diff --git a/llvm/lib/Support/APInt.cpp b/llvm/lib/Support/APInt.cpp new file mode 100644 index 000000000000..1b2edef5a273 --- /dev/null +++ b/llvm/lib/Support/APInt.cpp @@ -0,0 +1,1113 @@ +//===-- APInt.cpp - Implement APInt class ---------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by Sheng Zhou and is distributed under the +// University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements a class to represent arbitrary precision integral +// constant values. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/APInt.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Support/MathExtras.h" +#include +#include +#include +#include +#include +using namespace llvm; + +APInt::APInt(uint64_t val, unsigned numBits, bool sign) + : bitsnum(numBits), isSigned(sign) { + assert(bitsnum >= IntegerType::MIN_INT_BITS && "bitwidth too small"); + assert(bitsnum <= IntegerType::MAX_INT_BITS && "bitwidth too large"); + if (isSingleWord()) + VAL = val & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - bitsnum)); + else { + // Memory allocation and check if successful. + assert((pVal = new uint64_t[numWords()]) && + "APInt memory allocation fails!"); + bzero(pVal, numWords() * 8); + pVal[0] = val; + } +} + +APInt::APInt(unsigned numBits, uint64_t bigVal[], bool sign) + : bitsnum(numBits), isSigned(sign) { + assert(bitsnum >= IntegerType::MIN_INT_BITS && "bitwidth too small"); + assert(bitsnum <= IntegerType::MAX_INT_BITS && "bitwidth too large"); + assert(bigVal && "Null pointer detected!"); + if (isSingleWord()) + VAL = bigVal[0] & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - bitsnum)); + else { + // Memory allocation and check if successful. + assert((pVal = new uint64_t[numWords()]) && + "APInt memory allocation fails!"); + // Calculate the actual length of bigVal[]. + unsigned n = sizeof(*bigVal) / sizeof(bigVal[0]); + unsigned maxN = std::max(n, numWords()); + unsigned minN = std::min(n, numWords()); + memcpy(pVal, bigVal, (minN - 1) * 8); + pVal[minN-1] = bigVal[minN-1] & (~uint64_t(0ULL) >> (64 - bitsnum % 64)); + if (maxN == numWords()) + bzero(pVal+n, (numWords() - n) * 8); + } +} + +APInt::APInt(std::string& Val, uint8_t radix, bool sign) + : isSigned(sign) { + assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && + "Radix should be 2, 8, 10, or 16!"); + assert(!Val.empty() && "String empty?"); + unsigned slen = Val.size(); + unsigned size = 0; + // If the radix is a power of 2, read the input + // from most significant to least significant. + if ((radix & (radix - 1)) == 0) { + unsigned nextBitPos = 0, bits_per_digit = radix / 8 + 2; + uint64_t resDigit = 0; + bitsnum = slen * bits_per_digit; + if (numWords() > 1) + assert((pVal = new uint64_t[numWords()]) && + "APInt memory allocation fails!"); + for (int i = slen - 1; i >= 0; --i) { + uint64_t digit = Val[i] - 48; // '0' == 48. + resDigit |= digit << nextBitPos; + nextBitPos += bits_per_digit; + if (nextBitPos >= 64) { + if (isSingleWord()) { + VAL = resDigit; + break; + } + pVal[size++] = resDigit; + nextBitPos -= 64; + resDigit = digit >> (bits_per_digit - nextBitPos); + } + } + if (!isSingleWord() && size <= numWords()) + pVal[size] = resDigit; + } else { // General case. The radix is not a power of 2. + // For 10-radix, the max value of 64-bit integer is 18446744073709551615, + // and its digits number is 14. + const unsigned chars_per_word = 20; + if (slen < chars_per_word || + (Val <= "18446744073709551615" && + slen == chars_per_word)) { // In case Val <= 2^64 - 1 + bitsnum = 64; + VAL = strtoull(Val.c_str(), 0, 10); + } else { // In case Val > 2^64 - 1 + bitsnum = (slen / chars_per_word + 1) * 64; + assert((pVal = new uint64_t[numWords()]) && + "APInt memory allocation fails!"); + bzero(pVal, numWords() * 8); + unsigned str_pos = 0; + while (str_pos < slen) { + unsigned chunk = slen - str_pos; + if (chunk > chars_per_word - 1) + chunk = chars_per_word - 1; + uint64_t resDigit = Val[str_pos++] - 48; // 48 == '0'. + uint64_t big_base = radix; + while (--chunk > 0) { + resDigit = resDigit * radix + Val[str_pos++] - 48; + big_base *= radix; + } + + uint64_t carry; + if (!size) + carry = resDigit; + else { + carry = mul_1(pVal, pVal, size, big_base); + carry += add_1(pVal, pVal, size, resDigit); + } + + if (carry) pVal[size++] = carry; + } + } + } +} + +APInt::APInt(const APInt& APIVal) + : bitsnum(APIVal.bitsnum), isSigned(APIVal.isSigned) { + if (isSingleWord()) VAL = APIVal.VAL; + else { + // Memory allocation and check if successful. + assert((pVal = new uint64_t[numWords()]) && + "APInt memory allocation fails!"); + memcpy(pVal, APIVal.pVal, numWords() * 8); + } +} + +APInt::~APInt() { + if (!isSingleWord() && pVal) delete[] pVal; +} + +/// whichByte - This function returns the word position +/// for the specified bit position. +inline unsigned APInt::whichByte(unsigned bitPosition) +{ return (bitPosition % APINT_BITS_PER_WORD) / 8; } + +/// getWord - returns the corresponding word for the specified bit position. +inline uint64_t& APInt::getWord(unsigned bitPosition) +{ return isSingleWord() ? VAL : pVal[whichWord(bitPosition)]; } + +/// getWord - returns the corresponding word for the specified bit position. +/// This is a constant version. +inline uint64_t APInt::getWord(unsigned bitPosition) const +{ return isSingleWord() ? VAL : pVal[whichWord(bitPosition)]; } + +/// mul_1 - This function multiplies the integer array x[] by a integer y and +/// returns the carry. +uint64_t APInt::mul_1(uint64_t dest[], uint64_t x[], + unsigned len, uint64_t y) { + // Split y into high 32-bit part and low 32-bit part. + uint64_t ly = y & 0xffffffffULL, hy = y >> 32; + uint64_t carry = 0, lx, hx; + for (unsigned i = 0; i < len; ++i) { + lx = x[i] & 0xffffffffULL; + hx = x[i] >> 32; + // hasCarry - A flag to indicate if has carry. + // hasCarry == 0, no carry + // hasCarry == 1, has carry + // hasCarry == 2, no carry and the calculation result == 0. + uint8_t hasCarry = 0; + dest[i] = carry + lx * ly; + // Determine if the add above introduces carry. + hasCarry = (dest[i] < carry) ? 1 : 0; + carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); + // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + + // (2^32 - 1) + 2^32 = 2^64. + hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); + + carry += (lx * hy) & 0xffffffffULL; + dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); + carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + + (carry >> 32) + ((lx * hy) >> 32) + hx * hy; + } + + return carry; +} + +/// mul - This function multiplies integer array x[] by integer array y[] and +/// stores the result into integer array dest[]. +/// Note the array dest[]'s size should no less than xlen + ylen. +void APInt::mul(uint64_t dest[], uint64_t x[], unsigned xlen, + uint64_t y[], unsigned ylen) { + dest[xlen] = mul_1(dest, x, xlen, y[0]); + + for (unsigned i = 1; i < ylen; ++i) { + uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; + uint64_t carry = 0, lx, hx; + for (unsigned j = 0; j < xlen; ++j) { + lx = x[j] & 0xffffffffULL; + hx = x[j] >> 32; + // hasCarry - A flag to indicate if has carry. + // hasCarry == 0, no carry + // hasCarry == 1, has carry + // hasCarry == 2, no carry and the calculation result == 0. + uint8_t hasCarry = 0; + uint64_t resul = carry + lx * ly; + hasCarry = (resul < carry) ? 1 : 0; + carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32); + hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); + + carry += (lx * hy) & 0xffffffffULL; + resul = (carry << 32) | (resul & 0xffffffffULL); + dest[i+j] += resul; + carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ + (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + + ((lx * hy) >> 32) + hx * hy; + } + dest[i+xlen] = carry; + } +} + +/// add_1 - This function adds the integer array x[] by integer y and +/// returns the carry. +uint64_t APInt::add_1(uint64_t dest[], uint64_t x[], + unsigned len, uint64_t y) { + uint64_t carry = y; + + for (unsigned i = 0; i < len; ++i) { + dest[i] = carry + x[i]; + carry = (dest[i] < carry) ? 1 : 0; + } + return carry; +} + +/// add - This function adds the integer array x[] by integer array +/// y[] and returns the carry. +uint64_t APInt::add(uint64_t dest[], uint64_t x[], + uint64_t y[], unsigned len) { + unsigned carry = 0; + + for (unsigned i = 0; i< len; ++i) { + carry += x[i]; + dest[i] = carry + y[i]; + carry = carry < x[i] ? 1 : (dest[i] < carry ? 1 : 0); + } + return carry; +} + +/// sub_1 - This function subtracts the integer array x[] by +/// integer y and returns the borrow-out carry. +uint64_t APInt::sub_1(uint64_t x[], unsigned len, uint64_t y) { + uint64_t cy = y; + + for (unsigned i = 0; i < len; ++i) { + uint64_t X = x[i]; + x[i] -= cy; + if (cy > X) + cy = 1; + else { + cy = 0; + break; + } + } + + return cy; +} + +/// sub - This function subtracts the integer array x[] by +/// integer array y[], and returns the borrow-out carry. +uint64_t APInt::sub(uint64_t dest[], uint64_t x[], + uint64_t y[], unsigned len) { + // Carry indicator. + uint64_t cy = 0; + + for (unsigned i = 0; i < len; ++i) { + uint64_t Y = y[i], X = x[i]; + Y += cy; + + cy = Y < cy ? 