[InstSimplify] delete shift-of-zero guard ops around funnel shifts

This is a problem seen in common rotate idioms as noted in:
https://bugs.llvm.org/show_bug.cgi?id=34924

Note that we are not canonicalizing standard IR (shifts and logic) to the intrinsics yet. 
(Although I've written this before...) I think this is the last step before we enable 
that transform. Ie, we could regress code by doing that transform without this 
simplification in place.

In PR34924, I questioned whether this is a valid transform for target-independent IR, 
but I convinced myself this is ok. If we're speculating a funnel shift by turning cmp+br 
into select, then SimplifyCFG has already determined that the transform is justified. 
It's possible that SimplifyCFG is not taking into account profile or other metadata, 
but if that's true, then it's a bug independent of funnel shifts.

Also, we do have CGP code to restore a guard like this around an intrinsic if it can't 
be lowered cheaply. But that isn't necessary for funnel shift because the default 
expansion in SelectionDAGBuilder includes this same cmp+select.

Differential Revision: https://reviews.llvm.org/D54552

llvm-svn: 346960
This commit is contained in:
Sanjay Patel 2018-11-15 14:53:37 +00:00
parent f809d89980
commit e98ec77a95
2 changed files with 56 additions and 36 deletions

View File

@ -3837,6 +3837,28 @@ static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
Pred == ICmpInst::ICMP_EQ))
return V;
// Test for zero-shift-guard-ops around funnel shifts. These are used to
// avoid UB from oversized shifts in raw IR rotate patterns, but the
// intrinsics do not have that problem.
Value *ShAmt;
auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(),
m_Value(ShAmt)),
m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X),
m_Value(ShAmt)));
// (ShAmt != 0) ? fshl(X, *, ShAmt) : X --> fshl(X, *, ShAmt)
// (ShAmt != 0) ? fshr(*, X, ShAmt) : X --> fshr(*, X, ShAmt)
// (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
// (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
return Pred == ICmpInst::ICMP_NE ? TrueVal : X;
// (ShAmt == 0) ? X : fshl(X, *, ShAmt) --> fshl(X, *, ShAmt)
// (ShAmt == 0) ? X : fshr(*, X, ShAmt) --> fshr(*, X, ShAmt)
// (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X
// (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X
if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt)
return Pred == ICmpInst::ICMP_EQ ? FalseVal : X;
}
// Check for other compares that behave like bit test.

