[libcxx] Add <experimental/tuple> header for LFTS.

Summary:
This patch adds the `<experimental/tuple>` header (almost) as specified in the latest draft of the library fundamentals TS.

The main changes in this patch are:

1. Added variable template `tuple_size_v`
2. Added function `apply(Func &&, Tuple &&)`.
3. Changed `__invoke` to be `_LIBCPP_CONSTEXPR_AFTER_CXX11`.

The `apply(...)` implementation uses `__invoke` to invoke the given function. `__invoke` already provides the required functionality. Using `__invoke` also allows `apply` to be used on pointers to member function/objects as an extension. In order to facilitate this `__invoke` has to be marked `constexpr`. 



Test Plan:
Each new feature was tested. 

The test cases for `tuple_size_v` are as follows:
1. tuple_size_v.pass.cpp
  - Check `tuple_size_v` on cv qualified tuples, pairs and arrays.
2. tuple_size_v.fail.cpp
  - Test on reference type.
3. tuple_size_v_2.fail.cpp
  - Test on non-tuple
4. tuple_size_v_3.fail.cpp
  - Test on pointer type.

The test cases for tuple.apply are as follows:

1. arg_type.pass.cpp
   - Ensure that ref/pointer/cv qualified types are properly passed.
2. constexpr_types.pass.cpp
   - Ensure constexpr evaluation of apply is possible for `tuple` and `pair`.
3. extended_types.pass.cpp
   - Test apply on function types permitted by extension.
4. large_arity.pass.cpp
   - Test that apply can evaluated on tuples and arrays with large sizes.
5. ref_qualifiers.pass.cpp
   - Test that apply respects ref qualified functions.
6. return_type.pass.cpp
   - Test that apply returns the proper type.
7. types.pass.cpp
   - Test apply on function types as required by LFTS.

Reviewers: mclow.lists

Reviewed By: mclow.lists

Subscribers: cfe-commits

Differential Revision: http://reviews.llvm.org/D4512

llvm-svn: 232515
This commit is contained in:
Eric Fiselier 2015-03-17 18:28:14 +00:00
parent 0353f279f1
commit ea10d2477a
18 changed files with 1694 additions and 11 deletions

View File

@ -364,7 +364,7 @@ struct __weak_result_type<_Rp (_Cp::*)(_A1, _A2, _A3...) const volatile>
template <class _Fp, class _A0, class ..._Args,
class>
inline _LIBCPP_INLINE_VISIBILITY
inline _LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX11
auto
__invoke(_Fp&& __f, _A0&& __a0, _Args&& ...__args)
-> decltype((_VSTD::forward<_A0>(__a0).*__f)(_VSTD::forward<_Args>(__args)...))
@ -374,7 +374,7 @@ __invoke(_Fp&& __f, _A0&& __a0, _Args&& ...__args)
template <class _Fp, class _A0, class ..._Args,
class>
inline _LIBCPP_INLINE_VISIBILITY
inline _LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX11
auto
__invoke(_Fp&& __f, _A0&& __a0, _Args&& ...__args)
-> decltype(((*_VSTD::forward<_A0>(__a0)).*__f)(_VSTD::forward<_Args>(__args)...))
@ -386,7 +386,7 @@ __invoke(_Fp&& __f, _A0&& __a0, _Args&& ...__args)
template <class _Fp, class _A0,
class>
inline _LIBCPP_INLINE_VISIBILITY
inline _LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX11
auto
__invoke(_Fp&& __f, _A0&& __a0)
-> decltype(_VSTD::forward<_A0>(__a0).*__f)
@ -396,7 +396,7 @@ __invoke(_Fp&& __f, _A0&& __a0)
template <class _Fp, class _A0,
class>
inline _LIBCPP_INLINE_VISIBILITY
inline _LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX11
auto
__invoke(_Fp&& __f, _A0&& __a0)
-> decltype((*_VSTD::forward<_A0>(__a0)).*__f)
@ -407,7 +407,7 @@ __invoke(_Fp&& __f, _A0&& __a0)
// bullet 5
template <class _Fp, class ..._Args>
inline _LIBCPP_INLINE_VISIBILITY
inline _LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX11
auto
__invoke(_Fp&& __f, _Args&& ...__args)
-> decltype(_VSTD::forward<_Fp>(__f)(_VSTD::forward<_Args>(__args)...))

View File

@ -0,0 +1,81 @@
// -*- C++ -*-
//===----------------------------- tuple ----------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef _LIBCPP_EXPERIMENTAL_TUPLE
#define _LIBCPP_EXPERIMENTAL_TUPLE
/*
experimental/tuple synopsis
// C++1y
#include <tuple>
namespace std {
namespace experimental {
inline namespace fundamentals_v1 {
// See C++14 20.4.2.5, tuple helper classes
template <class T> constexpr size_t tuple_size_v
= tuple_size<T>::value;
// 3.2.2, Calling a function with a tuple of arguments
template <class F, class Tuple>
constexpr decltype(auto) apply(F&& f, Tuple&& t);
} // namespace fundamentals_v1
} // namespace experimental
} // namespace std
*/
# include <experimental/__config>
#if _LIBCPP_STD_VER > 11
# include <tuple>
# include <utility>
# include <__functional_base>
#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
#pragma GCC system_header
#endif
_LIBCPP_BEGIN_NAMESPACE_LFTS
#ifndef _LIBCPP_HAS_NO_VARIABLE_TEMPLATES
template <class _Tp>
_LIBCPP_CONSTEXPR size_t tuple_size_v = tuple_size<_Tp>::value;
#endif
template <class _Fn, class _Tuple, size_t ..._Id>
inline _LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX11
decltype(auto) __apply_tuple_impl(_Fn && __f, _Tuple && __t,
integer_sequence<size_t, _Id...>) {
return _VSTD::__invoke(
_VSTD::forward<_Fn>(__f),
_VSTD::get<_Id>(_VSTD::forward<_Tuple>(__t))...
);
}
template <class _Fn, class _Tuple>
inline _LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX11
decltype(auto) apply(_Fn && __f, _Tuple && __t) {
return _VSTD_LFTS::__apply_tuple_impl(
_VSTD::forward<_Fn>(__f), _VSTD::forward<_Tuple>(__t),
make_index_sequence<tuple_size<typename decay<_Tuple>::type>::value>()
);
}
_LIBCPP_END_NAMESPACE_LFTS
#endif /* _LIBCPP_STD_VER > 11 */
#endif /* _LIBCPP_EXPERIMENTAL_TUPLE */

