of one or a number of register units.
///
void setUsed(const BitVector &RegUnits) {
LiveUnits.addUnits(RegUnits);
void setUsed(BitVector &RegUnits) {
RegUnitsAvailable.reset(RegUnits);
}
void setUnused(const BitVector &RegUnits) {
LiveUnits.removeUnits(RegUnits);
void setUnused(BitVector &RegUnits) {
RegUnitsAvailable |= RegUnits;
}
/// Processes the current instruction and fill the KillRegUnits and
@ -212,12 +202,6 @@ private:
/// Mark live-in registers of basic block as used.
void setLiveInsUsed(const MachineBasicBlock &MBB);
/// Spill a register after position \p After and reload it before position
/// \p UseMI.
ScavengedInfo &spill(unsigned Reg, const TargetRegisterClass &RC, int SPAdj,
MachineBasicBlock::iterator After,
MachineBasicBlock::iterator &UseMI);
};
} // End llvm namespace

View File

@ -44,7 +44,6 @@ add_llvm_library(LLVMCodeGen
LiveRangeCalc.cpp
LiveRangeEdit.cpp
LiveRegMatrix.cpp
LiveRegUnits.cpp
LiveStackAnalysis.cpp
LiveVariables.cpp
LLVMTargetMachine.cpp

View File

@ -1,97 +0,0 @@
//===--- LiveRegUnits.cpp - Register Unit Set -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file This file imlements the LiveRegUnits set.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/LiveRegUnits.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
using namespace llvm;
void LiveRegUnits::removeRegsNotPreserved(const uint32_t *RegMask) {
for (unsigned U = 0, E = TRI->getNumRegUnits(); U != E; ++U) {
for (MCRegUnitRootIterator RootReg(U, TRI); RootReg.isValid(); ++RootReg) {
if (MachineOperand::clobbersPhysReg(RegMask, *RootReg))
Units.reset(U);
}
}
}
void LiveRegUnits::stepBackward(const MachineInstr &MI) {
// Remove defined registers and regmask kills from the set.
for (ConstMIBundleOperands O(MI); O.isValid(); ++O) {
if (O->isReg()) {
if (!O->isDef())
continue;
unsigned Reg = O->getReg();
if (!TargetRegisterInfo::isPhysicalRegister(Reg))
continue;
removeReg(Reg);
} else if (O->isRegMask())
removeRegsNotPreserved(O->getRegMask());
}
// Add uses to the set.
for (ConstMIBundleOperands O(MI); O.isValid(); ++O) {
if (!O->isReg() || !O->readsReg())
continue;
unsigned Reg = O->getReg();
if (!TargetRegisterInfo::isPhysicalRegister(Reg))
continue;
addReg(Reg);
}
}
/// Add live-in registers of basic block \p MBB to \p LiveUnits.
static void addLiveIns(LiveRegUnits &LiveUnits, const MachineBasicBlock &MBB) {
for (const auto &LI : MBB.liveins())
LiveUnits.addRegMasked(LI.PhysReg, LI.LaneMask);
}
static void addLiveOuts(LiveRegUnits &LiveUnits, const MachineBasicBlock &MBB) {
// To get the live-outs we simply merge the live-ins of all successors.
for (const MachineBasicBlock *Succ : MBB.successors())
addLiveIns(LiveUnits, *Succ);
}
/// Add pristine registers to the given \p LiveUnits. This function removes
/// actually saved callee save registers when \p InPrologueEpilogue is false.
static void removeSavedRegs(LiveRegUnits &LiveUnits, const MachineFunction &MF,
const MachineFrameInfo &MFI,
const TargetRegisterInfo &TRI) {
for (const CalleeSavedInfo &Info : MFI.getCalleeSavedInfo())
LiveUnits.removeReg(Info.getReg());
}
void LiveRegUnits::addLiveOuts(const MachineBasicBlock &MBB) {
const MachineFunction &MF = *MBB.getParent();
const MachineFrameInfo &MFI = MF.getFrameInfo();
if (MFI.isCalleeSavedInfoValid()) {
for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I)
addReg(*I);
if (!MBB.isReturnBlock())
removeSavedRegs(*this, MF, MFI, *TRI);
}
::addLiveOuts(*this, MBB);
}
void LiveRegUnits::addLiveIns(const MachineBasicBlock &MBB) {
const MachineFunction &MF = *MBB.getParent();
const MachineFrameInfo &MFI = MF.getFrameInfo();
if (MFI.isCalleeSavedInfoValid()) {
for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I)
addReg(*I);
if (&MBB != &MF.front())
removeSavedRegs(*this, MF, MFI, *TRI);
}
::addLiveIns(*this, MBB);
}

