Fix ppcf128 component access on little-endian systems

The PowerPC 128-bit long double data type (ppcf128 in LLVM) is in fact a
pair of two doubles, where one is considered the "high" or
more-significant part, and the other is considered the "low" or
less-significant part.  When a ppcf128 value is stored in memory or a
register pair, the high part always comes first, i.e. at the lower
memory address or in the lower-numbered register, and the low part
always comes second.  This is true both on big-endian and little-endian
PowerPC systems.  (Similar to how with a complex number, the real part
always comes first and the imaginary part second, no matter the byte
order of the system.)

This was implemented incorrectly for little-endian systems in LLVM.
This commit fixes three related issues:

- When printing an immediate ppcf128 constant to assembler output
  in emitGlobalConstantFP, emit the high part first on both big-
  and little-endian systems.

- When lowering a ppcf128 type to a pair of f64 types in SelectionDAG
  (which is used e.g. when generating code to load an argument into a
  register pair), use correct low/high part ordering on little-endian
  systems.

- In a related issue, because lowering ppcf128 into a pair of f64 must
  operate differently from lowering an int128 into a pair of i64,
  bitcasts between ppcf128 and int128 must not be optimized away by the
  DAG combiner on little-endian systems, but must effect a word-swap.

Reviewed by Hal Finkel.

llvm-svn: 212274
This commit is contained in:
Ulrich Weigand 2014-07-03 15:06:47 +00:00
parent 4af9c0ea80
commit f236bb1b5b
7 changed files with 183 additions and 13 deletions

View File

@ -716,6 +716,13 @@ public:
/// reduce runtime.
virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
/// When splitting a value of the specified type into parts, does the Lo
/// or Hi part come first? This usually follows the endianness, except
/// for ppcf128, where the Hi part always comes first.
bool hasBigEndianPartOrdering(EVT VT) const {
return isBigEndian() || VT == MVT::ppcf128;
}
/// If true, the target has custom DAG combine transformations that it can
/// perform for the specified node.
bool hasTargetDAGCombine(ISD::NodeType NT) const {

View File

@ -1881,7 +1881,8 @@ static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
// PPC's long double has odd notions of endianness compared to how LLVM
// handles it: p[0] goes first for *big* endian on PPC.
if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) {
if (AP.TM.getDataLayout()->isBigEndian() &&
!CFP->getType()->isPPC_FP128Ty()) {
int Chunk = API.getNumWords() - 1;
if (TrailingBytes)

View File

@ -6210,6 +6210,9 @@ SDValue DAGCombiner::visitBITCAST(SDNode *N) {
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
// Do not change the width of a volatile load.
!cast<LoadSDNode>(N0)->isVolatile() &&
// Do not remove the cast if the types differ in endian layout.
TLI.hasBigEndianPartOrdering(N0.getValueType()) ==
TLI.hasBigEndianPartOrdering(VT) &&
(!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) &&
TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);

