Bugfix: ScalarEvolution incorrectly assumes that the start of certain

add recurrences don't overflow.

This change makes the optimization more restrictive.  It still assumes
that an overflowing `add nsw` is undefined behavior; and this change
will need revisiting once we have a consistent semantics for poison
values.

Differential Revision: http://reviews.llvm.org/D7331

llvm-svn: 228552
This commit is contained in:
Sanjoy Das 2015-02-08 22:52:17 +00:00
parent 68ab0465a0
commit f2e931cae9
2 changed files with 134 additions and 1 deletions

View File

@ -1364,7 +1364,24 @@ static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
// WARNING: FIXME: the optimization below assumes that a sign-overflowing nsw
// operation is undefined behavior. This is strictly more aggressive than the
// interpretation of nsw in other parts of LLVM (for instance, they may
// unconditionally hoist nsw arithmetic through control flow). This logic
// needs to be revisited once we have a consistent semantics for poison
// values.
//
// "{S,+,X} is <nsw>" and "{S,+,X} is evaluated at least once" implies "S+X
// does not sign-overflow" (we'd have undefined behavior if it did). If
// `L->getExitingBlock() == L->getLoopLatch()` then `PreAR` (= {S,+,X}<nsw>)
// is evaluated every-time `AR` (= {S+X,+,X}) is evaluated, and hence within
// `AR` we are safe to assume that "S+X" will not sign-overflow.
//
BasicBlock *ExitingBlock = L->getExitingBlock();
BasicBlock *LatchBlock = L->getLoopLatch();
if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW) &&
ExitingBlock != nullptr && ExitingBlock == LatchBlock)
return PreStart;
// 2. Direct overflow check on the step operation's expression.

View File

@ -0,0 +1,116 @@
; RUN: opt -analyze -scalar-evolution < %s | FileCheck %s
; An example run where SCEV(%postinc)->getStart() may overflow:
;
; %start = INT_SMAX
; %low.limit = INT_SMIN
; %high.limit = < not used >
;
; >> entry:
; %postinc.start = INT_SMIN
;
; >> loop:
; %idx = %start
; %postinc = INT_SMIN
; %postinc.inc = INT_SMIN + 1
; %postinc.sext = sext(INT_SMIN) = i64 INT32_SMIN
; %break.early = INT_SMIN `slt` INT_SMIN = false
; br i1 false, ___, %early.exit
;
; >> early.exit:
; ret i64 INT32_SMIN
define i64 @bad.0(i32 %start, i32 %low.limit, i32 %high.limit) {
; CHECK-LABEL: Classifying expressions for: @bad.0
entry:
%postinc.start = add i32 %start, 1
br label %loop
loop:
%idx = phi i32 [ %start, %entry ], [ %idx.inc, %continue ]
%postinc = phi i32 [ %postinc.start, %entry ], [ %postinc.inc, %continue ]
%postinc.inc = add nsw i32 %postinc, 1
%postinc.sext = sext i32 %postinc to i64
; CHECK: %postinc.sext = sext i32 %postinc to i64
; CHECK-NEXT: --> {(sext i32 (1 + %start) to i64),+,1}<nsw><%loop>
%break.early = icmp slt i32 %postinc, %low.limit
br i1 %break.early, label %continue, label %early.exit
continue:
%idx.inc = add nsw i32 %idx, 1
%cmp = icmp slt i32 %idx.inc, %high.limit
br i1 %cmp, label %loop, label %exit
exit:
ret i64 0
early.exit:
ret i64 %postinc.sext
}
define i64 @bad.1(i32 %start, i32 %low.limit, i32 %high.limit, i1* %unknown) {
; CHECK-LABEL: Classifying expressions for: @bad.1
entry:
%postinc.start = add i32 %start, 1
br label %loop
loop:
%idx = phi i32 [ %start, %entry ], [ %idx.inc, %continue ], [ %idx.inc, %continue.1 ]
%postinc = phi i32 [ %postinc.start, %entry ], [ %postinc.inc, %continue ], [ %postinc.inc, %continue.1 ]
%postinc.inc = add nsw i32 %postinc, 1
%postinc.sext = sext i32 %postinc to i64
; CHECK: %postinc.sext = sext i32 %postinc to i64
; CHECK-NEXT: --> {(sext i32 (1 + %start) to i64),+,1}<nsw><%loop>
%break.early = icmp slt i32 %postinc, %low.limit
br i1 %break.early, label %continue.1, label %early.exit
continue.1:
%cond = load volatile i1* %unknown
%idx.inc = add nsw i32 %idx, 1
br i1 %cond, label %loop, label %continue
continue:
%cmp = icmp slt i32 %idx.inc, %high.limit
br i1 %cmp, label %loop, label %exit
exit:
ret i64 0
early.exit:
ret i64 %postinc.sext
}
; WARNING: FIXME: it is safe to make the inference demonstrated here
; only if we assume `add nsw` has undefined behavior if the result
; sign-overflows; and this interpretation is stronger than what most
; of LLVM assumes. This test here only serves as a documentation of
; current behavior and will need to be revisited once we've decided
; upon a consistent semantics for nsw (and nuw) arithetic operations.
;
define i64 @good(i32 %start, i32 %low.limit, i32 %high.limit) {
; CHECK-LABEL: Classifying expressions for: @good
entry:
%postinc.start = add i32 %start, 1
br label %loop
loop:
%idx = phi i32 [ %start, %entry ], [ %idx.inc, %loop ]
%postinc = phi i32 [ %postinc.start, %entry ], [ %postinc.inc, %loop ]
%postinc.inc = add nsw i32 %postinc, 1
%postinc.sext = sext i32 %postinc to i64
; CHECK: %postinc.sext = sext i32 %postinc to i64
; CHECK-NEXT: --> {(1 + (sext i32 %start to i64)),+,1}<nsw><%loop>
%break.early = icmp slt i32 %postinc, %low.limit
%idx.inc = add nsw i32 %idx, 1
%cmp = icmp slt i32 %idx.inc, %high.limit
br i1 %cmp, label %loop, label %exit
exit:
ret i64 0
early.exit:
ret i64 %postinc.sext
}