View File

@ -41,7 +41,6 @@
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
#include <climits>
using namespace llvm;
@ -1146,55 +1145,6 @@ void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &Fn,
}
}
/// Allocate a register for the virtual register \p VReg. The last use of
/// \p VReg is around the current position of the register scavenger \p RS.
/// \p ReserveAfter controls whether the scavenged register needs to be reserved
/// after the current instruction, otherwise it will only be reserved before the
/// current instruction.
static unsigned scavengeVReg(MachineRegisterInfo &MRI, RegScavenger &RS,
unsigned VReg, bool ReserveAfter) {
#ifndef NDEBUG
// Verify that all definitions and uses are in the same basic block.
const MachineBasicBlock *CommonMBB = nullptr;
bool HadDef = false;
for (MachineOperand &MO : MRI.reg_nodbg_operands(VReg)) {
MachineBasicBlock *MBB = MO.getParent()->getParent();
if (CommonMBB == nullptr)
CommonMBB = MBB;
assert(MBB == CommonMBB && "All defs+uses must be in the same basic block");
if (MO.isDef())
HadDef = true;
}
assert(HadDef && "Must have at least 1 Def");
#endif
// We should only have one definition of the register. However to accomodate
// the requirements of two address code we also allow definitions in
// subsequent instructions provided they also read the register. That way
// we get a single contiguous lifetime.
//
// Definitions in MRI.def_begin() are unordered, search for the first.
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
MachineRegisterInfo::def_iterator FirstDef =
std::find_if(MRI.def_begin(VReg), MRI.def_end(),
[VReg, &TRI](const MachineOperand &MO) {
return !MO.getParent()->readsRegister(VReg, &TRI);
});
assert(FirstDef != MRI.def_end() &&
"Must have one definition that does not redefine vreg");
MachineInstr &DefMI = *FirstDef->getParent();
// The register scavenger will report a free register inserting an emergency
// spill/reload if necessary.
int SPAdj = 0;
const TargetRegisterClass &RC = *MRI.getRegClass(VReg);
unsigned SReg = RS.scavengeRegisterBackwards(RC, DefMI.getIterator(),
ReserveAfter, SPAdj);
MRI.replaceRegWith(VReg, SReg);
++NumScavengedRegs;
return SReg;
}
/// doScavengeFrameVirtualRegs - Replace all frame index virtual registers
/// with physical registers. Use the register scavenger to find an
/// appropriate register to use.
@ -1206,51 +1156,78 @@ static void
doScavengeFrameVirtualRegs(MachineFunction &MF, RegScavenger *RS) {
// Run through the instructions and find any virtual registers.
MachineRegisterInfo &MRI = MF.getRegInfo();
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
for (MachineBasicBlock &MBB : MF) {
RS->enterBasicBlockEnd(MBB);
RS->enterBasicBlock(MBB);
bool LastIterationHadVRegUses = false;
for (MachineBasicBlock::iterator I = MBB.end(); I != MBB.begin(); ) {
--I;
// Move RegScavenger to the position between *I and *std::next(I).
RS->backward(I);
int SPAdj = 0;
// Look for unassigned vregs in the uses of *std::next(I).
if (LastIterationHadVRegUses) {
MachineBasicBlock::iterator N = std::next(I);
const MachineInstr &NMI = *N;
for (const MachineOperand &MO : NMI.operands()) {
if (!MO.isReg() || !MO.readsReg())
continue;
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
unsigned SReg = scavengeVReg(MRI, *RS, Reg, true);
N->addRegisterKilled(SReg, &TRI, false);
RS->setRegUsed(SReg);
}
}
}
// The instruction stream may change in the loop, so check MBB.end()
// directly.
for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ) {
// We might end up here again with a NULL iterator if we scavenged a
// register for which we inserted spill code for definition by what was
// originally the first instruction in MBB.
if (I == MachineBasicBlock::iterator(nullptr))
I = MBB.begin();
// Look for unassigned vregs in the defs of *I.
LastIterationHadVRegUses = false;
const MachineInstr &MI = *I;
MachineBasicBlock::iterator J = std::next(I);
MachineBasicBlock::iterator P =
I == MBB.begin() ? MachineBasicBlock::iterator(nullptr)
: std::prev(I);
// RS should process this instruction before we might scavenge at this
// location. This is because we might be replacing a virtual register
// defined by this instruction, and if so, registers killed by this
// instruction are available, and defined registers are not.
RS->forward(I);
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg))
continue;
// We have to look at all operands anyway so we can precalculate here
// whether there is a reading operand. This allows use to skip the use
// step in the next iteration if there was none.
if (MO.readsReg())
LastIterationHadVRegUses = true;
if (MO.isDef()) {
unsigned SReg = scavengeVReg(MRI, *RS, Reg, false);
I->addRegisterDead(SReg, &TRI, false);
}
// When we first encounter a new virtual register, it
// must be a definition.
assert(MO.isDef() && "frame index virtual missing def!");
// Scavenge a new scratch register
const TargetRegisterClass *RC = MRI.getRegClass(Reg);
unsigned ScratchReg = RS->scavengeRegister(RC, J, SPAdj);
++NumScavengedRegs;
// Replace this reference to the virtual register with the
// scratch register.
assert(ScratchReg && "Missing scratch register!");
MRI.replaceRegWith(Reg, ScratchReg);
// Because this instruction was processed by the RS before this
// register was allocated, make sure that the RS now records the
// register as being used.
RS->setRegUsed(ScratchReg);
}
// If the scavenger needed to use one of its spill slots, the
// spill code will have been inserted in between I and J. This is a
// problem because we need the spill code before I: Move I to just
// prior to J.
if (I != std::prev(J)) {
MBB.splice(J, &MBB, I);
// Before we move I, we need to prepare the RS to visit I again.
// Specifically, RS will assert if it sees uses of registers that
// it believes are undefined. Because we have already processed
// register kills in I, when it visits I again, it will believe that
// those registers are undefined. To avoid this situation, unprocess
// the instruction I.
assert(RS->getCurrentPosition() == I &&
"The register scavenger has an unexpected position");
I = P;
RS->unprocess(P);
} else
++I;
}
}
}

