[Support] Add general isl tools for DeLICM. NFC.

Add some generally useful isl tools into a their own new ISLTools.cpp.
These are the helpers were extracted from and will be use by the DeLICM
algorithm (https://reviews.llvm.org/D24716).

Suggested-by: 	Tobias Grosser <tobias@grosser.es>
llvm-svn: 293340
This commit is contained in:
Michael Kruse 2017-01-27 22:51:36 +00:00
parent 6d58dbb62f
commit d1508812f5
4 changed files with 741 additions and 0 deletions

View File

@ -0,0 +1,180 @@
//===------ ISLTools.h ------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Tools, utilities, helpers and extensions useful in conjunction with the
// Integer Set Library (isl).
//
//===----------------------------------------------------------------------===//
#ifndef POLLY_ISLTOOLS_H
#define POLLY_ISLTOOLS_H
#include "polly/Support/GICHelper.h"
namespace polly {
/// Return the range elements that are lexicographically smaller.
///
/// @param Map { Space[] -> Scatter[] }
/// @param Strict True for strictly lexicographically smaller elements (exclude
/// same timepoints from the result).
///
/// @return { Space[] -> Scatter[] }
/// A map to all timepoints that happen before the timepoints the input
/// mapped to.
IslPtr<isl_map> beforeScatter(IslPtr<isl_map> Map, bool Strict);
/// Piecewise beforeScatter(IslPtr<isl_map>,bool).
IslPtr<isl_union_map> beforeScatter(IslPtr<isl_union_map> UMap, bool Strict);
/// Return the range elements that are lexicographically larger.
///
/// @param Map { Space[] -> Scatter[] }
/// @param Strict True for strictly lexicographically larger elements (exclude
/// same timepoints from the result).
///
/// @return { Space[] -> Scatter[] }
/// A map to all timepoints that happen after the timepoints the input
/// map originally mapped to.
IslPtr<isl_map> afterScatter(IslPtr<isl_map> Map, bool Strict);
/// Piecewise afterScatter(IslPtr<isl_map>,bool).
IslPtr<isl_union_map> afterScatter(NonowningIslPtr<isl_union_map> UMap,
bool Strict);
/// Construct a range of timepoints between two timepoints.
///
/// Example:
/// From := { A[] -> [0]; B[] -> [0] }
/// To := { B[] -> [10]; C[] -> [20] }
///
/// Result:
/// { B[] -> [i] : 0 < i < 10 }
///
/// Note that A[] and C[] are not in the result because they do not have a start
/// or end timepoint. If a start (or end) timepoint is not unique, the first
/// (respectively last) is chosen.
///
/// @param From { Space[] -> Scatter[] }
/// Map to start timepoints.
/// @param To { Space[] -> Scatter[] }
/// Map to end timepoints.
/// @param InclFrom Whether to include the start timepoints in the result. In
/// the example, this would add { B[] -> [0] }
/// @param InclTo Whether to include the end timepoints in the result. In this
/// example, this would add { B[] -> [10] }
///
/// @return { Space[] -> Scatter[] }
/// A map for each domain element of timepoints between two extreme
/// points, or nullptr if @p From or @p To is nullptr, or the isl max
/// operations is exceeded.
IslPtr<isl_map> betweenScatter(IslPtr<isl_map> From, IslPtr<isl_map> To,
bool InclFrom, bool InclTo);
/// Piecewise betweenScatter(IslPtr<isl_map>,IslPtr<isl_map>,bool,bool).
IslPtr<isl_union_map> betweenScatter(IslPtr<isl_union_map> From,
IslPtr<isl_union_map> To, bool InclFrom,
bool InclTo);
/// If by construction a union map is known to contain only a single map, return
/// it.
///
/// This function combines isl_map_from_union_map() and
/// isl_union_map_extract_map(). isl_map_from_union_map() fails if the map is
/// empty because it does not know which space it would be in.
/// isl_union_map_extract_map() on the other hand does not check whether there
/// is (at most) one isl_map in the union, i.e. how it has been constructed is
/// probably wrong.
IslPtr<isl_map> singleton(IslPtr<isl_union_map> UMap,
IslPtr<isl_space> ExpectedSpace);
/// If by construction an isl_union_set is known to contain only a single
/// isl_set, return it.
///
/// This function combines isl_set_from_union_set() and
/// isl_union_set_extract_set(). isl_map_from_union_set() fails if the set is
/// empty because it does not know which space it would be in.