View File

@ -3440,7 +3440,7 @@ template <class _Fp, class _A0, class ..._Args,
typename remove_reference<_A0>::type>::value
>::type
>
_LIBCPP_INLINE_VISIBILITY
_LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX11
auto
__invoke(_Fp&& __f, _A0&& __a0, _Args&& ...__args)
-> decltype((_VSTD::forward<_A0>(__a0).*__f)(_VSTD::forward<_Args>(__args)...));
@ -3453,7 +3453,7 @@ template <class _Fp, class _A0, class ..._Args,
typename remove_reference<_A0>::type>::value
>::type
>
_LIBCPP_INLINE_VISIBILITY
_LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX11
auto
__invoke(_Fp&& __f, _A0&& __a0, _Args&& ...__args)
-> decltype(((*_VSTD::forward<_A0>(__a0)).*__f)(_VSTD::forward<_Args>(__args)...));
@ -3468,7 +3468,7 @@ template <class _Fp, class _A0,
typename remove_reference<_A0>::type>::value
>::type
>
_LIBCPP_INLINE_VISIBILITY
_LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX11
auto
__invoke(_Fp&& __f, _A0&& __a0)
-> decltype(_VSTD::forward<_A0>(__a0).*__f);
@ -3481,7 +3481,7 @@ template <class _Fp, class _A0,
typename remove_reference<_A0>::type>::value
>::type
>
_LIBCPP_INLINE_VISIBILITY
_LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX11
auto
__invoke(_Fp&& __f, _A0&& __a0)
-> decltype((*_VSTD::forward<_A0>(__a0)).*__f);
@ -3489,7 +3489,7 @@ __invoke(_Fp&& __f, _A0&& __a0)
// bullet 5
template <class _Fp, class ..._Args>
_LIBCPP_INLINE_VISIBILITY
_LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX11
auto
__invoke(_Fp&& __f, _Args&& ...__args)
-> decltype(_VSTD::forward<_Fp>(__f)(_VSTD::forward<_Args>(__args)...));

View File

@ -0,0 +1,21 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <experimental/tuple>
#include <experimental/tuple>
int main()
{
#if _LIBCPP_STD_VER > 11
# ifndef _LIBCPP_TUPLE
# error "<experimental/tuple> must include <tuple>"
# endif
#endif /* _LIBCPP_STD_VER > 11 */
}

View File

@ -0,0 +1,20 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <experimental/tuple>
#include <experimental/tuple>
#ifndef _LIBCPP_VERSION
#error _LIBCPP_VERSION not defined
#endif
int main()
{
}

View File

@ -0,0 +1,19 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++98, c++03, c++11
// <experimental/tuple>
#include <experimental/tuple>
int main()
{
std::tuple<int> x(1);
}