View File

@ -32,7 +32,11 @@ using namespace llvm;
#define DEBUG_TYPE "reg-scavenging"
void RegScavenger::setRegUsed(unsigned Reg, LaneBitmask LaneMask) {
LiveUnits.addRegMasked(Reg, LaneMask);
for (MCRegUnitMaskIterator RUI(Reg, TRI); RUI.isValid(); ++RUI) {
LaneBitmask UnitMask = (*RUI).second;
if (UnitMask == 0 || (LaneMask & UnitMask) != 0)
RegUnitsAvailable.reset((*RUI).first);
}
}
void RegScavenger::init(MachineBasicBlock &MBB) {
@ -40,7 +44,6 @@ void RegScavenger::init(MachineBasicBlock &MBB) {
TII = MF.getSubtarget().getInstrInfo();
TRI = MF.getSubtarget().getRegisterInfo();
MRI = &MF.getRegInfo();
LiveUnits.init(*TRI);
assert((NumRegUnits == 0 || NumRegUnits == TRI->getNumRegUnits()) &&
"Target changed?");
@ -53,6 +56,7 @@ void RegScavenger::init(MachineBasicBlock &MBB) {
// Self-initialize.
if (!this->MBB) {
NumRegUnits = TRI->getNumRegUnits();
RegUnitsAvailable.resize(NumRegUnits);
KillRegUnits.resize(NumRegUnits);
DefRegUnits.resize(NumRegUnits);
TmpRegUnits.resize(NumRegUnits);
@ -65,17 +69,32 @@ void RegScavenger::init(MachineBasicBlock &MBB) {
I->Restore = nullptr;
}
// All register units start out unused.
RegUnitsAvailable.set();
// Pristine CSRs are not available.
BitVector PR = MF.getFrameInfo().getPristineRegs(MF);
for (int I = PR.find_first(); I>0; I = PR.find_next(I))
setRegUsed(I);
Tracking = false;
}
void RegScavenger::setLiveInsUsed(const MachineBasicBlock &MBB) {
for (const auto &LI : MBB.liveins())
setRegUsed(LI.PhysReg, LI.LaneMask);
}
void RegScavenger::enterBasicBlock(MachineBasicBlock &MBB) {
init(MBB);
LiveUnits.addLiveIns(MBB);
setLiveInsUsed(MBB);
}
void RegScavenger::enterBasicBlockEnd(MachineBasicBlock &MBB) {
init(MBB);
LiveUnits.addLiveOuts(MBB);
// Merge live-ins of successors to get live-outs.
for (const MachineBasicBlock *Succ : MBB.successors())
setLiveInsUsed(*Succ);
// Move internal iterator at the last instruction of the block.
if (MBB.begin() != MBB.end()) {
@ -249,13 +268,34 @@ void RegScavenger::backward() {
assert(Tracking && "Must be tracking to determine kills and defs");
const MachineInstr &MI = *MBBI;
LiveUnits.stepBackward(MI);
// Expire scavenge spill frameindex uses.
for (ScavengedInfo &I : Scavenged) {
if (I.Restore == &MI) {
I.Reg = 0;
I.Restore = nullptr;
// Defined or clobbered registers are available now.
for (const MachineOperand &MO : MI.operands()) {
if (MO.isRegMask()) {
for (unsigned RU = 0, RUEnd = TRI->getNumRegUnits(); RU != RUEnd;
++RU) {
for (MCRegUnitRootIterator RURI(RU, TRI); RURI.isValid(); ++RURI) {
if (MO.clobbersPhysReg(*RURI)) {
RegUnitsAvailable.set(RU);
break;
}
}
}
} else if (MO.isReg() && MO.isDef()) {
unsigned Reg = MO.getReg();
if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) ||
isReserved(Reg))
continue;
addRegUnits(RegUnitsAvailable, Reg);
}
}
// Mark read registers as unavailable.
for (const MachineOperand &MO : MI.uses()) {
if (MO.isReg() && MO.readsReg()) {
unsigned Reg = MO.getReg();
if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) ||
isReserved(Reg))
continue;
removeRegUnits(RegUnitsAvailable, Reg);
}
}
@ -267,9 +307,12 @@ void RegScavenger::backward() {
}
bool RegScavenger::isRegUsed(unsigned Reg, bool includeReserved) const {