View File

@ -60,12 +60,15 @@ void DAGTypeLegalizer::ExpandRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi) {
case TargetLowering::TypeExpandFloat:
// Convert the expanded pieces of the input.
GetExpandedOp(InOp, Lo, Hi);
if (TLI.hasBigEndianPartOrdering(InVT) !=
TLI.hasBigEndianPartOrdering(OutVT))
std::swap(Lo, Hi);
Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo);
Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi);
return;
case TargetLowering::TypeSplitVector:
GetSplitVector(InOp, Lo, Hi);
if (TLI.isBigEndian())
if (TLI.hasBigEndianPartOrdering(OutVT))
std::swap(Lo, Hi);
Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo);
Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi);
@ -82,7 +85,7 @@ void DAGTypeLegalizer::ExpandRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi) {
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(InVT);
std::tie(Lo, Hi) = DAG.SplitVector(InOp, dl, LoVT, HiVT);
if (TLI.isBigEndian())
if (TLI.hasBigEndianPartOrdering(OutVT))
std::swap(Lo, Hi);
Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo);
Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi);
@ -176,7 +179,7 @@ void DAGTypeLegalizer::ExpandRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi) {
false, false, MinAlign(Alignment, IncrementSize));
// Handle endianness of the load.
if (TLI.isBigEndian())
if (TLI.hasBigEndianPartOrdering(OutVT))
std::swap(Lo, Hi);
}
@ -245,7 +248,8 @@ void DAGTypeLegalizer::ExpandRes_NormalLoad(SDNode *N, SDValue &Lo,
SDLoc dl(N);
LoadSDNode *LD = cast<LoadSDNode>(N);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), LD->getValueType(0));
EVT ValueVT = LD->getValueType(0);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), ValueVT);
SDValue Chain = LD->getChain();
SDValue Ptr = LD->getBasePtr();
unsigned Alignment = LD->getAlignment();
@ -275,7 +279,7 @@ void DAGTypeLegalizer::ExpandRes_NormalLoad(SDNode *N, SDValue &Lo,
Hi.getValue(1));
// Handle endianness of the load.
if (TLI.isBigEndian())
if (TLI.hasBigEndianPartOrdering(ValueVT))
std::swap(Lo, Hi);
// Modified the chain - switch anything that used the old chain to use
@ -295,7 +299,7 @@ void DAGTypeLegalizer::ExpandRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi) {
Hi = DAG.getVAArg(NVT, dl, Lo.getValue(1), Ptr, N->getOperand(2), 0);
// Handle endianness of the load.
if (TLI.isBigEndian())
if (TLI.hasBigEndianPartOrdering(OVT))
std::swap(Lo, Hi);
// Modified the chain - switch anything that used the old chain to use
@ -459,8 +463,8 @@ SDValue DAGTypeLegalizer::ExpandOp_NormalStore(SDNode *N, unsigned OpNo) {
SDLoc dl(N);
StoreSDNode *St = cast<StoreSDNode>(N);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(),
St->getValue().getValueType());
EVT ValueVT = St->getValue().getValueType();
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), ValueVT);
SDValue Chain = St->getChain();
SDValue Ptr = St->getBasePtr();
unsigned Alignment = St->getAlignment();
@ -474,7 +478,7 @@ SDValue DAGTypeLegalizer::ExpandOp_NormalStore(SDNode *N, unsigned OpNo) {
SDValue Lo, Hi;
GetExpandedOp(St->getValue(), Lo, Hi);
if (TLI.isBigEndian())
if (TLI.hasBigEndianPartOrdering(ValueVT))
std::swap(Lo, Hi);
Lo = DAG.getStore(Chain, dl, Lo, Ptr, St->getPointerInfo(),

View File

@ -169,7 +169,7 @@ static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
SDValue Lo, Hi;
Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
if (TLI.isBigEndian())
if (TLI.hasBigEndianPartOrdering(ValueVT))
std::swap(Lo, Hi);
Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
} else {