View File

@ -0,0 +1,182 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++98, c++03, c++11
// <experimental/tuple>
// template <class F, class T> constexpr decltype(auto) apply(F &&, T &&)
// Test with different ref/ptr/cv qualified argument types.
#include <experimental/tuple>
#include <array>
#include <utility>
#include <cassert>
namespace ex = std::experimental;
int call_with_value(int x, int y) { return (x + y); }
int call_with_ref(int & x, int & y) { return (x + y); }
int call_with_const_ref(int const & x, int const & y) { return (x + y); }
int call_with_rvalue_ref(int && x, int && y) { return (x + y); }
int call_with_pointer(int * x, int * y) { return (*x + *y); }
int call_with_const_pointer(int const* x, int const * y) { return (*x + *y); }
template <class Tuple>
void test_values()
{
{
Tuple t{1, 2};
assert(3 == ex::apply(call_with_value, t));
}
{
Tuple t{2, 2};
assert(4 == ex::apply(call_with_ref, t));
}
{
Tuple t{2, 3};
assert(5 == ex::apply(call_with_const_ref, t));
}
{
Tuple t{3, 3};
assert(6 == ex::apply(call_with_rvalue_ref, static_cast<Tuple &&>(t)));
}
{
Tuple const t{4, 4};
assert(8 == ex::apply(call_with_value, t));
}
{
Tuple const t{4, 5};
assert(9 == ex::apply(call_with_const_ref, t));
}
}
template <class Tuple>
void test_refs()
{
int x = 0;
int y = 0;
{
x = 1; y = 2;
Tuple t{x, y};
assert(3 == ex::apply(call_with_value, t));
}
{
x = 2; y = 2;
Tuple t{x, y};
assert(4 == ex::apply(call_with_ref, t));
}
{
x = 2; y = 3;
Tuple t{x, y};
assert(5 == ex::apply(call_with_const_ref, t));
}
{
x = 3; y = 3;
Tuple const t{x, y};
assert(6 == ex::apply(call_with_value, t));
}
{
x = 3; y = 4;
Tuple const t{x, y};
assert(7 == ex::apply(call_with_const_ref, t));
}
}
template <class Tuple>
void test_const_refs()
{
int x = 0;
int y = 0;
{
x = 1; y = 2;
Tuple t{x, y};
assert(3 == ex::apply(call_with_value, t));
}
{
x = 2; y = 3;
Tuple t{x, y};
assert(5 == ex::apply(call_with_const_ref, t));
}
{
x = 3; y = 3;
Tuple const t{x, y};
assert(6 == ex::apply(call_with_value, t));
}
{
x = 3; y = 4;
Tuple const t{x, y};
assert(7 == ex::apply(call_with_const_ref, t));
}
}
template <class Tuple>
void test_pointer()
{
int x = 0;
int y = 0;
{
x = 2; y = 2;
Tuple t{&x, &y};
assert(4 == ex::apply(call_with_pointer, t));
}
{
x = 2; y = 3;
Tuple t{&x, &y};
assert(5 == ex::apply(call_with_const_pointer, t));
}
{
x = 3; y = 4;
Tuple const t{&x, &y};
assert(7 == ex::apply(call_with_const_pointer, t));
}
}
template <class Tuple>
void test_const_pointer()
{
int x = 0;
int y = 0;
{
x = 2; y = 3;
Tuple t{&x, &y};
assert(5 == ex::apply(call_with_const_pointer, t));
}
{
x = 3; y = 4;
Tuple const t{&x, &y};
assert(7 == ex::apply(call_with_const_pointer, t));
}
}
int main()
{
test_values<std::tuple<int, int>>();
test_values<std::pair<int, int>>();
test_values<std::array<int, 2>>();
test_refs<std::tuple<int &, int &>>();
test_refs<std::pair<int &, int &>>();
test_const_refs<std::tuple<int const &, int const &>>();
test_const_refs<std::pair<int const &, int const &>>();
test_pointer<std::tuple<int *, int *>>();
test_pointer<std::pair<int *, int *>>();
test_pointer<std::array<int *, 2>>();
test_const_pointer<std::tuple<int const *, int const *>>();
test_const_pointer<std::pair<int const *, int const *>>();
test_const_pointer<std::array<int const *, 2>>();
}

View File

@ -0,0 +1,118 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++98, c++03, c++11
// <experimental/tuple>
// template <class F, class T> constexpr decltype(auto) apply(F &&, T &&)
// Testing constexpr evaluation
#include <experimental/tuple>
#include <utility>
#include <cassert>
constexpr int f_int_0() { return 1; }
constexpr int f_int_1(int x) { return x; }
constexpr int f_int_2(int x, int y) { return (x + y); }
struct A_int_0
{
constexpr A_int_0() {}
constexpr int operator()() const { return 1; }
};
struct A_int_1
{
constexpr A_int_1() {}
constexpr int operator()(int x) const { return x; }
};
struct A_int_2
{
constexpr A_int_2() {}
constexpr int operator()(int x, int y) const { return (x + y); }
};
namespace ex = std::experimental;
template <class Tuple>
void test_0()
{
// function
{
constexpr Tuple t{};
static_assert(1 == ex::apply(f_int_0, t), "");
}
// function pointer
{
constexpr Tuple t{};
constexpr auto fp = &f_int_0;
static_assert(1 == ex::apply(fp, t), "");
}
// functor
{
constexpr Tuple t{};
constexpr A_int_0 a;
static_assert(1 == ex::apply(a, t), "");
}
}
template <class Tuple>
void test_1()
{
// function
{
constexpr Tuple t{1};
static_assert(1 == ex::apply(f_int_1, t), "");
}
// function pointer
{
constexpr Tuple t{2};
constexpr int (*fp)(int) = f_int_1;
static_assert(2 == ex::apply(fp, t), "");
}
// functor
{
constexpr Tuple t{3};
constexpr A_int_1 fn;
static_assert(3 == ex::apply(fn, t), "");
}
}
template <class Tuple>
void test_2()
{
// function
{
constexpr Tuple t{1, 2};
static_assert(3 == ex::apply(f_int_2, t), "");
}
// function pointer
{
constexpr Tuple t{2, 3};
constexpr auto fp = &f_int_2;
static_assert(5 == ex::apply(fp, t), "");
}
// functor
{
constexpr Tuple t{3, 4};
constexpr A_int_2 a;
static_assert(7 == ex::apply(a, t), "");
}
}
int main()
{
test_0<std::tuple<>>();
test_1<std::tuple<int>>();
test_2<std::tuple<int, int>>();
test_2<std::pair<int, int>>();
}