if (isReserved(Reg))
return includeReserved;
return !LiveUnits.available(Reg);
if (includeReserved && isReserved(Reg))
return true;
for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI)
if (!RegUnitsAvailable.test(*RUI))
return true;
return false;
}
unsigned RegScavenger::FindUnusedReg(const TargetRegisterClass *RC) const {
@ -355,69 +398,6 @@ unsigned RegScavenger::findSurvivorReg(MachineBasicBlock::iterator StartMI,
return Survivor;
}
static std::pair<unsigned, MachineBasicBlock::iterator>
findSurvivorBackwards(const TargetRegisterInfo &TRI,
MachineBasicBlock::iterator From, MachineBasicBlock::iterator To,
BitVector &Available, BitVector &Candidates) {
bool FoundTo = false;
unsigned Survivor = 0;
MachineBasicBlock::iterator Pos;
MachineBasicBlock &MBB = *From->getParent();
unsigned InstrLimit = 25;
unsigned InstrCountDown = InstrLimit;
for (MachineBasicBlock::iterator I = From;; --I) {
const MachineInstr &MI = *I;
// Remove any candidates touched by instruction.
bool FoundVReg = false;
for (const MachineOperand &MO : MI.operands()) {
if (MO.isRegMask()) {
Candidates.clearBitsNotInMask(MO.getRegMask());
continue;
}
if (!MO.isReg() || MO.isUndef() || MO.isDebug())
continue;
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
FoundVReg = true;
} else if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
Candidates.reset(*AI);
}
}
if (I == To) {
// If one of the available registers survived this long take it.
Available &= Candidates;
int Reg = Available.find_first();
if (Reg != -1)
return std::make_pair(Reg, MBB.end());
// Otherwise we will continue up to InstrLimit instructions to find
// the register which is not defined/used for the longest time.
FoundTo = true;
Pos = To;
}
if (FoundTo) {
if (Survivor == 0 || !Candidates.test(Survivor)) {
int Reg = Candidates.find_first();
if (Reg == -1)
break;
Survivor = Reg;
}
if (--InstrCountDown == 0 || I == MBB.begin())
break;
if (FoundVReg) {
// Keep searching when we find a vreg since the spilled register will
// be usefull for this other vreg as well later.
InstrCountDown = InstrLimit;
Pos = I;
}
}
}
return std::make_pair(Survivor, Pos);
}
static unsigned getFrameIndexOperandNum(MachineInstr &MI) {
unsigned i = 0;
while (!MI.getOperand(i).isFI()) {
@ -427,81 +407,6 @@ static unsigned getFrameIndexOperandNum(MachineInstr &MI) {
return i;
}
RegScavenger::ScavengedInfo &
RegScavenger::spill(unsigned Reg, const TargetRegisterClass &RC, int SPAdj,
MachineBasicBlock::iterator Before,
MachineBasicBlock::iterator &UseMI) {
// Find an available scavenging slot with size and alignment matching
// the requirements of the class RC.
const MachineFunction &MF = *Before->getParent()->getParent();
const MachineFrameInfo &MFI = MF.getFrameInfo();
unsigned NeedSize = RC.getSize();
unsigned NeedAlign = RC.getAlignment();
unsigned SI = Scavenged.size(), Diff = UINT_MAX;
int FIB = MFI.getObjectIndexBegin(), FIE = MFI.getObjectIndexEnd();
for (unsigned I = 0; I < Scavenged.size(); ++I) {
if (Scavenged[I].Reg != 0)
continue;
// Verify that this slot is valid for this register.
int FI = Scavenged[I].FrameIndex;
if (FI < FIB || FI >= FIE)
continue;
unsigned S = MFI.getObjectSize(FI);