View File

@ -500,12 +500,12 @@ define <2 x i8> @fshr_no_shift_modulo_bitwidth_splat(<2 x i8> %x, <2 x i8> %y) {
ret <2 x i8> %z
}
; When the shift amount is 0, fshl returns its 1st parameter (x), so the guard is not needed.
define i8 @fshl_zero_shift_guard(i8 %x, i8 %y, i8 %sh) {
; CHECK-LABEL: @fshl_zero_shift_guard(
; CHECK-NEXT: [[C:%.*]] = icmp eq i8 [[SH:%.*]], 0
; CHECK-NEXT: [[F:%.*]] = call i8 @llvm.fshl.i8(i8 [[X:%.*]], i8 [[Y:%.*]], i8 [[SH]])
; CHECK-NEXT: [[S:%.*]] = select i1 [[C]], i8 [[X]], i8 [[F]]
; CHECK-NEXT: ret i8 [[S]]
; CHECK-NEXT: [[F:%.*]] = call i8 @llvm.fshl.i8(i8 [[X:%.*]], i8 [[Y:%.*]], i8 [[SH:%.*]])
; CHECK-NEXT: ret i8 [[F]]
;
%c = icmp eq i8 %sh, 0
%f = call i8 @llvm.fshl.i8(i8 %x, i8 %y, i8 %sh)
@ -513,12 +513,12 @@ define i8 @fshl_zero_shift_guard(i8 %x, i8 %y, i8 %sh) {
ret i8 %s
}
; When the shift amount is 0, fshl returns its 1st parameter (x), so the guard is not needed.
define i8 @fshl_zero_shift_guard_swapped(i8 %x, i8 %y, i8 %sh) {
; CHECK-LABEL: @fshl_zero_shift_guard_swapped(
; CHECK-NEXT: [[C:%.*]] = icmp ne i8 [[SH:%.*]], 0
; CHECK-NEXT: [[F:%.*]] = call i8 @llvm.fshl.i8(i8 [[X:%.*]], i8 [[Y:%.*]], i8 [[SH]])
; CHECK-NEXT: [[S:%.*]] = select i1 [[C]], i8 [[F]], i8 [[X]]
; CHECK-NEXT: ret i8 [[S]]
; CHECK-NEXT: [[F:%.*]] = call i8 @llvm.fshl.i8(i8 [[X:%.*]], i8 [[Y:%.*]], i8 [[SH:%.*]])
; CHECK-NEXT: ret i8 [[F]]
;
%c = icmp ne i8 %sh, 0
%f = call i8 @llvm.fshl.i8(i8 %x, i8 %y, i8 %sh)
@ -526,12 +526,11 @@ define i8 @fshl_zero_shift_guard_swapped(i8 %x, i8 %y, i8 %sh) {
ret i8 %s
}
; When the shift amount is 0, fshl returns its 1st parameter (x), so everything is deleted.
define i8 @fshl_zero_shift_guard_inverted(i8 %x, i8 %y, i8 %sh) {
; CHECK-LABEL: @fshl_zero_shift_guard_inverted(
; CHECK-NEXT: [[C:%.*]] = icmp eq i8 [[SH:%.*]], 0
; CHECK-NEXT: [[F:%.*]] = call i8 @llvm.fshl.i8(i8 [[X:%.*]], i8 [[Y:%.*]], i8 [[SH]])
; CHECK-NEXT: [[S:%.*]] = select i1 [[C]], i8 [[F]], i8 [[X]]
; CHECK-NEXT: ret i8 [[S]]
; CHECK-NEXT: ret i8 [[X:%.*]]
;
%c = icmp eq i8 %sh, 0
%f = call i8 @llvm.fshl.i8(i8 %x, i8 %y, i8 %sh)
@ -539,12 +538,11 @@ define i8 @fshl_zero_shift_guard_inverted(i8 %x, i8 %y, i8 %sh) {
ret i8 %s
}
; When the shift amount is 0, fshl returns its 1st parameter (x), so everything is deleted.
define i8 @fshl_zero_shift_guard_inverted_swapped(i8 %x, i8 %y, i8 %sh) {
; CHECK-LABEL: @fshl_zero_shift_guard_inverted_swapped(
; CHECK-NEXT: [[C:%.*]] = icmp ne i8 [[SH:%.*]], 0
; CHECK-NEXT: [[F:%.*]] = call i8 @llvm.fshl.i8(i8 [[X:%.*]], i8 [[Y:%.*]], i8 [[SH]])
; CHECK-NEXT: [[S:%.*]] = select i1 [[C]], i8 [[X]], i8 [[F]]
; CHECK-NEXT: ret i8 [[S]]
; CHECK-NEXT: ret i8 [[X:%.*]]
;
%c = icmp ne i8 %sh, 0
%f = call i8 @llvm.fshl.i8(i8 %x, i8 %y, i8 %sh)
@ -552,12 +550,12 @@ define i8 @fshl_zero_shift_guard_inverted_swapped(i8 %x, i8 %y, i8 %sh) {
ret i8 %s
}
; When the shift amount is 0, fshr returns its 2nd parameter (y), so the guard is not needed.
define i9 @fshr_zero_shift_guard(i9 %x, i9 %y, i9 %sh) {
; CHECK-LABEL: @fshr_zero_shift_guard(
; CHECK-NEXT: [[C:%.*]] = icmp eq i9 [[SH:%.*]], 0
; CHECK-NEXT: [[F:%.*]] = call i9 @llvm.fshr.i9(i9 [[X:%.*]], i9 [[Y:%.*]], i9 [[SH]])
; CHECK-NEXT: [[S:%.*]] = select i1 [[C]], i9 [[Y]], i9 [[F]]
; CHECK-NEXT: ret i9 [[S]]
; CHECK-NEXT: [[F:%.*]] = call i9 @llvm.fshr.i9(i9 [[X:%.*]], i9 [[Y:%.*]], i9 [[SH:%.*]])
