ScopInfo: Split hasAffineMemoryAccesses() into multiple functions [NFC]

This makes the overall code more readable.

llvm-svn: 253951
This commit is contained in:
Tobias Grosser 2015-11-24 05:00:36 +00:00
parent 919ce23566
commit d68ba42556
2 changed files with 187 additions and 115 deletions

View File

@ -222,6 +222,50 @@ private:
/// @returns True if the subregion can be over approximated, false otherwise. /// @returns True if the subregion can be over approximated, false otherwise.
bool addOverApproximatedRegion(Region *AR, DetectionContext &Context) const; bool addOverApproximatedRegion(Region *AR, DetectionContext &Context) const;
/// @brief Find for a given base pointer terms that hint towards dimension
/// sizes of a multi-dimensional array.
///
/// @param Context The current detection context.
/// @param BasePointer A base pointer indicating the virtual array we are
/// interested in.
SmallVector<const SCEV *, 4>
getDelinearizationTerms(DetectionContext &Context,
const SCEVUnknown *BasePointer) const;
/// @brief Check if the dimension size of a delinearized array is valid.
///
/// @param Context The current detection context.
/// @param Sizes The sizes of the different array dimensions.
/// @param BasePointer The base pointer we are interested in.
/// @returns True if one or more array sizes could be derived - meaning: we
/// see this array as multi-dimensional.
bool hasValidArraySizes(DetectionContext &Context,
SmallVectorImpl<const SCEV *> &Sizes,
const SCEVUnknown *BasePointer) const;
/// @brief Derive access functions for a given base pointer.
///
/// @param Context The current detection context.
/// @param Sizes The sizes of the different array dimensions.
/// @param BasePointer The base pointer of all the array for which to compute
/// access functions.
/// @param Shape The shape that describes the derived array sizes and
/// which should be filled with newly computed access
/// functions.
/// @returns True if a set of affine access functions could be derived.
bool computeAccessFunctions(DetectionContext &Context,
const SCEVUnknown *BasePointer,
std::shared_ptr<ArrayShape> Shape) const;
/// @brief Check if all accesses to a given BasePointer are affine.
///
/// @param Context The current detection context.
/// @param basepointer the base pointer we are interested in.
/// @param True if consistent (multi-dimensional) array accesses could be
/// derived for this array.
bool hasBaseAffineAccesses(DetectionContext &Context,
const SCEVUnknown *BasePointer) const;
// Delinearize all non affine memory accesses and return false when there // Delinearize all non affine memory accesses and return false when there
// exists a non affine memory access that cannot be delinearized. Return true // exists a non affine memory access that cannot be delinearized. Return true
// when all array accesses are affine after delinearization. // when all array accesses are affine after delinearization.