unsigned A = MFI.getObjectAlignment(FI);
if (NeedSize > S || NeedAlign > A)
continue;
// Avoid wasting slots with large size and/or large alignment. Pick one
// that is the best fit for this register class (in street metric).
// Picking a larger slot than necessary could happen if a slot for a
// larger register is reserved before a slot for a smaller one. When
// trying to spill a smaller register, the large slot would be found
// first, thus making it impossible to spill the larger register later.
unsigned D = (S-NeedSize) + (A-NeedAlign);
if (D < Diff) {
SI = I;
Diff = D;
}
}
if (SI == Scavenged.size()) {
// We need to scavenge a register but have no spill slot, the target
// must know how to do it (if not, we'll assert below).
Scavenged.push_back(ScavengedInfo(FIE));
}
// Avoid infinite regress
Scavenged[SI].Reg = Reg;
// If the target knows how to save/restore the register, let it do so;
// otherwise, use the emergency stack spill slot.
if (!TRI->saveScavengerRegister(*MBB, Before, UseMI, &RC, Reg)) {
// Spill the scavenged register before \p Before.
int FI = Scavenged[SI].FrameIndex;
if (FI < FIB || FI >= FIE) {
std::string Msg = std::string("Error while trying to spill ") +
TRI->getName(Reg) + " from class " + TRI->getRegClassName(&RC) +
": Cannot scavenge register without an emergency spill slot!";
report_fatal_error(Msg.c_str());
}
TII->storeRegToStackSlot(*MBB, Before, Reg, true, Scavenged[SI].FrameIndex,
&RC, TRI);
MachineBasicBlock::iterator II = std::prev(Before);
unsigned FIOperandNum = getFrameIndexOperandNum(*II);
TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this);
// Restore the scavenged register before its use (or first terminator).
TII->loadRegFromStackSlot(*MBB, UseMI, Reg, Scavenged[SI].FrameIndex,
&RC, TRI);
II = std::prev(UseMI);
FIOperandNum = getFrameIndexOperandNum(*II);
TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this);
}
return Scavenged[SI];
}
unsigned RegScavenger::scavengeRegister(const TargetRegisterClass *RC,
MachineBasicBlock::iterator I,
int SPAdj) {
@ -534,47 +439,81 @@ unsigned RegScavenger::scavengeRegister(const TargetRegisterClass *RC,
return SReg;
}
ScavengedInfo &Scavenged = spill(SReg, *RC, SPAdj, I, UseMI);
Scavenged.Restore = &*std::prev(UseMI);
// Find an available scavenging slot with size and alignment matching
// the requirements of the class RC.
const MachineFrameInfo &MFI = MF.getFrameInfo();
unsigned NeedSize = RC->getSize();
unsigned NeedAlign = RC->getAlignment();
unsigned SI = Scavenged.size(), Diff = UINT_MAX;
int FIB = MFI.getObjectIndexBegin(), FIE = MFI.getObjectIndexEnd();
for (unsigned I = 0; I < Scavenged.size(); ++I) {
if (Scavenged[I].Reg != 0)
continue;
// Verify that this slot is valid for this register.
int FI = Scavenged[I].FrameIndex;
if (FI < FIB || FI >= FIE)
continue;
unsigned S = MFI.getObjectSize(FI);
unsigned A = MFI.getObjectAlignment(FI);
if (NeedSize > S || NeedAlign > A)
continue;
// Avoid wasting slots with large size and/or large alignment. Pick one
// that is the best fit for this register class (in street metric).
// Picking a larger slot than necessary could happen if a slot for a
// larger register is reserved before a slot for a smaller one. When
