implement the non-relocation forms of memory operands

llvm-svn: 95368
This commit is contained in:
Chris Lattner 2010-02-05 06:16:07 +00:00
parent 1aa3edbb99
commit df84b1aa50
1 changed files with 112 additions and 66 deletions

View File

@ -50,6 +50,9 @@ public:
Val >>= 8;
}
}
void EmitDisplacementField(const MCOperand *RelocOp, int DispVal,
int64_t Adj, bool IsPCRel, raw_ostream &OS) const;
inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
unsigned RM) {
@ -62,6 +65,13 @@ public:
EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), OS);
}
void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
raw_ostream &OS) const {
// SIB byte is in the same format as the ModRMByte...
EmitByte(ModRMByte(SS, Index, Base), OS);
}
void EmitMemModRMByte(const MCInst &MI, unsigned Op,
unsigned RegOpcodeField, intptr_t PCAdj,
raw_ostream &OS) const;
@ -85,6 +95,45 @@ static bool isDisp8(int Value) {
return Value == (signed char)Value;
}
void X86MCCodeEmitter::
EmitDisplacementField(const MCOperand *RelocOp, int DispVal,
int64_t Adj, bool IsPCRel, raw_ostream &OS) const {
// If this is a simple integer displacement that doesn't require a relocation,
// emit it now.
if (!RelocOp) {
EmitConstant(DispVal, 4, OS);
return;
}
assert(0 && "Reloc not handled yet");
#if 0
// Otherwise, this is something that requires a relocation. Emit it as such
// now.
unsigned RelocType = Is64BitMode ?
(IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
: (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
if (RelocOp->isGlobal()) {
// In 64-bit static small code model, we could potentially emit absolute.
// But it's probably not beneficial. If the MCE supports using RIP directly
// do it, otherwise fallback to absolute (this is determined by IsPCRel).
// 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
// 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
Adj, Indirect);
} else if (RelocOp->isSymbol()) {
emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
} else if (RelocOp->isCPI()) {
emitConstPoolAddress(RelocOp->getIndex(), RelocType,
RelocOp->getOffset(), Adj);
} else {
assert(RelocOp->isJTI() && "Unexpected machine operand!");
emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
}
#endif
}
void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
unsigned RegOpcodeField,
intptr_t PCAdj,
@ -97,6 +146,7 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
if (Op3.isImm()) {
DispVal = Op3.getImm();
} else {
assert(0 && "Unknown operand");
#if 0
if (Op3.isGlobal()) {
DispForReloc = &Op3;
@ -120,10 +170,13 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
}
const MCOperand &Base = MI.getOperand(Op);
//const MCOperand &Scale = MI.getOperand(Op+1);
const MCOperand &Scale = MI.getOperand(Op+1);
const MCOperand &IndexReg = MI.getOperand(Op+2);
unsigned BaseReg = Base.getReg();
// FIXME: Eliminate!
bool IsPCRel = false;
// Is a SIB byte needed?
// If no BaseReg, issue a RIP relative instruction only if the MCE can
// resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
@ -134,9 +187,7 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
if (BaseReg == 0 || BaseReg == X86::RIP) { // Just a displacement?
// Emit special case [disp32] encoding
EmitByte(ModRMByte(0, RegOpcodeField, 5), OS);
#if 0
emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
#endif
EmitDisplacementField(DispForReloc, DispVal, PCAdj, true, OS);
} else {
unsigned BaseRegNo = GetX86RegNum(Base);
if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
@ -149,71 +200,66 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
} else {
// Emit the most general non-SIB encoding: [REG+disp32]
EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), OS);
#if 0
emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
#endif
EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS);
}
}
} else { // We need a SIB byte, so start by outputting the ModR/M byte first
assert(IndexReg.getReg() != X86::ESP &&
IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
bool ForceDisp32 = false;
bool ForceDisp8 = false;
if (BaseReg == 0) {
// If there is no base register, we emit the special case SIB byte with
// MOD=0, BASE=5, to JUST get the index, scale, and displacement.
EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
ForceDisp32 = true;
} else if (DispForReloc) {
// Emit the normal disp32 encoding.
EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
ForceDisp32 = true;
} else if (DispVal == 0 && BaseReg != X86::EBP) {
// Emit no displacement ModR/M byte
EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
} else if (isDisp8(DispVal)) {
// Emit the disp8 encoding.
EmitByte(ModRMByte(1, RegOpcodeField, 4), OS);
ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
} else {
// Emit the normal disp32 encoding.
EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
}
#if 0
// Calculate what the SS field value should be...
static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
unsigned SS = SSTable[Scale.getImm()];
if (BaseReg == 0) {
// Handle the SIB byte for the case where there is no base, see Intel
// Manual 2A, table 2-7. The displacement has already been output.
unsigned IndexRegNo;
if (IndexReg.getReg())
IndexRegNo = getX86RegNum(IndexReg.getReg());
else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
IndexRegNo = 4;
emitSIBByte(SS, IndexRegNo, 5);
} else {
unsigned BaseRegNo = getX86RegNum(BaseReg);
unsigned IndexRegNo;
if (IndexReg.getReg())
IndexRegNo = getX86RegNum(IndexReg.getReg());
else
IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
emitSIBByte(SS, IndexRegNo, BaseRegNo);
}
// Do we need to output a displacement?
if (ForceDisp8) {
emitConstant(DispVal, 1);
} else if (DispVal != 0 || ForceDisp32) {
emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
}
#endif
return;
}
// We need a SIB byte, so start by outputting the ModR/M byte first
assert(IndexReg.getReg() != X86::ESP &&
IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
bool ForceDisp32 = false;
bool ForceDisp8 = false;
if (BaseReg == 0) {
// If there is no base register, we emit the special case SIB byte with
// MOD=0, BASE=5, to JUST get the index, scale, and displacement.
EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
ForceDisp32 = true;
} else if (DispForReloc) {
// Emit the normal disp32 encoding.
EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
ForceDisp32 = true;
} else if (DispVal == 0 && BaseReg != X86::EBP) {
// Emit no displacement ModR/M byte
EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
} else if (isDisp8(DispVal)) {
// Emit the disp8 encoding.
EmitByte(ModRMByte(1, RegOpcodeField, 4), OS);
ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
} else {
// Emit the normal disp32 encoding.
EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
}
// Calculate what the SS field value should be...
static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
unsigned SS = SSTable[Scale.getImm()];
if (BaseReg == 0) {
// Handle the SIB byte for the case where there is no base, see Intel
// Manual 2A, table 2-7. The displacement has already been output.
unsigned IndexRegNo;
if (IndexReg.getReg())
IndexRegNo = GetX86RegNum(IndexReg);
else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
IndexRegNo = 4;
EmitSIBByte(SS, IndexRegNo, 5, OS);
} else {
unsigned IndexRegNo;
if (IndexReg.getReg())
IndexRegNo = GetX86RegNum(IndexReg);
else
IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), OS);
}
// Do we need to output a displacement?
if (ForceDisp8)
EmitConstant(DispVal, 1, OS);
else if (DispVal != 0 || ForceDisp32)
EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS);
}