View File

@ -487,145 +487,173 @@ bool ScopDetection::isInvariant(const Value &Val, const Region &Reg) const {
MapInsnToMemAcc InsnToMemAcc; MapInsnToMemAcc InsnToMemAcc;
bool ScopDetection::hasAffineMemoryAccesses(DetectionContext &Context) const { SmallVector<const SCEV *, 4>
Region &CurRegion = Context.CurRegion; ScopDetection::getDelinearizationTerms(DetectionContext &Context,
const SCEVUnknown *BasePointer) const {
SmallVector<const SCEV *, 4> Terms;
for (const auto &Pair : Context.Accesses[BasePointer]) {
// In case the outermost expression is a plain add, we check if any of its
// terms has the form 4 * %inst * %param * %param ..., aka a term that
// contains a product between a parameter and an instruction that is
// inside the scop. Such instructions, if allowed at all, are instructions
// SCEV can not represent, but Polly is still looking through. As a
// result, these instructions can depend on induction variables and are
// most likely no array sizes. However, terms that are multiplied with
// them are likely candidates for array sizes.
if (auto *AF = dyn_cast<SCEVAddExpr>(Pair.second)) {
for (auto Op : AF->operands()) {
if (auto *AF2 = dyn_cast<SCEVAddRecExpr>(Op))
SE->collectParametricTerms(AF2, Terms);
if (auto *AF2 = dyn_cast<SCEVMulExpr>(Op)) {
SmallVector<const SCEV *, 0> Operands;
for (const SCEVUnknown *BasePointer : Context.NonAffineAccesses) { for (auto *MulOp : AF2->operands()) {
Value *BaseValue = BasePointer->getValue(); if (auto *Const = dyn_cast<SCEVConstant>(MulOp))
auto Shape = std::shared_ptr<ArrayShape>(new ArrayShape(BasePointer)); Operands.push_back(Const);
bool BasePtrHasNonAffine = false; if (auto *Unknown = dyn_cast<SCEVUnknown>(MulOp)) {
if (auto *Inst = dyn_cast<Instruction>(Unknown->getValue())) {
// First step: collect parametric terms in all array references. if (!Context.CurRegion.contains(Inst))
SmallVector<const SCEV *, 4> Terms;
for (const auto &Pair : Context.Accesses[BasePointer]) {
// In case the outermost expression is a plain add, we check if any of its
// terms has the form 4 * %inst * %param * %param ..., aka a term that
// contains a product between a parameter and an instruction that is
// inside the scop. Such instructions, if allowed at all, are instructions
// SCEV can not represent, but Polly is still looking through. As a
// result, these instructions can depend on induction variables and are
// most likely no array sizes. However, terms that are multiplied with
// them are likely candidates for array sizes.
if (auto *AF = dyn_cast<SCEVAddExpr>(Pair.second)) {
for (auto Op : AF->operands()) {
if (auto *AF2 = dyn_cast<SCEVAddRecExpr>(Op))
SE->collectParametricTerms(AF2, Terms);
if (auto *AF2 = dyn_cast<SCEVMulExpr>(Op)) {
SmallVector<const SCEV *, 0> Operands;
for (auto *MulOp : AF2->operands()) {
if (auto *Const = dyn_cast<SCEVConstant>(MulOp))
Operands.push_back(Const);
if (auto *Unknown = dyn_cast<SCEVUnknown>(MulOp)) {
if (auto *Inst = dyn_cast<Instruction>(Unknown->getValue())) {
if (!Context.CurRegion.contains(Inst))
Operands.push_back(MulOp);
} else {
Operands.push_back(MulOp); Operands.push_back(MulOp);
}
} else {
Operands.push_back(MulOp);
} }
} }
if (Operands.size())
Terms.push_back(SE->getMulExpr(Operands));
} }
if (Operands.size())
Terms.push_back(SE->getMulExpr(Operands));
} }
} }
if (Terms.empty())
SE->collectParametricTerms(Pair.second, Terms);
} }
if (Terms.empty())
SE->collectParametricTerms(Pair.second, Terms);
}
return Terms;
}
// Second step: find array shape. bool ScopDetection::hasValidArraySizes(DetectionContext &Context,
SE->findArrayDimensions(Terms, Shape->DelinearizedSizes, SmallVectorImpl<const SCEV *> &Sizes,
Context.ElementSize[BasePointer]); const SCEVUnknown *BasePointer) const {
Value *BaseValue = BasePointer->getValue();
for (const SCEV *DelinearizedSize : Shape->DelinearizedSizes) { Region &CurRegion = Context.CurRegion;
if (!isAffine(DelinearizedSize, Context, nullptr)) { for (const SCEV *DelinearizedSize : Sizes) {
Shape->DelinearizedSizes.clear(); if (!isAffine(DelinearizedSize, Context, nullptr)) {
break; Sizes.clear();
} break;
if (auto *Unknown = dyn_cast<SCEVUnknown>(DelinearizedSize)) {
auto *V = dyn_cast<Value>(Unknown->getValue());
if (auto *Load = dyn_cast<LoadInst>(V)) {
if (Context.CurRegion.contains(Load) &&
isHoistableLoad(Load, CurRegion, *LI, *SE))
Context.RequiredILS.insert(Load);
continue;
}
}
if (hasScalarDepsInsideRegion(DelinearizedSize, &CurRegion))
invalid<ReportNonAffineAccess>(
Context, /*Assert=*/true, DelinearizedSize,
Context.Accesses[BasePointer].front().first, BaseValue);
} }
if (auto *Unknown = dyn_cast<SCEVUnknown>(DelinearizedSize)) {
// No array shape derived. auto *V = dyn_cast<Value>(Unknown->getValue());
if (Shape->DelinearizedSizes.empty()) { if (auto *Load = dyn_cast<LoadInst>(V)) {
if (AllowNonAffine) if (Context.CurRegion.contains(Load) &&
isHoistableLoad(Load, CurRegion, *LI, *SE))
Context.RequiredILS.insert(Load);
continue; continue;
for (const auto &Pair : Context.Accesses[BasePointer]) {
const Instruction *Insn = Pair.first;