// trying to spill a smaller register, the large slot would be found
// first, thus making it impossible to spill the larger register later.
unsigned D = (S-NeedSize) + (A-NeedAlign);
if (D < Diff) {
SI = I;
Diff = D;
}
}
if (SI == Scavenged.size()) {
// We need to scavenge a register but have no spill slot, the target
// must know how to do it (if not, we'll assert below).
Scavenged.push_back(ScavengedInfo(FIE));
}
// Avoid infinite regress
Scavenged[SI].Reg = SReg;
// If the target knows how to save/restore the register, let it do so;
// otherwise, use the emergency stack spill slot.
if (!TRI->saveScavengerRegister(*MBB, I, UseMI, RC, SReg)) {
// Spill the scavenged register before I.
int FI = Scavenged[SI].FrameIndex;
if (FI < FIB || FI >= FIE) {
std::string Msg = std::string("Error while trying to spill ") +
TRI->getName(SReg) + " from class " + TRI->getRegClassName(RC) +
": Cannot scavenge register without an emergency spill slot!";
report_fatal_error(Msg.c_str());
}
TII->storeRegToStackSlot(*MBB, I, SReg, true, Scavenged[SI].FrameIndex,
RC, TRI);
MachineBasicBlock::iterator II = std::prev(I);
unsigned FIOperandNum = getFrameIndexOperandNum(*II);
TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this);
// Restore the scavenged register before its use (or first terminator).
TII->loadRegFromStackSlot(*MBB, UseMI, SReg, Scavenged[SI].FrameIndex,
RC, TRI);
II = std::prev(UseMI);
FIOperandNum = getFrameIndexOperandNum(*II);
TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this);
}
Scavenged[SI].Restore = &*std::prev(UseMI);
// Doing this here leads to infinite regress.
// Scavenged[SI].Reg = SReg;
DEBUG(dbgs() << "Scavenged register (with spill): " << TRI->getName(SReg) <<
"\n");
return SReg;
}
unsigned RegScavenger::scavengeRegisterBackwards(const TargetRegisterClass &RC,
MachineBasicBlock::iterator To,
bool RestoreAfter, int SPAdj) {
const MachineBasicBlock &MBB = *To->getParent();
const MachineFunction &MF = *MBB.getParent();
// Consider all allocatable registers in the register class initially
BitVector Candidates = TRI->getAllocatableSet(MF, &RC);
// Try to find a register that's unused if there is one, as then we won't
// have to spill.
BitVector Available = getRegsAvailable(&RC);
// Find the register whose use is furthest away.
MachineBasicBlock::iterator UseMI;
std::pair<unsigned, MachineBasicBlock::iterator> P =
findSurvivorBackwards(*TRI, MBBI, To, Available, Candidates);
unsigned Reg = P.first;
assert(Reg != 0 && "No register left to scavenge!");
// Found an available register?
if (!Available.test(Reg)) {
MachineBasicBlock::iterator ReloadAfter =
RestoreAfter ? std::next(MBBI) : MBBI;
MachineBasicBlock::iterator ReloadBefore = std::next(ReloadAfter);
DEBUG(dbgs() << "Reload before: " << *ReloadBefore << '\n');
MachineBasicBlock::iterator SpillBefore = P.second;
ScavengedInfo &Scavenged = spill(Reg, RC, SPAdj, SpillBefore, ReloadBefore);
Scavenged.Restore = &*std::prev(SpillBefore);
LiveUnits.removeReg(Reg);
DEBUG(dbgs() << "Scavenged register with spill: " << PrintReg(Reg, TRI)
<< " until " << *SpillBefore);
} else {
DEBUG(dbgs() << "Scavenged free register: " << PrintReg(Reg, TRI) << '\n');
}
return Reg;
}