View File

@ -0,0 +1,154 @@
; RUN: llc -mcpu=pwr7 -mattr=+altivec < %s | FileCheck %s
target datalayout = "e-m:e-i64:64-n32:64"
target triple = "powerpc64le-unknown-linux-gnu"
@g = common global ppc_fp128 0xM00000000000000000000000000000000, align 16
define void @callee(ppc_fp128 %x) {
entry:
%x.addr = alloca ppc_fp128, align 16
store ppc_fp128 %x, ppc_fp128* %x.addr, align 16
%0 = load ppc_fp128* %x.addr, align 16
store ppc_fp128 %0, ppc_fp128* @g, align 16
ret void
}
; CHECK: @callee
; CHECK: ld [[REG:[0-9]+]], .LC
; CHECK: stfd 2, 8([[REG]])
; CHECK: stfd 1, 0([[REG]])
; CHECK: blr
define void @caller() {
entry:
%0 = load ppc_fp128* @g, align 16
call void @test(ppc_fp128 %0)
ret void
}
; CHECK: @caller
; CHECK: ld [[REG:[0-9]+]], .LC
; CHECK: lfd 2, 8([[REG]])
; CHECK: lfd 1, 0([[REG]])
; CHECK: bl test
declare void @test(ppc_fp128)
define void @caller_const() {
entry:
call void @test(ppc_fp128 0xM3FF00000000000000000000000000000)
ret void
}
; CHECK: .LCPI[[LC:[0-9]+]]_0:
; CHECK: .long 1065353216
; CHECK: .LCPI[[LC]]_1:
; CHECK: .long 0
; CHECK: @caller_const
; CHECK: addi [[REG0:[0-9]+]], {{[0-9]+}}, .LCPI[[LC]]_0
; CHECK: addi [[REG1:[0-9]+]], {{[0-9]+}}, .LCPI[[LC]]_1
; CHECK: lfs 1, 0([[REG0]])
; CHECK: lfs 2, 0([[REG1]])
; CHECK: bl test
define ppc_fp128 @result() {
entry:
%0 = load ppc_fp128* @g, align 16
ret ppc_fp128 %0
}
; CHECK: @result
; CHECK: ld [[REG:[0-9]+]], .LC
; CHECK: lfd 1, 0([[REG]])
; CHECK: lfd 2, 8([[REG]])
; CHECK: blr
define void @use_result() {
entry:
%call = tail call ppc_fp128 @test_result() #3
store ppc_fp128 %call, ppc_fp128* @g, align 16
ret void
}
; CHECK: @use_result
; CHECK: bl test_result
; CHECK: ld [[REG:[0-9]+]], .LC
; CHECK: stfd 2, 8([[REG]])
; CHECK: stfd 1, 0([[REG]])
; CHECK: blr
declare ppc_fp128 @test_result()
define void @caller_result() {
entry:
%call = tail call ppc_fp128 @test_result()
tail call void @test(ppc_fp128 %call)
ret void
}
; CHECK: @caller_result
; CHECK: bl test_result
; CHECK-NEXT: nop
; CHECK-NEXT: bl test
; CHECK-NEXT: nop
define i128 @convert_from(ppc_fp128 %x) {
entry:
%0 = bitcast ppc_fp128 %x to i128
ret i128 %0
}
; CHECK: @convert_from
; CHECK: stfd 1, [[OFF1:.*]](1)
; CHECK: stfd 2, [[OFF2:.*]](1)
; CHECK: ld 3, [[OFF1]](1)
; CHECK: ld 4, [[OFF2]](1)
; CHECK: blr
define ppc_fp128 @convert_to(i128 %x) {
entry:
%0 = bitcast i128 %x to ppc_fp128
ret ppc_fp128 %0
}
; CHECK: @convert_to
; CHECK: std 3, [[OFF1:.*]](1)
; CHECK: std 4, [[OFF2:.*]](1)
; CHECK: lfd 1, [[OFF1]](1)
; CHECK: lfd 2, [[OFF2]](1)
; CHECK: blr
define ppc_fp128 @convert_to2(i128 %x) {
entry:
%shl = shl i128 %x, 1
%0 = bitcast i128 %shl to ppc_fp128
ret ppc_fp128 %0
}
; CHECK: @convert_to
; CHECK: std 3, [[OFF1:.*]](1)
; CHECK: std 4, [[OFF2:.*]](1)
; CHECK: lfd 1, [[OFF1]](1)
; CHECK: lfd 2, [[OFF2]](1)
; CHECK: blr
define double @convert_vector(<4 x i32> %x) {
entry:
%cast = bitcast <4 x i32> %x to ppc_fp128
%conv = fptrunc ppc_fp128 %cast to double
ret double %conv
}
; CHECK: @convert_vector
; CHECK: addi [[REG:[0-9]+]], 1, [[OFF:.*]]
; CHECK: stvx 2, 0, [[REG]]
; CHECK: lfd 1, [[OFF]](1)
; CHECK: blr
declare void @llvm.va_start(i8*)
define double @vararg(i32 %a, ...) {
entry:
%va = alloca i8*, align 8
%va1 = bitcast i8** %va to i8*
call void @llvm.va_start(i8* %va1)
%arg = va_arg i8** %va, ppc_fp128
%conv = fptrunc ppc_fp128 %arg to double
ret double %conv
}
; CHECK: @vararg
; CHECK: lfd 1, 0({{[0-9]+}})
; CHECK: blr

View File

@ -16,8 +16,9 @@
; CHECK-NEXT: .size
; CHECK: varppc128:
; CHECK-NEXT: .quad 0 # ppc_fp128 -0
; CHECK-NEXT: .quad -9223372036854775808
; For ppc_fp128, the high double always comes first.
; CHECK-NEXT: .quad -9223372036854775808 # ppc_fp128 -0
; CHECK-NEXT: .quad 0
; CHECK-NEXT: .size
; CHECK: var80: