* Alphabetized #includes

* Removed trailing whitespace

llvm-svn: 61926
This commit is contained in:
Misha Brukman 2009-01-08 15:50:22 +00:00
parent 550c1c46f9
commit da46748ad2
1 changed files with 56 additions and 56 deletions

View File

@ -6,17 +6,17 @@
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//
// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
// register allocator for LLVM. This allocator works by constructing a PBQP
// problem representing the register allocation problem under consideration,
// solving this using a PBQP solver, and mapping the solution back to a
// register assignment. If any variables are selected for spilling then spill
// code is inserted and the process repeated.
// code is inserted and the process repeated.
//
// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
// for register allocation. For more information on PBQP for register
// allocation see the following papers:
// allocation see the following papers:
//
// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
// PBQP. In Proceedings of the 7th Joint Modular Languages Conference
@ -26,7 +26,7 @@
// architectures. In Proceedings of the Joint Conference on Languages,
// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
// NY, USA, 139-148.
//
//
// Author: Lang Hames
// Email: lhames@gmail.com
//
@ -36,21 +36,21 @@
#include "PBQP.h"
#include "VirtRegMap.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Support/Debug.h"
#include <memory>
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include <limits>
#include <map>
#include <memory>
#include <set>
#include <vector>
#include <limits>
using namespace llvm;
@ -68,7 +68,7 @@ namespace {
public:
static char ID;
//! Construct a PBQP register allocator.
PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID) {}
@ -119,7 +119,7 @@ namespace {
LiveIntervalSet vregIntervalsToAlloc,
emptyVRegIntervals;
//! Builds a PBQP cost vector.
template <typename RegContainer>
PBQPVector* buildCostVector(unsigned vReg,
@ -170,7 +170,7 @@ namespace {
//! \brief Given a solved PBQP problem maps this solution back to a register
//! assignment.
bool mapPBQPToRegAlloc(pbqp *problem);
bool mapPBQPToRegAlloc(pbqp *problem);
//! \brief Postprocessing before final spilling. Sets basic block "live in"
//! variables.
@ -209,9 +209,9 @@ PBQPVector* PBQPRegAlloc::buildCostVector(unsigned vReg,
// No coalesce - on to the next preg.
if (cmItr == coalesces.end())
continue;
// We have a coalesce - insert the benefit.
(*v)[ai + 1] = -cmItr->second;
// We have a coalesce - insert the benefit.
(*v)[ai + 1] = -cmItr->second;
}
return v;
@ -232,7 +232,7 @@ PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
// both intervals to memory safely (the cost for each individual allocation
// to memory is accounted for by the cost vectors for each live interval).
PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
// Assume this is a zero matrix until proven otherwise. Zero matrices occur
// between interfering live ranges with non-overlapping register sets (e.g.
// non-overlapping reg classes, or disjoint sets of allowed regs within the
@ -244,9 +244,9 @@ PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
// Row index. Starts at 1, since the 0th row is for the spill option, which
// is always zero.
unsigned ri = 1;
unsigned ri = 1;
// Iterate over allowed sets, insert infinities where required.
// Iterate over allowed sets, insert infinities where required.
for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
a1Itr != a1End; ++a1Itr) {
@ -321,7 +321,7 @@ PBQPMatrix* PBQPRegAlloc::buildCoalescingMatrix(
// If the row and column represent the same register insert a beneficial
// cost to preference this allocation - it would allow us to eliminate a
// move instruction.
// move instruction.
if (reg1 == *a2Itr) {
(*m)[ri][ci] = -cBenefit;
isZeroMatrix = false;
@ -348,7 +348,7 @@ PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
typedef MachineFunction::const_iterator MFIterator;
typedef MachineBasicBlock::const_iterator MBBIterator;
typedef LiveInterval::const_vni_iterator VNIIterator;
CoalesceMap coalescesFound;
// To find coalesces we need to iterate over the function looking for
@ -378,7 +378,7 @@ PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
// If both registers are physical then we can't coalesce.
if (srcRegIsPhysical && dstRegIsPhysical)
continue;
// If it's a copy that includes a virtual register but the source and
// destination classes differ then we can't coalesce, so continue with
// the next instruction.
@ -408,7 +408,7 @@ PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
}
// If we've made it here we have a copy with compatible register classes.
// We can probably coalesce, but we need to consider overlap.
// We can probably coalesce, but we need to consider overlap.
const LiveInterval *srcLI = &lis->getInterval(srcReg),
*dstLI = &lis->getInterval(dstReg);
@ -421,7 +421,7 @@ PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
bool badDef = false;
// Test all defs of the source range.
for (VNIIterator
for (VNIIterator
vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
vniItr != vniEnd; ++vniItr) {
@ -436,12 +436,12 @@ PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
// If we have a bad def give up, continue to the next instruction.
if (badDef)
continue;
// Otherwise test definitions of the destination range.
for (VNIIterator
vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
vniItr != vniEnd; ++vniItr) {
// We want to make sure we skip the copy instruction itself.
if ((*vniItr)->copy == instr)
continue;