View File

@ -140,8 +140,8 @@ define void @stored_fi_to_global_2_small_objects(float* addrspace(1)* %ptr) #0 {
}
; GCN-LABEL: {{^}}stored_fi_to_global_huge_frame_offset:
; GCN-DAG: s_add_i32 [[BASE_1_OFF_0:s[0-9]+]], 0, 0x3ffc
; GCN-DAG: v_mov_b32_e32 [[BASE_0:v[0-9]+]], 0{{$}}
; GCN: s_add_i32 [[BASE_1_OFF_0:s[0-9]+]], 0, 0x3ffc
; GCN: v_mov_b32_e32 [[BASE_0:v[0-9]+]], 0{{$}}
; GCN: buffer_store_dword [[BASE_0]], v{{[0-9]+}}, s{{\[[0-9]+:[0-9]+\]}}, s{{[0-9]+}} offen
; GCN: v_mov_b32_e32 [[V_BASE_1_OFF_0:v[0-9]+]], [[BASE_1_OFF_0]]

View File

@ -1,62 +1,34 @@
; RUN: llc -march=mipsel -O0 -relocation-model=pic < %s | FileCheck %s
; Check that register scavenging spill slot is close to $fp.
target triple="mipsel--"
; RUN: llc -march=mipsel -O0 -relocation-model=pic < %s | FileCheck %s
@var = external global i32
@ptrvar = external global i8*
; CHECK: sw ${{.*}}, 8($sp)
; CHECK: lw ${{.*}}, 8($sp)
; CHECK-LABEL: func:
define void @func() {
%space = alloca i32, align 4
%stackspace = alloca[16384 x i32], align 4
; ensure stackspace is not optimized out
%stackspace_casted = bitcast [16384 x i32]* %stackspace to i8*
store volatile i8* %stackspace_casted, i8** @ptrvar
; Load values to increase register pressure.
%v0 = load volatile i32, i32* @var
%v1 = load volatile i32, i32* @var
%v2 = load volatile i32, i32* @var
%v3 = load volatile i32, i32* @var
%v4 = load volatile i32, i32* @var
%v5 = load volatile i32, i32* @var
%v6 = load volatile i32, i32* @var
%v7 = load volatile i32, i32* @var
%v8 = load volatile i32, i32* @var
%v9 = load volatile i32, i32* @var
%v10 = load volatile i32, i32* @var
%v11 = load volatile i32, i32* @var
%v12 = load volatile i32, i32* @var
%v13 = load volatile i32, i32* @var
%v14 = load volatile i32, i32* @var
%v15 = load volatile i32, i32* @var
%v16 = load volatile i32, i32* @var
; Computing a stack-relative values needs an additional register.
; We should get an emergency spill/reload for this.
; CHECK: sw ${{.*}}, 0($sp)
; CHECK: lw ${{.*}}, 0($sp)
store volatile i32 %v0, i32* %space
; store values so they are used.
store volatile i32 %v0, i32* @var
store volatile i32 %v1, i32* @var
store volatile i32 %v2, i32* @var
store volatile i32 %v3, i32* @var