View File

@ -0,0 +1,423 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++98, c++03, c++11
// <experimental/tuple>
// template <class F, class T> constexpr decltype(auto) apply(F &&, T &&)
// Testing extended function types. The extented function types are those
// named by INVOKE but that are not actual callable objects. These include
// bullets 1-4 of invoke.
#include <experimental/tuple>
#include <array>
#include <utility>
#include <cassert>
int count = 0;
struct A_int_0
{
A_int_0() : obj1(0){}
A_int_0(int x) : obj1(x) {}
int mem1() { return ++count; }
int mem2() const { return ++count; }
int const obj1;
};
struct A_int_1
{
A_int_1() {}
A_int_1(int) {}
int mem1(int x) { return count += x; }
int mem2(int x) const { return count += x; }
};
struct A_int_2
{
A_int_2() {}
A_int_2(int) {}
int mem1(int x, int y) { return count += (x + y); }
int mem2(int x, int y) const { return count += (x + y); }
};
template <class A>
struct A_wrap
{
A_wrap() {}
A_wrap(int x) : m_a(x) {}
A & operator*() { return m_a; }
A const & operator*() const { return m_a; }
A m_a;
};
typedef A_wrap<A_int_0> A_wrap_0;
typedef A_wrap<A_int_1> A_wrap_1;
typedef A_wrap<A_int_2> A_wrap_2;
template <class A>
struct A_base : public A
{
A_base() : A() {}
A_base(int x) : A(x) {}
};
typedef A_base<A_int_0> A_base_0;
typedef A_base<A_int_1> A_base_1;
typedef A_base<A_int_2> A_base_2;
namespace ex = std::experimental;
template <
class Tuple, class ConstTuple
, class TuplePtr, class ConstTuplePtr
, class TupleWrap, class ConstTupleWrap
, class TupleBase, class ConstTupleBase
>
void test_ext_int_0()
{
count = 0;
typedef A_int_0 T;
typedef A_wrap_0 Wrap;
typedef A_base_0 Base;
typedef int(T::*mem1_t)();
mem1_t mem1 = &T::mem1;
typedef int(T::*mem2_t)() const;
mem2_t mem2 = &T::mem2;
typedef int const T::*obj1_t;
obj1_t obj1 = &T::obj1;
// member function w/ref
{
T a;
Tuple t{a};
assert(1 == ex::apply(mem1, t));
assert(count == 1);
}
count = 0;
// member function w/pointer
{
T a;
TuplePtr t{&a};
assert(1 == ex::apply(mem1, t));
assert(count == 1);
}
count = 0;
// member function w/base
{
Base a;
TupleBase t{a};
assert(1 == ex::apply(mem1, t));
assert(count == 1);
}
count = 0;
// member function w/wrap
{
Wrap a;
TupleWrap t{a};
assert(1 == ex::apply(mem1, t));
assert(count == 1);
}
count = 0;
// const member function w/ref
{
T const a;
ConstTuple t{a};
assert(1 == ex::apply(mem2, t));
assert(count == 1);
}
count = 0;
// const member function w/pointer
{
T const a;
ConstTuplePtr t{&a};
assert(1 == ex::apply(mem2, t));
assert(count == 1);
}
count = 0;
// const member function w/base
{
Base const a;
ConstTupleBase t{a};
assert(1 == ex::apply(mem2, t));
assert(count == 1);
}
count = 0;
// const member function w/wrapper
{
Wrap const a;
ConstTupleWrap t{a};
assert(1 == ex::apply(mem2, t));
assert(1 == count);
}
// member object w/ref
{
T a{42};
Tuple t{a};
assert(42 == ex::apply(obj1, t));
}
// member object w/pointer
{
T a{42};
TuplePtr t{&a};
assert(42 == ex::apply(obj1, t));
}
// member object w/base
{
Base a{42};
TupleBase t{a};
assert(42 == ex::apply(obj1, t));
}
// member object w/wrapper
{
Wrap a{42};
TupleWrap t{a};
assert(42 == ex::apply(obj1, t));
}
}
template <
class Tuple, class ConstTuple
, class TuplePtr, class ConstTuplePtr
, class TupleWrap, class ConstTupleWrap
, class TupleBase, class ConstTupleBase
>
void test_ext_int_1()
{
count = 0;
typedef A_int_1 T;
typedef A_wrap_1 Wrap;
typedef A_base_1 Base;
typedef int(T::*mem1_t)(int);
mem1_t mem1 = &T::mem1;
typedef int(T::*mem2_t)(int) const;
mem2_t mem2 = &T::mem2;
// member function w/ref
{
T a;
Tuple t{a, 2};
assert(2 == ex::apply(mem1, t));
assert(count == 2);
}
count = 0;
// member function w/pointer
{
T a;
TuplePtr t{&a, 3};
assert(3 == ex::apply(mem1, t));
assert(count == 3);
}
count = 0;
// member function w/base
{
Base a;
TupleBase t{a, 4};
assert(4 == ex::apply(mem1, t));
assert(count == 4);
}
count = 0;
// member function w/wrap
{
Wrap a;
TupleWrap t{a, 5};
assert(5 == ex::apply(mem1, t));
assert(count == 5);
}
count = 0;
// const member function w/ref
{
T const a;
ConstTuple t{a, 6};
assert(6 == ex::apply(mem2, t));
assert(count == 6);
}
count = 0;
// const member function w/pointer
{
T const a;