@ -451,7 +451,7 @@ PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
break;
}
}
// As before a bad def we give up and continue to the next instr.
if (badDef)
continue;
@ -462,7 +462,7 @@ PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
// We're good to go with the coalesce.
float cBenefit = powf(10.0f, loopInfo->getLoopDepth(mbb)) / 5.0;
coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
}
@ -521,7 +521,7 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
// Iterate over vreg intervals, construct live interval <-> node number
// mappings.
for (LiveIntervalSet::const_iterator
for (LiveIntervalSet::const_iterator
itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
itr != end; ++itr) {
const LiveInterval *li = *itr;
@ -545,7 +545,7 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
// Grab pointers to the interval and its register class.
const LiveInterval *li = node2LI[node];
const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
// Start by assuming all allocable registers in the class are allowed...
RegVector liAllowed(liRC->allocation_order_begin(*mf),
liRC->allocation_order_end(*mf));
@ -570,7 +570,7 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
// Remove the overlapping reg...
RegVector::iterator eraseItr =
std::find(liAllowed.begin(), liAllowed.end(), pReg);
if (eraseItr != liAllowed.end())
liAllowed.erase(eraseItr);
@ -581,7 +581,7 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
for (; *aliasItr != 0; ++aliasItr) {
RegVector::iterator eraseItr =
std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
if (eraseItr != liAllowed.end()) {
liAllowed.erase(eraseItr);
}
@ -595,7 +595,7 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
// Set the spill cost to the interval weight, or epsilon if the
// interval weight is zero
PBQPNum spillCost = (li->weight != 0.0) ?
PBQPNum spillCost = (li->weight != 0.0) ?
li->weight : std::numeric_limits<PBQPNum>::min();
// Build a cost vector for this interval.
@ -626,7 +626,7 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
else if (li->overlaps(*li2)) {
m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
}
if (m != 0) {
add_pbqp_edgecosts(solver, node1, node2, m);
delete m;
@ -635,13 +635,13 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
}
// We're done, PBQP problem constructed - return it.
return solver;
return solver;
}
void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled, float &weight) {
int stackSlot = vrm->getStackSlot(spilled->reg);
if (stackSlot == VirtRegMap::NO_STACK_SLOT)
if (stackSlot == VirtRegMap::NO_STACK_SLOT)
return;
LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot);
@ -658,13 +658,13 @@ void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled, float &weight)
}
bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
// Set to true if we have any spills
bool anotherRoundNeeded = false;
// Clear the existing allocation.
vrm->clearAllVirt();
// Iterate over the nodes mapping the PBQP solution to a register assignment.
for (unsigned node = 0; node < node2LI.size(); ++node) {
unsigned virtReg = node2LI[node]->reg,
@ -734,18 +734,18 @@ void PBQPRegAlloc::finalizeAlloc() const {
for (LiveIntervalSet::const_iterator
itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
itr != end; ++itr) {
LiveInterval *li = *itr;
LiveInterval *li = *itr;
unsigned physReg = li->preference;
if (physReg == 0) {
const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
physReg = *liRC->allocation_order_begin(*mf);
physReg = *liRC->allocation_order_begin(*mf);
}
vrm->assignVirt2Phys(li->reg, physReg);
vrm->assignVirt2Phys(li->reg, physReg);
}
// Finally iterate over the basic blocks to compute and set the live-in sets.
SmallVector<MachineBasicBlock*, 8> liveInMBBs;
MachineBasicBlock *entryMBB = &*mf->begin();
@ -755,7 +755,7 @@ void PBQPRegAlloc::finalizeAlloc() const {
const LiveInterval *li = liItr->second;
unsigned reg = 0;
// Get the physical register for this interval
if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
reg = li->reg;
@ -771,7 +771,7 @@ void PBQPRegAlloc::finalizeAlloc() const {
// Iterate over the ranges of the current interval...
for (LRIterator lrItr = li->begin(), lrEnd = li->end();
lrItr != lrEnd; ++lrItr) {
// Find the set of basic blocks which this range is live into...
if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) {
// And add the physreg for this interval to their live-in sets.
@ -786,7 +786,7 @@ void PBQPRegAlloc::finalizeAlloc() const {
}
}
}
}
bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
@ -807,17 +807,17 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
DOUT << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n";
// Allocator main loop:
//
//
// * Map current regalloc problem to a PBQP problem
// * Solve the PBQP problem
// * Map the solution back to a register allocation
// * Spill if necessary
//
//
// This process is continued till no more spills are generated.
// Find the vreg intervals in need of allocation.
findVRegIntervalsToAlloc();
// If there aren't any then we're done here.
if (vregIntervalsToAlloc.empty() && emptyVRegIntervals.empty())
return true;
@ -832,12 +832,12 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
DOUT << " PBQP Regalloc round " << round << ":\n";
pbqp *problem = constructPBQPProblem();
solve_pbqp(problem);
pbqpAllocComplete = mapPBQPToRegAlloc(problem);
free_pbqp(problem);
free_pbqp(problem);
++round;
}
@ -858,7 +858,7 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
std::auto_ptr<Spiller> spiller(createSpiller());
spiller->runOnMachineFunction(*mf, *vrm);
return true;
return true;
}
FunctionPass* llvm::createPBQPRegisterAllocator() {