store volatile i32 %v4, i32* @var
store volatile i32 %v5, i32* @var
store volatile i32 %v6, i32* @var
store volatile i32 %v7, i32* @var
store volatile i32 %v8, i32* @var
store volatile i32 %v9, i32* @var
store volatile i32 %v10, i32* @var
store volatile i32 %v11, i32* @var
store volatile i32 %v12, i32* @var
store volatile i32 %v13, i32* @var
store volatile i32 %v14, i32* @var
store volatile i32 %v15, i32* @var
store volatile i32 %v16, i32* @var
ret void
define i32 @main(i32 signext %argc, i8** %argv) #0 {
entry:
%retval = alloca i32, align 4
%argc.addr = alloca i32, align 4
%argv.addr = alloca i8**, align 4
%v0 = alloca <16 x i8>, align 16
%.compoundliteral = alloca <16 x i8>, align 16
%v1 = alloca <16 x i8>, align 16
%.compoundliteral1 = alloca <16 x i8>, align 16
%unused_variable = alloca [16384 x i32], align 4
%result = alloca <16 x i8>, align 16
store i32 0, i32* %retval
store i32 %argc, i32* %argc.addr, align 4
store i8** %argv, i8*** %argv.addr, align 4
store <16 x i8> <i8 1, i8 2, i8 3, i8 4, i8 5, i8 6, i8 7, i8 8, i8 9, i8 10, i8 11, i8 12, i8 13, i8 14, i8 15, i8 16>, <16 x i8>* %.compoundliteral
%0 = load <16 x i8>, <16 x i8>* %.compoundliteral
store <16 x i8> %0, <16 x i8>* %v0, align 16
store <16 x i8> zeroinitializer, <16 x i8>* %.compoundliteral1
%1 = load <16 x i8>, <16 x i8>* %.compoundliteral1
store <16 x i8> %1, <16 x i8>* %v1, align 16
%2 = load <16 x i8>, <16 x i8>* %v0, align 16
%3 = load <16 x i8>, <16 x i8>* %v1, align 16
%mul = mul <16 x i8> %2, %3
store <16 x i8> %mul, <16 x i8>* %result, align 16
ret i32 0
}
attributes #0 = { noinline "no-frame-pointer-elim"="true" }

View File

@ -25,8 +25,8 @@ entry:
; CHECK-DAG: li [[REG1:[0-9]+]], -128
; CHECK-DAG: neg [[REG2:[0-9]+]],
; CHECK: and [[REG3:[0-9]+]], [[REG2]], [[REG1]]
; CHECK: stdux {{[0-9]+}}, 1, [[REG3]]
; CHECK: and [[REG1]], [[REG2]], [[REG1]]
; CHECK: stdux {{[0-9]+}}, 1, [[REG1]]
; CHECK: blr

View File

@ -46,8 +46,8 @@ define i32 @test3() {
; CHECK-LABEL: test3:
; CHECK: ldr [[TEMP:r[0-7]]],
; CHECK: add sp, [[TEMP]]
; CHECK: ldr [[TEMP2:r[0-7]]],
; CHECK: add [[TEMP2]], sp
; CHECK: ldr [[TEMP]],
; CHECK: add [[TEMP]], sp
; EABI: ldr [[TEMP:r[0-7]]],
; EABI: add sp, [[TEMP]]
; IOS: subs r4, r7, #4