const SCEV *AF = Pair.second;
if (!isAffine(AF, Context, BaseValue)) {
invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Insn,
BaseValue);
if (!KeepGoing)
return false;
}
} }
continue;
} }
if (hasScalarDepsInsideRegion(DelinearizedSize, &CurRegion))
invalid<ReportNonAffineAccess>(
Context, /*Assert=*/true, DelinearizedSize,
Context.Accesses[BasePointer].front().first, BaseValue);
}
// No array shape derived.
if (Sizes.empty()) {
if (AllowNonAffine)
return true;
// Third step: compute the access functions for each subscript.
//
// We first store the resulting memory accesses in TempMemoryAccesses. Only
// if the access functions for all memory accesses have been successfully
// delinearized we continue. Otherwise, we either report a failure or, if
// non-affine accesses are allowed, we drop the information. In case the
// information is dropped the memory accesses need to be overapproximated
// when translated to a polyhedral representation.
MapInsnToMemAcc TempMemoryAccesses;
for (const auto &Pair : Context.Accesses[BasePointer]) { for (const auto &Pair : Context.Accesses[BasePointer]) {
const Instruction *Insn = Pair.first; const Instruction *Insn = Pair.first;
auto *AF = Pair.second; const SCEV *AF = Pair.second;
bool IsNonAffine = false;
TempMemoryAccesses.insert(std::make_pair(Insn, MemAcc(Insn, Shape)));
MemAcc *Acc = &TempMemoryAccesses.find(Insn)->second;
if (!AF) { if (!isAffine(AF, Context, BaseValue)) {
if (isAffine(Pair.second, Context, BaseValue)) invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Insn,
Acc->DelinearizedSubscripts.push_back(Pair.second); BaseValue);
else if (!KeepGoing)
IsNonAffine = true;
} else {
SE->computeAccessFunctions(AF, Acc->DelinearizedSubscripts,
Shape->DelinearizedSizes);
if (Acc->DelinearizedSubscripts.size() == 0)
IsNonAffine = true;
for (const SCEV *S : Acc->DelinearizedSubscripts)
if (!isAffine(S, Context, BaseValue))
IsNonAffine = true;
}
// (Possibly) report non affine access
if (IsNonAffine) {
BasePtrHasNonAffine = true;
if (!AllowNonAffine)
invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, Pair.second,
Insn, BaseValue);
if (!KeepGoing && !AllowNonAffine)
return false; return false;
} }
} }
return false;
if (!BasePtrHasNonAffine)
InsnToMemAcc.insert(TempMemoryAccesses.begin(), TempMemoryAccesses.end());
} }
return true; return true;
} }
// We first store the resulting memory accesses in TempMemoryAccesses. Only
// if the access functions for all memory accesses have been successfully
// delinearized we continue. Otherwise, we either report a failure or, if
// non-affine accesses are allowed, we drop the information. In case the
// information is dropped the memory accesses need to be overapproximated
// when translated to a polyhedral representation.
bool ScopDetection::computeAccessFunctions(
DetectionContext &Context, const SCEVUnknown *BasePointer,
std::shared_ptr<ArrayShape> Shape) const {
Value *BaseValue = BasePointer->getValue();
bool BasePtrHasNonAffine = false;
MapInsnToMemAcc TempMemoryAccesses;
for (const auto &Pair : Context.Accesses[BasePointer]) {
const Instruction *Insn = Pair.first;
auto *AF = Pair.second;
bool IsNonAffine = false;
TempMemoryAccesses.insert(std::make_pair(Insn, MemAcc(Insn, Shape)));
MemAcc *Acc = &TempMemoryAccesses.find(Insn)->second;
if (!AF) {
if (isAffine(Pair.second, Context, BaseValue))
Acc->DelinearizedSubscripts.push_back(Pair.second);
else
IsNonAffine = true;
} else {
SE->computeAccessFunctions(AF, Acc->DelinearizedSubscripts,
Shape->DelinearizedSizes);
if (Acc->DelinearizedSubscripts.size() == 0)
IsNonAffine = true;
for (const SCEV *S : Acc->DelinearizedSubscripts)
if (!isAffine(S, Context, BaseValue))
IsNonAffine = true;
}
// (Possibly) report non affine access
if (IsNonAffine) {
BasePtrHasNonAffine = true;
if (!AllowNonAffine)
invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, Pair.second,
Insn, BaseValue);
if (!KeepGoing && !AllowNonAffine)
return false;
}
}
if (!BasePtrHasNonAffine)
InsnToMemAcc.insert(TempMemoryAccesses.begin(), TempMemoryAccesses.end());
return true;
}
bool ScopDetection::hasBaseAffineAccesses(
DetectionContext &Context, const SCEVUnknown *BasePointer) const {
auto Shape = std::shared_ptr<ArrayShape>(new ArrayShape(BasePointer));
auto Terms = getDelinearizationTerms(Context, BasePointer);
SE->findArrayDimensions(Terms, Shape->DelinearizedSizes,
Context.ElementSize[BasePointer]);
if (!hasValidArraySizes(Context, Shape->DelinearizedSizes, BasePointer))
return false;
return computeAccessFunctions(Context, BasePointer, Shape);
}
bool ScopDetection::hasAffineMemoryAccesses(DetectionContext &Context) const {
for (const SCEVUnknown *BasePointer : Context.NonAffineAccesses)
if (!hasBaseAffineAccesses(Context, BasePointer)) {
if (KeepGoing)
continue;
else
return false;
}
return true;
}
bool ScopDetection::isValidMemoryAccess(Instruction &Inst, bool ScopDetection::isValidMemoryAccess(Instruction &Inst,
DetectionContext &Context) const { DetectionContext &Context) const {
Region &CurRegion = Context.CurRegion; Region &CurRegion = Context.CurRegion;