1 : 0; + Y = X - Y; + cy += Y > X ? 1 : 0; + dest[i] = Y; + } + return cy; +} + +/// UnitDiv - This function divides N by D, +/// and returns (remainder << 32) | quotient. +/// Assumes (N >> 32) < D. +uint64_t APInt::unitDiv(uint64_t N, unsigned D) { + uint64_t q, r; // q: quotient, r: remainder. + uint64_t a1 = N >> 32; // a1: high 32-bit part of N. + uint64_t a0 = N & 0xffffffffL; // a0: low 32-bit part of N + if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) { + q = N / D; + r = N % D; + } + else { + // Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d + uint64_t c = N - ((uint64_t) D << 31); + // Divide (c1*2^32 + c0) by d + q = c / D; + r = c % D; + // Add 2^31 to quotient + q += 1 << 31; + } + + return (r << 32) | (q & 0xFFFFFFFFl); +} + +/// subMul - This function substracts x[len-1:0] * y from +/// dest[offset+len-1:offset], and returns the most significant +/// word of the product, minus the borrow-out from the subtraction. +unsigned APInt::subMul(unsigned dest[], unsigned offset, + unsigned x[], unsigned len, unsigned y) { + uint64_t yl = (uint64_t) y & 0xffffffffL; + unsigned carry = 0; + unsigned j = 0; + do { + uint64_t prod = ((uint64_t) x[j] & 0xffffffffL) * yl; + unsigned prod_low = (unsigned) prod; + unsigned prod_high = (unsigned) (prod >> 32); + prod_low += carry; + carry = (prod_low < carry ? 1 : 0) + prod_high; + unsigned x_j = dest[offset+j]; + prod_low = x_j - prod_low; + if (prod_low > x_j) ++carry; + dest[offset+j] = prod_low; + } while (++j < len); + return carry; +} + +/// div - This is basically Knuth's formulation of the classical algorithm. +/// Correspondance with Knuth's notation: +/// Knuth's u[0:m+n] == zds[nx:0]. +/// Knuth's v[1:n] == y[ny-1:0] +/// Knuth's n == ny. +/// Knuth's m == nx-ny. +/// Our nx == Knuth's m+n. +/// Could be re-implemented using gmp's mpn_divrem: +/// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny). +void APInt::div(unsigned zds[], unsigned nx, unsigned y[], unsigned ny) { + unsigned j = nx; + do { // loop over digits of quotient + // Knuth's j == our nx-j. + // Knuth's u[j:j+n] == our zds[j:j-ny]. + unsigned qhat; // treated as unsigned + if (zds[j] == y[ny-1]) qhat = -1U; // 0xffffffff + else { + uint64_t w = (((uint64_t)(zds[j])) << 32) + + ((uint64_t)zds[j-1] & 0xffffffffL); + qhat = (unsigned) unitDiv(w, y[ny-1]); + } + if (qhat) { + unsigned borrow = subMul(zds, j - ny, y, ny, qhat); + unsigned save = zds[j]; + uint64_t num = ((uint64_t)save&0xffffffffL) - + ((uint64_t)borrow&0xffffffffL); + while (num) { + qhat--; + uint64_t carry = 0; + for (unsigned i = 0; i < ny; i++) { + carry += ((uint64_t) zds[j-ny+i] & 0xffffffffL) + + ((uint64_t) y[i] & 0xffffffffL); + zds[j-ny+i] = (unsigned) carry; + carry >>= 32; + } + zds[j] += carry; + num = carry - 1; + } + } + zds[j] = qhat; + } while (--j >= ny); +} + +/// lshift - This function shift x[0:len-1] left by shiftAmt bits, and +/// store the len least significant words of the result in +/// dest[d_offset:d_offset+len-1]. It returns the bits shifted out from +/// the most significant digit. +uint64_t APInt::lshift(uint64_t dest[], unsigned d_offset, + uint64_t x[], unsigned len, unsigned shiftAmt) { + unsigned count = 64 - shiftAmt; + int i = len - 1; + uint64_t high_word = x[i], retVal = high_word >> count; + ++d_offset; + while (--i >= 0) { + uint64_t low_word = x[i]; + dest[d_offset+i] = (high_word << shiftAmt) | (low_word >> count); + high_word = low_word; + } + dest[d_offset+i] = high_word << shiftAmt; + return retVal; +} + +/// @brief Copy assignment operator. Create a new object from the given +/// APInt one by initialization. +APInt& APInt::operator=(const APInt& RHS) { + if (isSingleWord()) VAL = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; + else { + unsigned minN = std::min(numWords(), RHS.numWords()); + memcpy(pVal, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, minN * 8); + if (numWords() != minN) + bzero(pVal + minN, (numWords() - minN) * 8); + } + return *this; +} + +/// @brief Assignment operator. Assigns a