/// isl_union_set_extract_set() on the other hand does not check whether there
/// is (at most) one isl_set in the union, i.e. how it has been constructed is
/// probably wrong.
IslPtr<isl_set> singleton(IslPtr<isl_union_set> USet,
IslPtr<isl_space> ExpectedSpace);
/// Determine how many dimensions the scatter space of @p Schedule has.
///
/// The schedule must not be empty and have equal number of dimensions of any
/// subspace it contains.
///
/// The implementation currently returns the maximum number of dimensions it
/// encounters, if different, and 0 if none is encountered. However, most other
/// code will most likely fail if one of these happen.
unsigned getNumScatterDims(NonowningIslPtr<isl_union_map> Schedule);
/// Return the scatter space of a @p Schedule.
///
/// This is basically the range space of the schedule map, but harder to
/// determine because it is an isl_union_map.
IslPtr<isl_space> getScatterSpace(NonowningIslPtr<isl_union_map> Schedule);
/// Construct an identity map for the given domain values.
///
/// There is no type resembling isl_union_space, hence we have to pass an
/// isl_union_set as the map's domain and range space.
///
/// @param USet { Space[] }
/// The returned map's domain and range.
/// @param RestrictDomain If true, the returned map only maps elements contained
/// in @p USet and no other. If false, it returns an
/// overapproximation with the identity maps of any space
/// in @p USet, not just the elements in it.
///
/// @return { Space[] -> Space[] }
/// A map that maps each value of @p USet to itself.
IslPtr<isl_union_map> makeIdentityMap(NonowningIslPtr<isl_union_set> USet,
bool RestrictDomain);
/// Reverse the nested map tuple in @p Map's domain.
///
/// @param Map { [Space1[] -> Space2[]] -> Space3[] }
///
/// @return { [Space2[] -> Space1[]] -> Space3[] }
IslPtr<isl_map> reverseDomain(IslPtr<isl_map> Map);
/// Piecewise reverseDomain(IslPtr<isl_map>).
IslPtr<isl_union_map> reverseDomain(NonowningIslPtr<isl_union_map> UMap);
/// Add a constant to one dimension of a set.
///
/// @param Map The set to shift a dimension in.
/// @param Pos The dimension to shift. If negative, the dimensions are
/// counted from the end instead from the beginning. E.g. -1 is
/// the last dimension in the tuple.
/// @param Amount The offset to add to the specified dimension.
///
/// @return The modified set.
IslPtr<isl_set> shiftDim(IslPtr<isl_set> Set, int Pos, int Amount);
/// Piecewise shiftDim(IslPtr<isl_set>,int,int).
IslPtr<isl_union_set> shiftDim(IslPtr<isl_union_set> USet, int Pos, int Amount);
/// Simplify a set inplace.
void simplify(IslPtr<isl_set> &Set);
/// Simplify a union set inplace.
void simplify(IslPtr<isl_union_set> &USet);
/// Simplify a map inplace.
void simplify(IslPtr<isl_map> &Map);
/// Simplify a union map inplace.
void simplify(IslPtr<isl_union_map> &UMap);
} // namespace polly
#endif /* POLLY_ISLTOOLS_H */

View File

@ -50,6 +50,7 @@ add_polly_library(Polly
Support/RegisterPasses.cpp
Support/ScopHelper.cpp
Support/ScopLocation.cpp
Support/ISLTools.cpp
${POLLY_JSON_FILES}
Transform/Canonicalization.cpp
Transform/CodePreparation.cpp

View File

@ -0,0 +1,264 @@
//===------ ISLTools.cpp ----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Tools, utilities, helpers and extensions useful in conjunction with the
// Integer Set Library (isl).
//
//===----------------------------------------------------------------------===//
#include "polly/Support/ISLTools.h"
using namespace polly;
namespace {
/// Create a map that shifts one dimension by an offset.
///
/// Example:
/// makeShiftDimAff({ [i0, i1] -> [o0, o1] }, 1, -2)
/// = { [i0, i1] -> [i0, i1 - 1] }
///
/// @param Space The map space of the result. Must have equal number of in- and
/// out-dimensions.
/// @param Pos Position to shift.
/// @param Amount Value added to the shifted dimension.
///
/// @return An isl_multi_aff for the map with this shifted dimension.
IslPtr<isl_multi_aff> makeShiftDimAff(IslPtr<isl_space> Space, int Pos,
int Amount) {
auto Identity = give(isl_multi_aff_identity(Space.take()));
if (Amount == 0)
return Identity;
auto ShiftAff = give(isl_multi_aff_get_aff(Identity.keep(), Pos));
ShiftAff = give(isl_aff_set_constant_si(ShiftAff.take(), Amount));
return give(isl_multi_aff_set_aff(Identity.take(), Pos, ShiftAff.take()));
}
/// Construct a map that swaps two nested tuples.
///
/// @param FromSpace1 { Space1[] }
/// @param FromSpace2 { Space2[] }
///
/// @return { [Space1[] -> Space2[]] -> [Space2[] -> Space1[]] }
IslPtr<isl_basic_map> makeTupleSwapBasicMap(IslPtr<isl_space> FromSpace1,
IslPtr<isl_space> FromSpace2) {
assert(isl_space_is_set(FromSpace1.keep()) != isl_bool_false);
assert(isl_space_is_set(FromSpace2.keep()) != isl_bool_false);
auto Dims1 = isl_space_dim(FromSpace1.keep(), isl_dim_set);
auto Dims2 = isl_space_dim(FromSpace2.keep(), isl_dim_set);
auto FromSpace = give(isl_space_wrap(isl_space_map_from_domain_and_range(
FromSpace1.copy(), FromSpace2.copy())));
auto ToSpace = give(isl_space_wrap(isl_space_map_from_domain_and_range(
FromSpace2.take(), FromSpace1.take())));
auto MapSpace = give(
isl_space_map_from_domain_and_range(FromSpace.take(), ToSpace.take()));
auto Result = give(isl_basic_map_universe(MapSpace.take()));
for (auto i = Dims1 - Dims1; i < Dims1; i += 1) {
Result = give(isl_basic_map_equate(Result.take(), isl_dim_in, i,
isl_dim_out, Dims2 + i));
}
for (auto i = Dims2 - Dims2; i < Dims2; i += 1) {
Result = give(isl_basic_map_equate(Result.take(), isl_dim_in, Dims1 + i,
isl_dim_out, i));
}
return Result;
}
/// Like makeTupleSwapBasicMap(IslPtr<isl_space>,IslPtr<isl_space>), but returns
/// an isl_map.
IslPtr<isl_map> makeTupleSwapMap(IslPtr<isl_space> FromSpace1,
IslPtr<isl_space> FromSpace2) {
auto BMapResult =
makeTupleSwapBasicMap(std::move(FromSpace1), std::move(FromSpace2));
return give(isl_map_from_basic_map(BMapResult.take()));
}
} // anonymous namespace
IslPtr<isl_map> polly::beforeScatter(IslPtr<isl_map> Map, bool Strict) {
auto RangeSpace = give(isl_space_range(isl_map_get_space(Map.keep())));
auto ScatterRel = give(Strict ? isl_map_lex_gt(RangeSpace.take())
: isl_map_lex_ge(RangeSpace.take()));
return give(isl_map_apply_range(Map.take(), ScatterRel.take()));
}
IslPtr<isl_union_map> polly::beforeScatter(IslPtr<isl_union_map> UMap,
bool Strict) {
auto Result = give(isl_union_map_empty(isl_union_map_get_space(UMap.keep())));
foreachElt(UMap, [=, &Result](IslPtr<isl_map> Map) {
auto After = beforeScatter(Map, Strict);
Result = give(isl_union_map_add_map(Result.take(), After.take()));
});
return Result;
}
IslPtr<isl_map> polly::afterScatter(IslPtr<isl_map> Map, bool Strict) {
auto RangeSpace = give(isl_space_range(isl_map_get_space(Map.keep())));
auto ScatterRel = give(Strict ? isl_map_lex_lt(RangeSpace.take())
: isl_map_lex_le(RangeSpace.take()));
return give(isl_map_apply_range(Map.take(), ScatterRel.take()));
}
IslPtr<isl_union_map> polly::afterScatter(NonowningIslPtr<isl_union_map> UMap,
bool Strict) {
auto Result = give(isl_union_map_empty(isl_union_map_get_space(UMap.keep())));
foreachElt(UMap, [=, &Result](IslPtr<isl_map> Map) {
auto After = afterScatter(Map, Strict);
Result = give(isl_union_map_add_map(Result.take(), After.take()));
});
return Result;
}
IslPtr<isl_map> polly::betweenScatter(IslPtr<isl_map> From, IslPtr<isl_map> To,
bool InclFrom, bool InclTo) {
auto AfterFrom = afterScatter(From, !InclFrom);
auto BeforeTo = beforeScatter(To, !InclTo);
return give(isl_map_intersect(AfterFrom.take(), BeforeTo.take()));
}
IslPtr<isl_union_map> polly::betweenScatter(IslPtr<isl_union_map> From,
IslPtr<isl_union_map> To,
bool InclFrom, bool InclTo) {
auto AfterFrom = afterScatter(From, !InclFrom);
auto BeforeTo = beforeScatter(To, !InclTo);
return give(isl_union_map_intersect(AfterFrom.take(), BeforeTo.take()));
}
IslPtr<isl_map> polly::singleton(IslPtr<isl_union_map> UMap,
IslPtr<isl_space> ExpectedSpace) {
if (!UMap)
return nullptr;
if (isl_union_map_n_map(UMap.keep()) == 0)
return give(isl_map_empty(ExpectedSpace.take()));
auto Result = give(isl_map_from_union_map(UMap.take()));
assert(
!Result ||
isl_space_has_equal_tuples(give(isl_map_get_space(Result.keep())).keep(),
ExpectedSpace.keep()) == isl_bool_true);
return Result;
}
IslPtr<isl_set> polly::singleton(IslPtr<isl_union_set> USet,
IslPtr<isl_space> ExpectedSpace) {
if (!USet)
return nullptr;
if (isl_union_set_n_set(USet.keep()) == 0)
return give(isl_set_empty(ExpectedSpace.copy()));
auto Result = give(isl_set_from_union_set(USet.take()));
assert(
!Result ||
isl_space_has_equal_tuples(give(isl_set_get_space(Result.keep())).keep(),
ExpectedSpace.keep()) == isl_bool_true);
return Result;
}
unsigned polly::getNumScatterDims(NonowningIslPtr<isl_union_map> Schedule) {
unsigned Dims = 0;
foreachElt(Schedule, [&Dims](IslPtr<isl_map> Map) {
Dims = std::max(Dims, isl_map_dim(Map.keep(), isl_dim_out));
});
return Dims;
}
IslPtr<isl_space>
polly::getScatterSpace(NonowningIslPtr<isl_union_map> Schedule) {
if (!Schedule)
return nullptr;
auto Dims = getNumScatterDims(Schedule);
auto ScatterSpace =
give(isl_space_set_from_params(isl_union_map_get_space(Schedule.keep())));
return give(isl_space_add_dims(ScatterSpace.take(), isl_dim_set, Dims));
}
IslPtr<isl_union_map>
polly::makeIdentityMap(NonowningIslPtr<isl_union_set> USet,
bool RestrictDomain) {
auto Result = give(isl_union_map_empty(isl_union_set_get_space(USet.keep())));
foreachElt(USet, [=, &Result](IslPtr<isl_set> Set) {
auto IdentityMap = give(isl_map_identity(
isl_space_map_from_set(isl_set_get_space(Set.keep()))));
if (RestrictDomain)
IdentityMap =
give(isl_map_intersect_domain(IdentityMap.take(), Set.take()));
Result = give(isl_union_map_add_map(Result.take(), IdentityMap.take()));
});
return Result;
}
IslPtr<isl_map> polly::reverseDomain(IslPtr<isl_map> Map) {
auto DomSpace =
give(isl_space_unwrap(isl_space_domain(isl_map_get_space(Map.keep()))));
auto Space1 = give(isl_space_domain(DomSpace.copy()));
auto Space2 = give(isl_space_range(DomSpace.take()));