ConstTuplePtr t{&a, 7};
assert(7 == ex::apply(mem2, t));
assert(count == 7);
}
count = 0;
// const member function w/base
{
Base const a;
ConstTupleBase t{a, 8};
assert(8 == ex::apply(mem2, t));
assert(count == 8);
}
count = 0;
// const member function w/wrapper
{
Wrap const a;
ConstTupleWrap t{a, 9};
assert(9 == ex::apply(mem2, t));
assert(9 == count);
}
}
template <
class Tuple, class ConstTuple
, class TuplePtr, class ConstTuplePtr
, class TupleWrap, class ConstTupleWrap
, class TupleBase, class ConstTupleBase
>
void test_ext_int_2()
{
count = 0;
typedef A_int_2 T;
typedef A_wrap_2 Wrap;
typedef A_base_2 Base;
typedef int(T::*mem1_t)(int, int);
mem1_t mem1 = &T::mem1;
typedef int(T::*mem2_t)(int, int) const;
mem2_t mem2 = &T::mem2;
// member function w/ref
{
T a;
Tuple t{a, 1, 1};
assert(2 == ex::apply(mem1, t));
assert(count == 2);
}
count = 0;
// member function w/pointer
{
T a;
TuplePtr t{&a, 1, 2};
assert(3 == ex::apply(mem1, t));
assert(count == 3);
}
count = 0;
// member function w/base
{
Base a;
TupleBase t{a, 2, 2};
assert(4 == ex::apply(mem1, t));
assert(count == 4);
}
count = 0;
// member function w/wrap
{
Wrap a;
TupleWrap t{a, 2, 3};
assert(5 == ex::apply(mem1, t));
assert(count == 5);
}
count = 0;
// const member function w/ref
{
T const a;
ConstTuple t{a, 3, 3};
assert(6 == ex::apply(mem2, t));
assert(count == 6);
}
count = 0;
// const member function w/pointer
{
T const a;
ConstTuplePtr t{&a, 3, 4};
assert(7 == ex::apply(mem2, t));
assert(count == 7);
}
count = 0;
// const member function w/base
{
Base const a;
ConstTupleBase t{a, 4, 4};
assert(8 == ex::apply(mem2, t));
assert(count == 8);
}
count = 0;
// const member function w/wrapper
{
Wrap const a;
ConstTupleWrap t{a, 4, 5};
assert(9 == ex::apply(mem2, t));
assert(9 == count);
}
}
int main()
{
{
test_ext_int_0<
std::tuple<A_int_0 &>, std::tuple<A_int_0 const &>
, std::tuple<A_int_0 *>, std::tuple<A_int_0 const *>
, std::tuple<A_wrap_0 &>, std::tuple<A_wrap_0 const &>
, std::tuple<A_base_0 &>, std::tuple<A_base_0 const &>
>();
test_ext_int_0<
std::tuple<A_int_0>, std::tuple<A_int_0 const>
, std::tuple<A_int_0 *>, std::tuple<A_int_0 const *>
, std::tuple<A_wrap_0>, std::tuple<A_wrap_0 const>
, std::tuple<A_base_0>, std::tuple<A_base_0 const>
>();
test_ext_int_0<
std::array<A_int_0, 1>, std::array<A_int_0 const, 1>
, std::array<A_int_0*, 1>, std::array<A_int_0 const*, 1>
, std::array<A_wrap_0, 1>, std::array<A_wrap_0 const, 1>
, std::array<A_base_0, 1>, std::array<A_base_0 const, 1>
>();
}
{
test_ext_int_1<
std::tuple<A_int_1 &, int>, std::tuple<A_int_1 const &, int>
, std::tuple<A_int_1 *, int>, std::tuple<A_int_1 const *, int>
, std::tuple<A_wrap_1 &, int>, std::tuple<A_wrap_1 const &, int>
, std::tuple<A_base_1 &, int>, std::tuple<A_base_1 const &, int>
>();
test_ext_int_1<
std::tuple<A_int_1, int>, std::tuple<A_int_1 const, int>
, std::tuple<A_int_1 *, int>, std::tuple<A_int_1 const *, int>
, std::tuple<A_wrap_1, int>, std::tuple<A_wrap_1 const, int>
, std::tuple<A_base_1, int>, std::tuple<A_base_1 const, int>
>();
test_ext_int_1<
std::pair<A_int_1 &, int>, std::pair<A_int_1 const &, int>
, std::pair<A_int_1 *, int>, std::pair<A_int_1 const *, int>
, std::pair<A_wrap_1 &, int>, std::pair<A_wrap_1 const &, int>
, std::pair<A_base_1 &, int>, std::pair<A_base_1 const &, int>
>();
test_ext_int_1<
std::pair<A_int_1, int>, std::pair<A_int_1 const, int>
, std::pair<A_int_1 *, int>, std::pair<A_int_1 const *, int>
, std::pair<A_wrap_1, int>, std::pair<A_wrap_1 const, int>
, std::pair<A_base_1, int>, std::pair<A_base_1 const, int>
>();
}
{
test_ext_int_2<
std::tuple<A_int_2 &, int, int>, std::tuple<A_int_2 const &, int, int>
, std::tuple<A_int_2 *, int, int>, std::tuple<A_int_2 const *, int, int>
, std::tuple<A_wrap_2 &, int, int>, std::tuple<A_wrap_2 const &, int, int>
, std::tuple<A_base_2 &, int, int>, std::tuple<A_base_2 const &, int, int>
>();
test_ext_int_2<
std::tuple<A_int_2, int, int>, std::tuple<A_int_2 const, int, int>
, std::tuple<A_int_2 *, int, int>, std::tuple<A_int_2 const *, int, int>
, std::tuple<A_wrap_2, int, int>, std::tuple<A_wrap_2 const, int, int>
, std::tuple<A_base_2, int, int>, std::tuple<A_base_2 const, int, int>
>();
}
}