common case integer value to +/// the APInt. +APInt& APInt::operator=(uint64_t RHS) { + if (isSingleWord()) VAL = RHS; + else { + pVal[0] = RHS; + bzero(pVal, (numWords() - 1) * 8); + } + return *this; +} + +/// @brief Postfix increment operator. Increments the APInt by one. +const APInt APInt::operator++(int) { + APInt API(*this); + if (isSingleWord()) ++VAL; + else + add_1(pVal, pVal, numWords(), 1); + API.TruncToBits(); + return API; +} + +/// @brief Prefix increment operator. Increments the APInt by one. +APInt& APInt::operator++() { + if (isSingleWord()) ++VAL; + else + add_1(pVal, pVal, numWords(), 1); + TruncToBits(); + return *this; +} + +/// @brief Postfix decrement operator. Decrements the APInt by one. +const APInt APInt::operator--(int) { + APInt API(*this); + if (isSingleWord()) --VAL; + else + sub_1(API.pVal, API.numWords(), 1); + API.TruncToBits(); + return API; +} + +/// @brief Prefix decrement operator. Decrements the APInt by one. +APInt& APInt::operator--() { + if (isSingleWord()) --VAL; + else + sub_1(pVal, numWords(), 1); + TruncToBits(); + return *this; +} + +/// @brief Addition assignment operator. Adds this APInt by the given APInt& +/// RHS and assigns the result to this APInt. +APInt& APInt::operator+=(const APInt& RHS) { + if (isSingleWord()) VAL += RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; + else { + if (RHS.isSingleWord()) add_1(pVal, pVal, numWords(), RHS.VAL); + else { + if (numWords() <= RHS.numWords()) + add(pVal, pVal, RHS.pVal, numWords()); + else { + uint64_t carry = add(pVal, pVal, RHS.pVal, RHS.numWords()); + add_1(pVal + RHS.numWords(), pVal + RHS.numWords(), + numWords() - RHS.numWords(), carry); + } + } + } + TruncToBits(); + return *this; +} + +/// @brief Subtraction assignment operator. Subtracts this APInt by the given +/// APInt &RHS and assigns the result to this APInt. +APInt& APInt::operator-=(const APInt& RHS) { + if (isSingleWord()) + VAL -= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; + else { + if (RHS.isSingleWord()) + sub_1(pVal, numWords(), RHS.VAL); + else { + if (RHS.numWords() < numWords()) { + uint64_t carry = sub(pVal, pVal, RHS.pVal, RHS.numWords()); + sub_1(pVal + RHS.numWords(), numWords() - RHS.numWords(), carry); + } + else + sub(pVal, pVal, RHS.pVal, numWords()); + } + } + TruncToBits(); + return *this; +} + +/// @brief Multiplication assignment operator. Multiplies this APInt by the +/// given APInt& RHS and assigns the result to this APInt. +APInt& APInt::operator*=(const APInt& RHS) { + if (isSingleWord()) VAL *= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; + else { + // one-based first non-zero bit position. + unsigned first = numWords() * APINT_BITS_PER_WORD - CountLeadingZeros(); + unsigned xlen = !first ? 0 : whichWord(first - 1) + 1; + if (!xlen) + return *this; + else if (RHS.isSingleWord()) + mul_1(pVal, pVal, xlen, RHS.VAL); + else { + first = RHS.numWords() * APINT_BITS_PER_WORD - RHS.CountLeadingZeros(); + unsigned ylen = !first ? 0 : whichWord(first - 1) + 1; + if (!ylen) { + bzero(pVal, numWords() * 8); + return *this; + } + uint64_t *dest = new uint64_t[xlen+ylen]; + assert(dest && "Memory Allocation Failed!"); + mul(dest, pVal, xlen, RHS.pVal, ylen); + memcpy(pVal, dest, ((xlen + ylen >= numWords()) ? numWords() : xlen + ylen) * 8); + delete[] dest; + } + } + TruncToBits(); + return *this; +} + +/// @brief Division assignment operator. Divides this APInt by the given APInt +/// &RHS and assigns the result to this APInt. +APInt& APInt::operator/=(const APInt& RHS) { + unsigned first = RHS.numWords() * APINT_BITS_PER_WORD - + RHS.CountLeadingZeros(); + unsigned ylen = !first ? 0 : whichWord(first - 1) + 1; + assert(ylen && "Divided by zero???"); + if (isSingleWord()) { + if (isSigned && RHS.isSigned) + VAL = RHS.isSingleWord() ? (int64_t(VAL) / int64_t(RHS.VAL)) : + (ylen > 1 ? 0 : int64_t(VAL) / int64_t(RHS.pVal[0])); + else + VAL = RHS.isSingleWord() ? (VAL / RHS.VAL) : + (ylen > 1 ? 0 : VAL / RHS.pVal[0]); + } else { + unsigned first2 = numWords() * APINT_BITS_PER_WORD - CountLeadingZeros(); + unsigned xlen = !first2 ? 0 : whichWord(first2 - 1) + 1; + if (!xlen) + return *this; + else if ((*this) < RHS) + bzero(pVal, numWords() * 8); + else if ((*this) == RHS) { + bzero(pVal, numWords() * 8); + pVal[0] = 1; + } else if (xlen == 1) + pVal[0] /= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; + else { + uint64_t *xwords = new uint64_t[xlen+1], *ywords = new uint64_t[ylen]; + assert(xwords && ywords && "Memory Allocation Failed!"); + memcpy(xwords, pVal, xlen * 8); + xwords[xlen] = 0; + memcpy(ywords, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, ylen * 8); + if (unsigned nshift = 63 - (first - 1) % 64) { + lshift(ywords, 0, ywords, ylen, nshift); + unsigned xlentmp = xlen; + xwords[xlen++] = lshift(xwords, 0, xwords, xlentmp, nshift); + } + div((unsigned*)xwords, xlen*2-1, (unsigned*)ywords, ylen*2); + bzero(pVal, numWords() * 8); + memcpy(pVal, xwords + ylen, (xlen - ylen) * 8); + delete[] xwords; + delete[] ywords; + } + } + return *this; +} + +/// @brief Remainder assignment operator. Yields the remainder from the +/// division of this APInt by the given APInt& RHS and assigns the remainder +/// to this APInt. +APInt& APInt::operator%=(const APInt& RHS) { + unsigned first = RHS.numWords() * APINT_BITS_PER_WORD - + RHS.CountLeadingZeros(); + unsigned ylen = !first ? 0 : whichWord(first - 1) + 1; + assert(ylen && "Performing remainder operation by zero ???"); + if (isSingleWord()) { + if (isSigned && RHS.isSigned) + VAL = RHS.isSingleWord() ? (int64_t(VAL) % int64_t(RHS.VAL)) : + (ylen > 1 ? VAL : int64_t(VAL) % int64_t(RHS.pVal[0])); + else + VAL = RHS.isSingleWord() ? (VAL % RHS.VAL) : + (ylen > 1 ? VAL : VAL % RHS.pVal[0]); + } else { + unsigned first2 = numWords() * APINT_BITS_PER_WORD - CountLeadingZeros(); + unsigned xlen = !first2 ? 0 : whichWord(first2 - 1) + 1; + if (!xlen || (*this) < RHS) + return *this; + else if ((*this) == RHS) + bzero(pVal, numWords() * 8); + else if (xlen == 1) + pVal[0] %= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; + else { + uint64_t *xwords = new uint64_t[xlen+1], *ywords = new uint64_t[ylen]; + assert(xwords && ywords && "Memory Allocation Failed!"); + memcpy(xwords, pVal, xlen * 8); + xwords[xlen] = 0; + memcpy(ywords, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, ylen * 8); + unsigned nshift = 63 - (first - 1) % 64; + if (nshift) { + lshift(ywords, 0, ywords, ylen, nshift); + unsigned xlentmp = xlen; + xwords[xlen++] = lshift(xwords, 0, xwords, xlentmp, nshift); + } + div((unsigned*)xwords, xlen*2-1, (unsigned*)ywords, ylen*2); + bzero(pVal, numWords() * 8); + for (unsigned i = 0; i < ylen-1; ++i) + pVal[i] = (xwords[i] >> nshift) | (xwords[i+1] << (64 - nshift)); + pVal[ylen-1] = xwords[ylen-1] >> nshift; + delete[] xwords; + delete[] ywords; + } + } + return *this; +} + +/// @brief Bitwise AND assignment operator. Performs bitwise AND operation on +/// this APInt and the given APInt& RHS, assigns the result to this APInt. +APInt& APInt::operator&=(const APInt& RHS) { + if (isSingleWord()) { + if (RHS.isSingleWord()) VAL &= RHS.VAL; + else VAL &= RHS.pVal[0]; + } else { + if (RHS.isSingleWord()) { + bzero(pVal, (numWords() - 1) * 8); + pVal[0] &= RHS.VAL; + } else { + unsigned minwords = numWords() < RHS.numWords() ? numWords() : RHS.numWords(); + for (unsigned i = 0; i < minwords; ++i) + pVal[i] &= RHS.pVal[i]; + if (numWords() > minwords) bzero(pVal+minwords, (numWords() - minwords) * 8); + } + } + return *this; +} + +/// @brief Bitwise OR assignment operator. Performs bitwise OR operation on +/// this APInt and the given APInt& RHS, assigns the result to this APInt. +APInt& APInt::operator|=(const APInt& RHS) { + if (isSingleWord()) { + if (RHS.isSingleWord()) VAL |= RHS.VAL; + else VAL |= RHS.pVal[0]; + } else { + if (RHS.isSingleWord()) { + pVal[0] |= RHS.VAL; + } else { + unsigned minwords = numWords() < RHS.numWords() ? numWords() : RHS.numWords(); + for (unsigned i = 0; i < minwords; ++i) + pVal[i] |= RHS.pVal[i]; + } + } + TruncToBits(); + return *this; +} + +/// @brief Bitwise XOR assignment operator. Performs bitwise XOR operation on +/// this APInt and the given APInt& RHS, assigns the result to this APInt. +APInt& APInt::operator^=(const APInt& RHS) { + if (isSingleWord()) { + if (RHS.isSingleWord()) VAL ^= RHS.VAL; + else VAL ^= RHS.pVal[0]; + } else { + if (RHS.isSingleWord()) { + for (unsigned i = 0; i < numWords(); ++i) + pVal[i] ^= RHS.VAL; + } else { + unsigned minwords = numWords() < RHS.numWords() ? numWords() : RHS.numWords(); + for (unsigned i = 0; i < minwords; ++i) + pVal[i] ^= RHS.pVal[i]; + if (numWords() > minwords) + for (unsigned i = minwords; i < numWords(); ++i) + pVal[i] ^= 0; + } + } + TruncToBits(); + return *this; +} + +/// @brief Bitwise AND operator. Performs bitwise AND operation on this APInt +/// and the given APInt& RHS. +APInt APInt::operator&(const APInt& RHS) const { + APInt API(RHS); + return API &= *this; +} + +/// @brief Bitwise OR operator. Performs bitwise OR operation on this APInt +/// and the given APInt& RHS. +APInt APInt::operator|(const APInt& RHS) const { + APInt API(RHS); + API |= *this; + API.TruncToBits(); + return API; +} + +/// @brief Bitwise XOR operator. Performs bitwise XOR operation on this APInt +/// and the given APInt& RHS. +APInt APInt::operator^(const APInt& RHS) const { + APInt API(RHS); + API ^= *this; + API.TruncToBits(); + return API; +} + +/// @brief Logical AND operator. Performs logical AND operation on this APInt +/// and the given APInt& RHS. +bool APInt::operator&&(const APInt& RHS) const { + if (isSingleWord()) + return RHS.isSingleWord() ? VAL && RHS.VAL : VAL && RHS.pVal[0]; + else if (RHS.isSingleWord()) + return RHS.VAL && pVal[0]; + else { + unsigned minN = std::min(numWords(), RHS.numWords()); + for (unsigned i = 0; i < minN; ++i) + if (pVal[i] && RHS.pVal[i]) + return true; + } + return false; +} + +/// @brief Logical OR operator. Performs logical OR operation on this APInt +/// and the given APInt& RHS. +bool APInt::operator||(const APInt& RHS) const { + if (isSingleWord()) + return RHS.isSingleWord() ? VAL || RHS.VAL : VAL || RHS.pVal[0]; + else if (RHS.isSingleWord()) + return RHS.VAL || pVal[0]; + else { + unsigned minN = std::min(numWords(), RHS.numWords()); + for (unsigned i = 0; i < minN; ++i) + if (pVal[i] || RHS.pVal[i]) + return true; + } + return false; +} + +/// @brief Logical negation operator. Performs logical negation operation on +/// this APInt. +bool APInt::operator !() const { + if (isSingleWord()) + return !VAL; + else + for (unsigned i = 0; i < numWords(); ++i) + if (pVal[i]) + return false; + return true; +} + +/// @brief Multiplication operator. Multiplies this APInt by the given APInt& +/// RHS. +APInt APInt::operator*(const APInt& RHS) const { + APInt API(RHS); + API *= *this; + API.TruncToBits(); + return API; +} + +/// @brief Division operator. Divides this APInt by the given APInt& RHS. +APInt APInt::operator/(const APInt& RHS) const { + APInt API(*this); + return API /= RHS; +} + +/// @brief Remainder operator. Yields the remainder from the division of this +/// APInt and the given APInt& RHS. +APInt APInt::operator%(const APInt& RHS) const { + APInt API(*this); + return API %= RHS; +} + +/// @brief Addition operator. Adds this APInt by the given APInt& RHS. +APInt APInt::operator+(const APInt& RHS) const { + APInt API(*this); + API += RHS; + API.TruncToBits(); + return API; +} + +/// @brief Subtraction operator. Subtracts this APInt by the given APInt& RHS +APInt APInt::operator-(const APInt& RHS) const { + APInt API(*this); + API -= RHS; + API.TruncToBits(); + return API; +} + +/// @brief Array-indexing support. +bool APInt::operator[](unsigned bitPosition) const { + return maskBit(bitPosition) & (isSingleWord() ? + VAL : pVal[whichWord(bitPosition)]) != 0; +} + +/// @brief Equality operator. Compare this APInt with the given APInt& RHS +/// for the validity of the equality relationship. +bool APInt::operator==(const APInt& RHS) const { + unsigned n1 = numWords() * APINT_BITS_PER_WORD - CountLeadingZeros(), + n2 = RHS.numWords() * APINT_BITS_PER_WORD - RHS.CountLeadingZeros(); + if (n1 != n2) return false; + else if (isSingleWord()) + return VAL == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]); + else { + if (n1 <= 64) + return pVal[0] == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]); + for (int i = whichWord(n1 - 1); i >= 0; --i) + if (pVal[i] != RHS.pVal[i]) return false; + } + return true; +} + +/// @brief Inequality operator. Compare this APInt with the given APInt& RHS +/// for the validity of the inequality relationship. +bool APInt::operator!=(const APInt& RHS) const { + return !