auto Swap = makeTupleSwapMap(std::move(Space1), std::move(Space2));
return give(isl_map_apply_domain(Map.take(), Swap.take()));
}
IslPtr<isl_union_map>
polly::reverseDomain(NonowningIslPtr<isl_union_map> UMap) {
auto Result = give(isl_union_map_empty(isl_union_map_get_space(UMap.keep())));
foreachElt(UMap, [=, &Result](IslPtr<isl_map> Map) {
auto Reversed = reverseDomain(std::move(Map));
Result = give(isl_union_map_add_map(Result.take(), Reversed.take()));
});
return Result;
}
IslPtr<isl_set> polly::shiftDim(IslPtr<isl_set> Set, int Pos, int Amount) {
int NumDims = isl_set_dim(Set.keep(), isl_dim_set);
if (Pos < 0)
Pos = NumDims + Pos;
assert(Pos < NumDims && "Dimension index must be in range");
auto Space = give(isl_set_get_space(Set.keep()));
Space = give(isl_space_map_from_domain_and_range(Space.copy(), Space.copy()));
auto Translator = makeShiftDimAff(std::move(Space), Pos, Amount);
auto TranslatorMap = give(isl_map_from_multi_aff(Translator.take()));
return give(isl_set_apply(Set.take(), TranslatorMap.take()));
}
IslPtr<isl_union_set> polly::shiftDim(IslPtr<isl_union_set> USet, int Pos,
int Amount) {
auto Result = give(isl_union_set_empty(isl_union_set_get_space(USet.keep())));
foreachElt(USet, [=, &Result](IslPtr<isl_set> Set) {
auto Shifted = shiftDim(Set, Pos, Amount);
Result = give(isl_union_set_add_set(Result.take(), Shifted.take()));
});
return Result;
}
void polly::simplify(IslPtr<isl_set> &Set) {
Set = give(isl_set_compute_divs(Set.take()));
Set = give(isl_set_detect_equalities(Set.take()));
Set = give(isl_set_coalesce(Set.take()));
}
void polly::simplify(IslPtr<isl_union_set> &USet) {
USet = give(isl_union_set_compute_divs(USet.take()));
USet = give(isl_union_set_detect_equalities(USet.take()));
USet = give(isl_union_set_coalesce(USet.take()));
}
void polly::simplify(IslPtr<isl_map> &Map) {
Map = give(isl_map_compute_divs(Map.take()));
Map = give(isl_map_detect_equalities(Map.take()));
Map = give(isl_map_coalesce(Map.take()));
}
void polly::simplify(IslPtr<isl_union_map> &UMap) {
UMap = give(isl_union_map_compute_divs(UMap.take()));
UMap = give(isl_union_map_detect_equalities(UMap.take()));
UMap = give(isl_union_map_coalesce(UMap.take()));
}

View File

@ -8,12 +8,71 @@
//===----------------------------------------------------------------------===//
#include "polly/Support/GICHelper.h"
#include "polly/Support/ISLTools.h"
#include "gtest/gtest.h"
#include "isl/stream.h"
#include "isl/val.h"
using namespace llvm;
using namespace polly;
static IslPtr<isl_space> parseSpace(isl_ctx *Ctx, const char *Str) {
isl_stream *Stream = isl_stream_new_str(Ctx, Str);
auto Obj = isl_stream_read_obj(Stream);
IslPtr<isl_space> Result;
if (Obj.type == isl_obj_set)
Result = give(isl_set_get_space(static_cast<isl_set *>(Obj.v)));
else if (Obj.type == isl_obj_map)
Result = give(isl_map_get_space(static_cast<isl_map *>(Obj.v)));
isl_stream_free(Stream);
if (Obj.type)
Obj.type->free(Obj.v);
return Result;
}
#define SPACE(Str) parseSpace(Ctx.get(), Str)
#define SET(Str) give(isl_set_read_from_str(Ctx.get(), Str))