; CHECK-NEXT: ret i9 [[F]]
;
%c = icmp eq i9 %sh, 0
%f = call i9 @llvm.fshr.i9(i9 %x, i9 %y, i9 %sh)
@ -565,12 +563,12 @@ define i9 @fshr_zero_shift_guard(i9 %x, i9 %y, i9 %sh) {
ret i9 %s
}
; When the shift amount is 0, fshr returns its 2nd parameter (y), so the guard is not needed.
define i9 @fshr_zero_shift_guard_swapped(i9 %x, i9 %y, i9 %sh) {
; CHECK-LABEL: @fshr_zero_shift_guard_swapped(
; CHECK-NEXT: [[C:%.*]] = icmp ne i9 [[SH:%.*]], 0
; CHECK-NEXT: [[F:%.*]] = call i9 @llvm.fshr.i9(i9 [[X:%.*]], i9 [[Y:%.*]], i9 [[SH]])
; CHECK-NEXT: [[S:%.*]] = select i1 [[C]], i9 [[F]], i9 [[Y]]
; CHECK-NEXT: ret i9 [[S]]
; CHECK-NEXT: [[F:%.*]] = call i9 @llvm.fshr.i9(i9 [[X:%.*]], i9 [[Y:%.*]], i9 [[SH:%.*]])
; CHECK-NEXT: ret i9 [[F]]
;
%c = icmp ne i9 %sh, 0
%f = call i9 @llvm.fshr.i9(i9 %x, i9 %y, i9 %sh)
@ -578,12 +576,11 @@ define i9 @fshr_zero_shift_guard_swapped(i9 %x, i9 %y, i9 %sh) {
ret i9 %s
}
; When the shift amount is 0, fshr returns its 2nd parameter (y), so everything is deleted.
define i9 @fshr_zero_shift_guard_inverted(i9 %x, i9 %y, i9 %sh) {
; CHECK-LABEL: @fshr_zero_shift_guard_inverted(
; CHECK-NEXT: [[C:%.*]] = icmp eq i9 [[SH:%.*]], 0
; CHECK-NEXT: [[F:%.*]] = call i9 @llvm.fshr.i9(i9 [[X:%.*]], i9 [[Y:%.*]], i9 [[SH]])
; CHECK-NEXT: [[S:%.*]] = select i1 [[C]], i9 [[F]], i9 [[Y]]
; CHECK-NEXT: ret i9 [[S]]
; CHECK-NEXT: ret i9 [[Y:%.*]]
;
%c = icmp eq i9 %sh, 0
%f = call i9 @llvm.fshr.i9(i9 %x, i9 %y, i9 %sh)
@ -591,12 +588,11 @@ define i9 @fshr_zero_shift_guard_inverted(i9 %x, i9 %y, i9 %sh) {
ret i9 %s
}
; When the shift amount is 0, fshr returns its 2nd parameter (y), so everything is deleted.
define i9 @fshr_zero_shift_guard_inverted_swapped(i9 %x, i9 %y, i9 %sh) {
; CHECK-LABEL: @fshr_zero_shift_guard_inverted_swapped(
; CHECK-NEXT: [[C:%.*]] = icmp ne i9 [[SH:%.*]], 0
; CHECK-NEXT: [[F:%.*]] = call i9 @llvm.fshr.i9(i9 [[X:%.*]], i9 [[Y:%.*]], i9 [[SH]])
; CHECK-NEXT: [[S:%.*]] = select i1 [[C]], i9 [[Y]], i9 [[F]]
; CHECK-NEXT: ret i9 [[S]]
; CHECK-NEXT: ret i9 [[Y:%.*]]
;
%c = icmp ne i9 %sh, 0
%f = call i9 @llvm.fshr.i9(i9 %x, i9 %y, i9 %sh)
@ -604,6 +600,8 @@ define i9 @fshr_zero_shift_guard_inverted_swapped(i9 %x, i9 %y, i9 %sh) {
ret i9 %s
}
; Negative test - make sure we're matching the correct parameter of fshl.
define i8 @fshl_zero_shift_guard_wrong_select_op(i8 %x, i8 %y, i8 %sh) {
; CHECK-LABEL: @fshl_zero_shift_guard_wrong_select_op(
; CHECK-NEXT: [[C:%.*]] = icmp eq i8 [[SH:%.*]], 0
@ -617,12 +615,12 @@ define i8 @fshl_zero_shift_guard_wrong_select_op(i8 %x, i8 %y, i8 %sh) {
ret i8 %s
}
; Vector types work too.
define <2 x i8> @fshr_zero_shift_guard_splat(<2 x i8> %x, <2 x i8> %y, <2 x i8> %sh) {
; CHECK-LABEL: @fshr_zero_shift_guard_splat(
; CHECK-NEXT: [[C:%.*]] = icmp eq <2 x i8> [[SH:%.*]], zeroinitializer
; CHECK-NEXT: [[F:%.*]] = call <2 x i8> @llvm.fshr.v2i8(<2 x i8> [[X:%.*]], <2 x i8> [[Y:%.*]], <2 x i8> [[SH]])
; CHECK-NEXT: [[S:%.*]] = select <2 x i1> [[C]], <2 x i8> [[Y]], <2 x i8> [[F]]
; CHECK-NEXT: ret <2 x i8> [[S]]
; CHECK-NEXT: [[F:%.*]] = call <2 x i8> @llvm.fshr.v2i8(<2 x i8> [[X:%.*]], <2 x i8> [[Y:%.*]], <2 x i8> [[SH:%.*]])
; CHECK-NEXT: ret <2 x i8> [[F]]
;
%c = icmp eq <2 x i8> %sh, zeroinitializer
%f = call <2 x i8> @llvm.fshr.v2i8(<2 x i8> %x, <2 x i8> %y, <2 x i8> %sh)