((*this) == RHS); +} + +/// @brief Less-than operator. Compare this APInt with the given APInt& RHS +/// for the validity of the less-than relationship. +bool APInt::operator <(const APInt& RHS) const { + if (isSigned && RHS.isSigned) { + if ((*this)[bitsnum-1] > RHS[RHS.bitsnum-1]) + return false; + else if ((*this)[bitsnum-1] < RHS[RHS.bitsnum-1]) + return true; + } + unsigned n1 = numWords() * 64 - CountLeadingZeros(), + n2 = RHS.numWords() * 64 - RHS.CountLeadingZeros(); + if (n1 < n2) return true; + else if (n1 > n2) return false; + else if (isSingleWord()) + return VAL < (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]); + else { + if (n1 <= 64) + return pVal[0] < (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]); + for (int i = whichWord(n1 - 1); i >= 0; --i) { + if (pVal[i] > RHS.pVal[i]) return false; + else if (pVal[i] < RHS.pVal[i]) return true; + } + } + return false; +} + +/// @brief Less-than-or-equal operator. Compare this APInt with the given +/// APInt& RHS for the validity of the less-than-or-equal relationship. +bool APInt::operator<=(const APInt& RHS) const { + return (*this) == RHS || (*this) < RHS; +} + +/// @brief Greater-than operator. Compare this APInt with the given APInt& RHS +/// for the validity of the greater-than relationship. +bool APInt::operator >(const APInt& RHS) const { + return !((*this) <= RHS); +} + +/// @brief Greater-than-or-equal operator. Compare this APInt with the given +/// APInt& RHS for the validity of the greater-than-or-equal relationship. +bool APInt::operator>=(const APInt& RHS) const { + return !((*this) < RHS); +} + +/// Set the given bit to 1 whose poition is given as "bitPosition". +/// @brief Set a given bit to 1. +APInt& APInt::set(unsigned bitPosition) { + if (isSingleWord()) VAL |= maskBit(bitPosition); + else pVal[whichWord(bitPosition)] |= maskBit(bitPosition); + return *this; +} + +/// @brief Set every bit to 1. +APInt& APInt::set() { + if (isSingleWord()) VAL = -1ULL; + else + for (unsigned i = 0; i < numWords(); ++i) + pVal[i] = -1ULL; + return *this; +} + +/// Set the given bit to 0 whose position is given as "bitPosition". +/// @brief Set a given bit to 0. +APInt& APInt::clear(unsigned bitPosition) { + if (isSingleWord()) VAL &= ~maskBit(bitPosition); + else pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition); + return *this; +} + +/// @brief Set every bit to 0. +APInt& APInt::clear() { + if (isSingleWord()) VAL = 0; + else bzero(pVal, numWords() * 8); + return *this; +} + +/// @brief Left-shift assignment operator. Left-shift the APInt by shiftAmt +/// and assigns the result to this APInt. +APInt& APInt::operator<<=(unsigned shiftAmt) { + if (shiftAmt >= bitsnum) { + if (isSingleWord()) VAL = 0; + else bzero(pVal, numWords() * 8); + } else { + for (unsigned i = 0; i < shiftAmt; ++i) clear(i); + for (unsigned i = shiftAmt; i < bitsnum; ++i) { + if ((*this)[i-shiftAmt]) set(i); + else clear(i); + } + } + return *this; +} + +/// @brief Left-shift operator. Left-shift the APInt by shiftAmt. +APInt APInt::operator<<(unsigned shiftAmt) const { + APInt API(*this); + API <<= shiftAmt; + return API; +} + +/// @brief Right-shift assignment operator. Right-shift the APInt by shiftAmt +/// and assigns the result to this APInt. +APInt& APInt::operator>>=(unsigned shiftAmt) { + bool isAShr = isSigned && (*this)[bitsnum-1]; + if (isSingleWord()) + VAL = isAShr ? (int64_t(VAL) >> shiftAmt) : (VAL >> shiftAmt); + else { + unsigned i = 0; + for (i = 0; i < bitsnum - shiftAmt; ++i) + if ((*this)[i+shiftAmt]) set(i); + else clear(i); + for (; i < bitsnum; ++i) + isAShr ? set(i) : clear(i); + } + return *this; +} + +/// @brief Right-shift operator. Right-shift the APInt by shiftAmt. +APInt APInt::operator>>(unsigned shiftAmt) const { + APInt API(*this); + API >>= shiftAmt; + return API; +} + +/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on +/// this APInt. +APInt APInt::operator~() const { + APInt API(*this); + API.flip(); + return API; +} + +/// @brief Toggle every bit to its opposite value. +APInt& APInt::flip() { + if (isSingleWord()) VAL = (~(VAL << (64 - bitsnum))) >> (64 - bitsnum); + else { + unsigned i = 0; + for (; i < numWords() - 1; ++i) + pVal[i] = ~pVal[i]; + unsigned offset = 64 - (bitsnum - 64 * (i - 1)); + pVal[i] = (~(pVal[i] << offset)) >> offset; + } + return *this; +} + +/// Toggle a given bit to its opposite value whose position is given +/// as "bitPosition". +/// @brief Toggles a given bit to its opposite value. +APInt& APInt::flip(unsigned bitPosition) { + assert(bitPosition < bitsnum && "Out of the bit-width range!"); + if ((*this)[bitPosition]) clear(bitPosition); + else set(bitPosition); + return *this; +} + +/// to_string - This function translates the APInt into a string. +std::string APInt::to_string(uint8_t radix) const { + assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && + "Radix should be 2, 8, 10, or 16!"); + std::ostringstream buf; + buf << std::setbase(radix); + // If the radix is a power of 2, set the format of ostringstream, + // and output the value into buf. + if ((radix & (radix - 1)) == 0) { + if (isSingleWord()) buf << VAL; + else { + buf << pVal[numWords()-1]; + buf << std::setw(64 / (radix / 8 + 2)) << std::setfill('0'); + for (int i = numWords() - 2; i >= 0; --i) + buf << pVal[i]; + } + } + else { // If the radix = 10, need to translate the value into a + // string. + if (isSingleWord()) buf << VAL; + else { + // FIXME: To be supported. + } + } + return buf.str(); +} + +/// getMaxValue - This function returns the largest value +/// for an APInt of the specified bit-width and if isSign == true, +/// it should be largest signed value, otherwise unsigned value. +APInt APInt::getMaxValue(unsigned numBits, bool isSign) { + APInt APIVal(numBits, 1); + APIVal.set(); + return isSign ? APIVal.clear(numBits) : APIVal; +} + +/// getMinValue - This function returns the smallest value for +/// an APInt of the given bit-width and if isSign == true, +/// it should be smallest signed value, otherwise zero. +APInt APInt::getMinValue(unsigned numBits, bool isSign) { + APInt APIVal(0, numBits); + return isSign ? APIVal : APIVal.set(numBits); +} + +/// getAllOnesValue - This function returns an all-ones value for +/// an APInt of the specified bit-width. +APInt APInt::getAllOnesValue(unsigned numBits) { + return getMaxValue(numBits, false); +} + +/// getNullValue - This function creates an '0' value for an +/// APInt of the specified bit-width. +APInt APInt::getNullValue(unsigned numBits) { + return getMinValue(numBits, true); +} + +/// HiBits - This function returns the high "numBits" bits of this APInt. +APInt APInt::HiBits(unsigned numBits) const { + return (*this) >> (bitsnum - numBits); +} + +/// LoBits - This function returns the low "numBits" bits of this APInt. +APInt APInt::LoBits(unsigned numBits) const { + return ((*this) << (bitsnum - numBits)) >> (bitsnum - numBits); +} + +/// CountLeadingZeros - This function is a APInt version corresponding to +/// llvm/include/llvm/Support/MathExtras.h's function +/// CountLeadingZeros_{32, 64}. It performs platform optimal form of counting +/// the number of zeros from the most significant bit to the first one bit. +/// @returns numWord() * 64 if the value is zero. +unsigned APInt::CountLeadingZeros() const { + if (isSingleWord()) + return CountLeadingZeros_64(VAL); + unsigned Count = 0; + for (int i = numWords() - 1; i >= 0; --i) { + unsigned tmp = CountLeadingZeros_64(pVal[i]); + Count += tmp; + if (tmp != 64) + break; + } + return Count; +} + +/// CountTrailingZero - This function is a APInt version corresponding to +/// llvm/include/llvm/Support/MathExtras.h's function +/// CountTrailingZeros_{32, 64}. It performs platform optimal form of counting +/// the number of zeros from the least significant bit to the first one bit. +/// @returns numWord() * 64 if the value is zero. +unsigned APInt::CountTrailingZeros() const { + if (isSingleWord()) + return CountTrailingZeros_64(~VAL & (VAL - 1)); + APInt Tmp = ~(*this) & ((*this) - 1); + return numWords() * 64 - Tmp.CountLeadingZeros(); +} + +/// CountPopulation - This function is a APInt version corresponding to +/// llvm/include/llvm/Support/MathExtras.h's function +/// CountPopulation_{32, 64}. It counts the number of set bits in a value. +/// @returns 0 if the value is zero. +unsigned APInt::CountPopulation() const { + if (isSingleWord()) + return CountPopulation_64(VAL); + unsigned Count = 0; + for (unsigned i = 0; i < numWords(); ++i) + Count += CountPopulation_64(pVal[i]); + return Count; +} + + +/// ByteSwap - This function returns a byte-swapped representation of the +/// APInt argument, APIVal. +APInt llvm::ByteSwap(const APInt& APIVal) { + if (APIVal.bitsnum <= 32) + return APInt(APIVal.bitsnum, ByteSwap_32(unsigned(APIVal.VAL))); + else if (APIVal.bitsnum <= 64) + return APInt(APIVal.bitsnum, ByteSwap_64(APIVal.VAL)); + else + return APIVal; +} + +/// GreatestCommonDivisor - This function returns the greatest common +/// divisor of the two APInt values using Enclid's algorithm. +APInt llvm::GreatestCommonDivisor(const APInt& API1, const APInt& API2) { + APInt A = API1, B = API2; + while (!!B) { + APInt T = B; + B = A % B; + A = T; + } + return A; +}