View File

@ -0,0 +1,146 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++98, c++03, c++11
// <experimental/tuple>
// template <class F, class T> constexpr decltype(auto) apply(F &&, T &&)
// Stress testing large arities with tuple and array.
#include <experimental/tuple>
#include <array>
#include <utility>
#include <cassert>
////////////////////////////////////////////////////////////////////////////////
template <class T, std::size_t Dummy = 0>
struct always_imp
{
typedef T type;
};
template <class T, std::size_t Dummy = 0>
using always_t = typename always_imp<T, Dummy>::type;
////////////////////////////////////////////////////////////////////////////////
template <class Tuple, class Idx>
struct make_function;
template <class Tp, std::size_t ...Idx>
struct make_function<Tp, std::integer_sequence<std::size_t, Idx...>>
{
using type = bool (*)(always_t<Tp, Idx>...);
};
template <class Tp, std::size_t Size>
using make_function_t = typename make_function<Tp, std::make_index_sequence<Size>>::type;
////////////////////////////////////////////////////////////////////////////////
template <class Tp, class Idx>
struct make_tuple_imp;
////////////////////////////////////////////////////////////////////////////////
template <class Tp, std::size_t ...Idx>
struct make_tuple_imp<Tp, std::integer_sequence<std::size_t, Idx...>>
{
using type = std::tuple<always_t<Tp, Idx>...>;
};
template <class Tp, std::size_t Size>
using make_tuple_t = typename make_tuple_imp<Tp, std::make_index_sequence<Size>>::type;
template <class ...Types>
bool test_apply_fn(Types...) { return true; }
namespace ex = std::experimental;
template <std::size_t Size>
void test_all()
{
using A = std::array<int, Size>;
using ConstA = std::array<int const, Size>;
using Tuple = make_tuple_t<int, Size>;
using CTuple = make_tuple_t<const int, Size>;
using ValFn = make_function_t<int, Size>;
ValFn val_fn = &test_apply_fn;
using RefFn = make_function_t<int &, Size>;
RefFn ref_fn = &test_apply_fn;
using CRefFn = make_function_t<int const &, Size>;
CRefFn cref_fn = &test_apply_fn;
using RRefFn = make_function_t<int &&, Size>;
RRefFn rref_fn = &test_apply_fn;
{
A a{};
assert(ex::apply(val_fn, a));
assert(ex::apply(ref_fn, a));
assert(ex::apply(cref_fn, a));
assert(ex::apply(rref_fn, std::move(a)));
}
{
ConstA a{};
assert(ex::apply(val_fn, a));
assert(ex::apply(cref_fn, a));
}
{
Tuple a{};
assert(ex::apply(val_fn, a));
assert(ex::apply(ref_fn, a));
assert(ex::apply(cref_fn, a));
assert(ex::apply(rref_fn, std::move(a)));
}
{
CTuple a{};
assert(ex::apply(val_fn, a));
assert(ex::apply(cref_fn, a));
}
}
template <std::size_t Size>
void test_one()
{
using A = std::array<int, Size>;
using Tuple = make_tuple_t<int, Size>;
using ValFn = make_function_t<int, Size>;
ValFn val_fn = &test_apply_fn;
{
A a{};
assert(ex::apply(val_fn, a));
}
{
Tuple a{};
assert(ex::apply(val_fn, a));
}
}
int main()
{
// Instantiate with 1-5 arguments.
test_all<1>();
test_all<2>();
test_all<3>();
test_all<4>();
test_all<5>();
// Stress test with 128.
test_one<128>();
//test_one<256>();
}

View File

@ -0,0 +1,50 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++98, c++03, c++11
// <experimental/tuple>
// template <class F, class T> constexpr decltype(auto) apply(F &&, T &&)
// Testing ref qualified functions
#include <experimental/tuple>
#include <cassert>
struct func_obj
{
constexpr func_obj() {}
constexpr int operator()() const & { return 1; }
constexpr int operator()() const && { return 2; }
constexpr int operator()() & { return 3; }
constexpr int operator()() && { return 4; }
};
namespace ex = std::experimental;
int main()
{
{
constexpr func_obj f;
constexpr std::tuple<> tp;
static_assert(1 == ex::apply(static_cast<func_obj const &>(f), tp), "");
static_assert(2 == ex::apply(static_cast<func_obj const &&>(f), tp), "");
}
{
func_obj f;
std::tuple<> tp;
assert(1 == ex::apply(static_cast<func_obj const &>(f), tp));
assert(2 == ex::apply(static_cast<func_obj const &&>(f), tp));
assert(3 == ex::apply(static_cast<func_obj &>(f), tp));
assert(4 == ex::apply(static_cast<func_obj &&>(f), tp));
}
}

View File

@ -0,0 +1,76 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++98, c++03, c++11
// <experimental/tuple>
// template <class F, class T> constexpr decltype(auto) apply(F &&, T &&)
// Test the return type deduction.
#include <experimental/tuple>
#include <cassert>
static int my_int = 42;
template <int N> struct index {};
void f(index<0>) {}
int f(index<1>) { return 0; }
int const f(index<2>) { return 0; }
int volatile f(index<3>) { return 0; }
int const volatile f(index<4>) { return 0; }
int & f(index<5>) { return static_cast<int &>(my_int); }
int const & f(index<6>) { return static_cast<int const &>(my_int); }
int volatile & f(index<7>) { return static_cast<int volatile &>(my_int); }
int const volatile & f(index<8>) { return static_cast<int const volatile &>(my_int); }
int && f(index<9>) { return static_cast<int &&>(my_int); }
int const && f(index<10>) { return static_cast<int const &&>(my_int); }
int volatile && f(index<11>) { return static_cast<int volatile &&>(my_int); }
int const volatile && f(index<12>) { return static_cast<int const volatile &&>(my_int); }
int * f(index<13>) { return static_cast<int *>(&my_int); }
int const * f(index<14>) { return static_cast<int const *>(&my_int); }
int volatile * f(index<15>) { return static_cast<int volatile *>(&my_int); }
int const volatile * f(index<16>) { return static_cast<int const volatile *>(&my_int); }
template <int Func, class Expect>
void test()
{
using F = decltype((f(index<Func>{})));
static_assert(std::is_same<F, Expect>::value, "");
}
namespace ex = std::experimental;
int main()
{
test<0, void>();
test<1, int>();
//test<2, int const>();
//test<3, int volatile>();
//test<4, int const volatile>();
test<5, int &>();
test<6, int const &>();
test<7, int volatile &>();
test<8, int const volatile &>();
test<9, int &&>();
test<10, int const &&>();
test<11, int volatile &&>();
test<12, int const volatile &&>();
test<13, int *>();
test<14, int const *>();
test<15, int volatile *>();
test<16, int const volatile *>();
}