#define MAP(Str) give(isl_map_read_from_str(Ctx.get(), Str))
#define USET(Str) give(isl_union_set_read_from_str(Ctx.get(), Str))
#define UMAP(Str) give(isl_union_map_read_from_str(Ctx.get(), Str))
static bool operator==(const IslPtr<isl_space> &LHS,
const IslPtr<isl_space> &RHS) {
auto IsEqual = isl_space_is_equal(LHS.keep(), RHS.keep());
EXPECT_NE(isl_bool_error, IsEqual);
return IsEqual;
}
static bool operator==(const IslPtr<isl_set> &LHS, const IslPtr<isl_set> &RHS) {
auto IsEqual = isl_set_is_equal(LHS.keep(), RHS.keep());
EXPECT_NE(isl_bool_error, IsEqual);
return IsEqual;
}
static bool operator==(const IslPtr<isl_map> &LHS, const IslPtr<isl_map> &RHS) {
auto IsEqual = isl_map_is_equal(LHS.keep(), RHS.keep());
EXPECT_NE(isl_bool_error, IsEqual);
return IsEqual;
}
static bool operator==(const IslPtr<isl_union_set> &LHS,
const IslPtr<isl_union_set> &RHS) {
auto IsEqual = isl_union_set_is_equal(LHS.keep(), RHS.keep());
EXPECT_NE(isl_bool_error, IsEqual);
return IsEqual;
}
static bool operator==(const IslPtr<isl_union_map> &LHS,
const IslPtr<isl_union_map> &RHS) {
auto IsEqual = isl_union_map_is_equal(LHS.keep(), RHS.keep());
EXPECT_NE(isl_bool_error, IsEqual);
return IsEqual;
}
namespace {
TEST(Isl, APIntToIslVal) {
@ -342,4 +401,241 @@ TEST(Isl, Foreach) {
}
}
TEST(ISLTools, beforeScatter) {
std::unique_ptr<isl_ctx, decltype(&isl_ctx_free)> Ctx(isl_ctx_alloc(),
&isl_ctx_free);
// Basic usage with isl_map
EXPECT_EQ(MAP("{ [] -> [i] : i <= 0 }"),
beforeScatter(MAP("{ [] -> [0] }"), false));
EXPECT_EQ(MAP("{ [] -> [i] : i < 0 }"),
beforeScatter(MAP("{ [] -> [0] }"), true));
// Basic usage with isl_union_map
EXPECT_EQ(UMAP("{ A[] -> [i] : i <= 0; B[] -> [i] : i <= 0 }"),
beforeScatter(UMAP("{ A[] -> [0]; B[] -> [0] }"), false));
EXPECT_EQ(UMAP("{ A[] -> [i] : i < 0; B[] -> [i] : i < 0 }"),
beforeScatter(UMAP("{ A[] -> [0]; B[] -> [0] }"), true));
// More than one dimension
EXPECT_EQ(UMAP("{ [] -> [i, j] : i < 0; [] -> [i, j] : i = 0 and j <= 0 }"),
beforeScatter(UMAP("{ [] -> [0, 0] }"), false));
EXPECT_EQ(UMAP("{ [] -> [i, j] : i < 0; [] -> [i, j] : i = 0 and j < 0 }"),
beforeScatter(UMAP("{ [] -> [0, 0] }"), true));
// Functional
EXPECT_EQ(UMAP("{ [i] -> [j] : j <= i }"),
beforeScatter(UMAP("{ [i] -> [i] }"), false));
EXPECT_EQ(UMAP("{ [i] -> [j] : j < i }"),
beforeScatter(UMAP("{ [i] -> [i] }"), true));
// Parametrized
EXPECT_EQ(UMAP("[i] -> { [] -> [j] : j <= i }"),
beforeScatter(UMAP("[i] -> { [] -> [i] }"), false));
EXPECT_EQ(UMAP("[i] -> { [] -> [j] : j < i }"),
beforeScatter(UMAP("[i] -> { [] -> [i] }"), true));
// More than one range
EXPECT_EQ(UMAP("{ [] -> [i] : i <= 10 }"),
beforeScatter(UMAP("{ [] -> [0]; [] -> [10] }"), false));
EXPECT_EQ(UMAP("{ [] -> [i] : i < 10 }"),
beforeScatter(UMAP("{ [] -> [0]; [] -> [10] }"), true));
// Edge case: empty
EXPECT_EQ(UMAP("{ [] -> [i] : 1 = 0 }"),
beforeScatter(UMAP("{ [] -> [i] : 1 = 0 }"), false));
EXPECT_EQ(UMAP("{ [] -> [i] : 1 = 0 }"),
beforeScatter(UMAP("{ [] -> [i] : 1 = 0 }"), true));
}
TEST(ISLTools, afterScatter) {