View File

@ -0,0 +1,427 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++98, c++03, c++11
// <experimental/tuple>
// template <class F, class T> constexpr decltype(auto) apply(F &&, T &&)
// Test function types.
#include <experimental/tuple>
#include <array>
#include <utility>
#include <cassert>
namespace ex = std::experimental;
int count = 0;
void f_void_0() { ++count; }
void f_void_1(int i) { count += i; }
void f_void_2(int x, int y) { count += (x + y); }
void f_void_3(int x, int y, int z) { count += (x + y + z); }
int f_int_0() { return ++count; }
int f_int_1(int x) { return count += x; }
int f_int_2(int x, int y) { return count += (x + y); }
int f_int_3(int x, int y, int z) { return count += (x + y + z); }
struct A_void_0
{
A_void_0() {}
void operator()() { ++count; }
void operator()() const { ++count; ++count; }
};
struct A_void_1
{
A_void_1() {}
void operator()(int x) { count += x; }
void operator()(int x) const { count += x + 1; }
};
struct A_void_2
{
A_void_2() {}
void operator()(int x, int y) { count += (x + y); }
void operator()(int x, int y) const { count += (x + y) + 1; }
};
struct A_void_3
{
A_void_3() {}
void operator()(int x, int y, int z) { count += (x + y + z); }
void operator()(int x, int y, int z) const { count += (x + y + z) + 1; }
};
struct A_int_0
{
A_int_0() {}
int operator()() { return ++count; }
int operator()() const { ++count; return ++count; }
};
struct A_int_1
{
A_int_1() {}
int operator()(int x) { return count += x; }
int operator()(int x) const { return count += (x + 1); }
};
struct A_int_2
{
A_int_2() {}
int operator()(int x, int y) { return count += (x + y); }
int operator()(int x, int y) const { return count += (x + y + 1); }
};
struct A_int_3
{
A_int_3() {}
int operator()(int x, int y, int z) { return count += (x + y + z); }
int operator()(int x, int y, int z) const { return count += (x + y + z + 1); }
};
template <class Tuple>
void test_void_0()
{
count = 0;
// function
{
Tuple t{};
ex::apply(f_void_0, t);
assert(count == 1);
}
count = 0;
// function pointer
{
Tuple t{};
auto fp = &f_void_0;
ex::apply(fp, t);
assert(count == 1);
}
count = 0;
// functor
{
Tuple t{};
A_void_0 a;
ex::apply(a, t);
assert(count == 1);
}
count = 0;
// const functor
{
Tuple t{};
A_void_0 const a;
ex::apply(a, t);
assert(count == 2);
}
}
template <class Tuple>
void test_void_1()
{
count = 0;
// function
{
Tuple t{1};
ex::apply(f_void_1, t);
assert(count == 1);
}
count = 0;
// function pointer
{
Tuple t{2};
void (*fp)(int) = f_void_1;
ex::apply(fp, t);
assert(count == 2);
}
count = 0;
// functor
{
Tuple t{3};
A_void_1 fn;
ex::apply(fn, t);
assert(count == 3);
}
count = 0;
// const functor
{
Tuple t{4};
A_void_1 const a;
ex::apply(a, t);
assert(count == 5);
}
}
template <class Tuple>
void test_void_2()
{
count = 0;
// function
{
Tuple t{1, 2};
ex::apply(f_void_2, t);
assert(count == 3);
}
count = 0;
// function pointer
{
Tuple t{2, 3};
auto fp = &f_void_2;
ex::apply(fp, t);
assert(count == 5);
}
count = 0;
// functor
{
Tuple t{3, 4};
A_void_2 a;
ex::apply(a, t);
assert(count == 7);
}
count = 0;
// const functor
{
Tuple t{4, 5};
A_void_2 const a;
ex::apply(a, t);
assert(count == 10);
}
}
template <class Tuple>
void test_void_3()
{
count = 0;
// function
{
Tuple t{1, 2, 3};
ex::apply(f_void_3, t);
assert(count == 6);
}
count = 0;
// function pointer
{
Tuple t{2, 3, 4};
auto fp = &f_void_3;
ex::apply(fp, t);
assert(count == 9);
}
count = 0;
// functor
{
Tuple t{3, 4, 5};
A_void_3 a;
ex::apply(a, t);
assert(count == 12);
}
count = 0;
// const functor
{
Tuple t{4, 5, 6};
A_void_3 const a;
ex::apply(a, t);
assert(count == 16);
}
}
template <class Tuple>
void test_int_0()
{
count = 0;
// function
{
Tuple t{};
assert(1 == ex::apply(f_int_0, t));
assert(count == 1);
}
count = 0;
// function pointer
{
Tuple t{};
auto fp = &f_int_0;
assert(1 == ex::apply(fp, t));
assert(count == 1);
}
count = 0;
// functor
{
Tuple t{};
A_int_0 a;
assert(1 == ex::apply(a, t));
assert(count == 1);
}
count = 0;
// const functor
{
Tuple t{};
A_int_0 const a;
assert(2 == ex::apply(a, t));
assert(count == 2);
}
}
template <class Tuple>
void test_int_1()
{
count = 0;
// function
{
Tuple t{1};
assert(1 == ex::apply(f_int_1, t));
assert(count == 1);
}
count = 0;
// function pointer
{
Tuple t{2};
int (*fp)(int) = f_int_1;
assert(2 == ex::apply(fp, t));
assert(count == 2);
}
count = 0;
// functor
{
Tuple t{3};
A_int_1 fn;
assert(3 == ex::apply(fn, t));
assert(count == 3);
}
count = 0;
// const functor
{
Tuple t{4};
A_int_1 const a;
assert(5 == ex::apply(a, t));
assert(count == 5);
}
}
template <class Tuple>
void test_int_2()
{
count = 0;
// function
{
Tuple t{1, 2};
assert(3 == ex::apply(f_int_2, t));
assert(count == 3);
}
count = 0;
// function pointer
{
Tuple t{2, 3};
auto fp = &f_int_2;
assert(5 == ex::apply(fp, t));
assert(count == 5);
}
count = 0;
// functor
{
Tuple t{3, 4};
A_int_2 a;
assert(7 == ex::apply(a, t));
assert(count == 7);
}
count = 0;
// const functor
{
Tuple t{4, 5};
A_int_2 const a;
assert(10 == ex::apply(a, t));
assert(count == 10);
}
}
template <class Tuple>
void test_int_3()
{
count = 0;
// function
{
Tuple t{1, 2, 3};
assert(6 == ex::apply(f_int_3, t));
assert(count == 6);
}
count = 0;
// function pointer
{
Tuple t{2, 3, 4};
auto fp = &f_int_3;
assert(9 == ex::apply(fp, t));
assert(count == 9);
}
count = 0;
// functor
{
Tuple t{3, 4, 5};
A_int_3 a;
assert(12 == ex::apply(a, t));
assert(count == 12);
}
count = 0;
// const functor
{
Tuple t{4, 5, 6};
A_int_3 const a;
assert(16 == ex::apply(a, t));
assert(count == 16);
}
}
template <class Tuple>
void test_0()
{
test_void_0<Tuple>();
test_int_0<Tuple>();
}
template <class Tuple>
void test_1()
{
test_void_1<Tuple>();
test_int_1<Tuple>();
}
template <class Tuple>
void test_2()
{
test_void_2<Tuple>();
test_int_2<Tuple>();
}
template <class Tuple>
void test_3()
{
test_void_3<Tuple>();
test_int_3<Tuple>();
}
int main()
{
test_0<std::tuple<>>();
test_1<std::tuple<int>>();
test_1<std::array<int, 1>>();
test_2<std::tuple<int, int>>();
test_2<std::pair<int, int>>();
test_2<std::array<int, 2>>();
test_3<std::tuple<int, int, int>>();
test_3<std::array<int, 3>>();
}

View File

@ -0,0 +1,25 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++98, c++03, c++11
// <experimental/tuple>
// template <class T> constexpr size_t tuple_size_v = tuple_size<T>::value;
// Test with reference
#include <experimental/tuple>
namespace ex = std::experimental;
int main()
{
auto x = ex::tuple_size_v<std::tuple<> &>;
}

View File

@ -0,0 +1,45 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++98, c++03, c++11
// <experimental/tuple>
// template <class T> constexpr size_t tuple_size_v = tuple_size<T>::value;
#include <experimental/tuple>
#include <utility>
#include <array>
namespace ex = std::experimental;
template <class Tuple, int Expect>
void test()
{
static_assert(ex::tuple_size_v<Tuple> == Expect, "");
static_assert(ex::tuple_size_v<Tuple> == std::tuple_size<Tuple>::value, "");
static_assert(ex::tuple_size_v<Tuple const> == std::tuple_size<Tuple>::value, "");
static_assert(ex::tuple_size_v<Tuple volatile> == std::tuple_size<Tuple>::value, "");
static_assert(ex::tuple_size_v<Tuple const volatile> == std::tuple_size<Tuple>::value, "");
}
int main()
{
test<std::tuple<>, 0>();
test<std::tuple<int>, 1>();
test<std::array<int, 1>, 1>();
test<std::tuple<int, int>, 2>();
test<std::pair<int, int>, 2>();
test<std::array<int, 2>, 2>();
test<std::tuple<int, int, int>, 3>();
test<std::array<int, 3>, 3>();
}

View File

@ -0,0 +1,25 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++98, c++03, c++11
// <experimental/tuple>
// template <class T> constexpr size_t tuple_size_v = tuple_size<T>::value;
// Test with non tuple type
#include <experimental/tuple>
namespace ex = std::experimental;
int main()
{
auto x = ex::tuple_size_v<int>;
}

View File

@ -0,0 +1,25 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++98, c++03, c++11
// <experimental/tuple>
// template <class T> constexpr size_t tuple_size_v = tuple_size<T>::value;
// Test with pointer
#include <experimental/tuple>
namespace ex = std::experimental;
int main()
{
auto x = ex::tuple_size_v<std::tuple<>*>;
}

View File

@ -67,7 +67,7 @@
<tr><td>Additions to std::packaged_task</td><td>Not started</td></tr>
<tr><td></td><td></td></tr>
<tr><td>Class erased_type</td><td>Complete</td></tr>
<tr><td>Calling a function with a tuple of arguments</td><td>Implementation in progress</td></tr>
<tr><td>Calling a function with a tuple of arguments</td><td>Complete</td></tr>
<tr><td>Other type transformations</td><td>Not started</td></tr>
<tr><td>Compile-time Rational Arithmetic</td><td>Implementation in progress</td></tr>
<tr><td>Time Utilities</td><td>Complete</td></tr>