std::unique_ptr<isl_ctx, decltype(&isl_ctx_free)> Ctx(isl_ctx_alloc(),
&isl_ctx_free);
// Basic usage with isl_map
EXPECT_EQ(MAP("{ [] -> [i] : i >= 0 }"),
afterScatter(MAP("{ [] -> [0] }"), false));
EXPECT_EQ(MAP("{ [] -> [i] : i > 0 }"),
afterScatter(MAP("{ [] -> [0] }"), true));
// Basic usage with isl_union_map
EXPECT_EQ(UMAP("{ A[] -> [i] : i >= 0; B[] -> [i] : i >= 0 }"),
afterScatter(UMAP("{ A[] -> [0]; B[] -> [0] }"), false));
EXPECT_EQ(UMAP("{ A[] -> [i] : i > 0; B[] -> [i] : i > 0 }"),
afterScatter(UMAP("{ A[] -> [0]; B[] -> [0] }"), true));
// More than one dimension
EXPECT_EQ(UMAP("{ [] -> [i, j] : i > 0; [] -> [i, j] : i = 0 and j >= 0 }"),
afterScatter(UMAP("{ [] -> [0, 0] }"), false));
EXPECT_EQ(UMAP("{ [] -> [i, j] : i > 0; [] -> [i, j] : i = 0 and j > 0 }"),
afterScatter(UMAP("{ [] -> [0, 0] }"), true));
// Functional
EXPECT_EQ(UMAP("{ [i] -> [j] : j >= i }"),
afterScatter(UMAP("{ [i] -> [i] }"), false));
EXPECT_EQ(UMAP("{ [i] -> [j] : j > i }"),
afterScatter(UMAP("{ [i] -> [i] }"), true));
// Parametrized
EXPECT_EQ(UMAP("[i] -> { [] -> [j] : j >= i }"),
afterScatter(UMAP("[i] -> { [] -> [i] }"), false));
EXPECT_EQ(UMAP("[i] -> { [] -> [j] : j > i }"),
afterScatter(UMAP("[i] -> { [] -> [i] }"), true));
// More than one range
EXPECT_EQ(UMAP("{ [] -> [i] : i >= 0 }"),
afterScatter(UMAP("{ [] -> [0]; [] -> [10] }"), false));
EXPECT_EQ(UMAP("{ [] -> [i] : i > 0 }"),
afterScatter(UMAP("{ [] -> [0]; [] -> [10] }"), true));
// Edge case: empty
EXPECT_EQ(UMAP("{ }"), afterScatter(UMAP("{ }"), false));
EXPECT_EQ(UMAP("{ }"), afterScatter(UMAP("{ }"), true));
}
TEST(ISLTools, betweenScatter) {
std::unique_ptr<isl_ctx, decltype(&isl_ctx_free)> Ctx(isl_ctx_alloc(),
&isl_ctx_free);
// Basic usage with isl_map
EXPECT_EQ(MAP("{ [] -> [i] : 0 < i < 10 }"),
betweenScatter(MAP("{ [] -> [0] }"), MAP("{ [] -> [10] }"), false,
false));
EXPECT_EQ(
MAP("{ [] -> [i] : 0 <= i < 10 }"),
betweenScatter(MAP("{ [] -> [0] }"), MAP("{ [] -> [10] }"), true, false));
EXPECT_EQ(
MAP("{ [] -> [i] : 0 < i <= 10 }"),
betweenScatter(MAP("{ [] -> [0] }"), MAP("{ [] -> [10] }"), false, true));
EXPECT_EQ(
MAP("{ [] -> [i] : 0 <= i <= 10 }"),
betweenScatter(MAP("{ [] -> [0] }"), MAP("{ [] -> [10] }"), true, true));
// Basic usage with isl_union_map
EXPECT_EQ(UMAP("{ A[] -> [i] : 0 < i < 10; B[] -> [i] : 0 < i < 10 }"),
betweenScatter(UMAP("{ A[] -> [0]; B[] -> [0] }"),
UMAP("{ A[] -> [10]; B[] -> [10] }"), false, false));
EXPECT_EQ(UMAP("{ A[] -> [i] : 0 <= i < 10; B[] -> [i] : 0 <= i < 10 }"),
betweenScatter(UMAP("{ A[] -> [0]; B[] -> [0] }"),
UMAP("{ A[] -> [10]; B[] -> [10] }"), true, false));
EXPECT_EQ(UMAP("{ A[] -> [i] : 0 < i <= 10; B[] -> [i] : 0 < i <= 10 }"),
betweenScatter(UMAP("{ A[] -> [0]; B[] -> [0] }"),
UMAP("{ A[] -> [10]; B[] -> [10] }"), false, true));
EXPECT_EQ(UMAP("{ A[] -> [i] : 0 <= i <= 10; B[] -> [i] : 0 <= i <= 10 }"),
betweenScatter(UMAP("{ A[] -> [0]; B[] -> [0] }"),
UMAP("{ A[] -> [10]; B[] -> [10] }"), true, true));
}
TEST(ISLTools, singleton) {
std::unique_ptr<isl_ctx, decltype(&isl_ctx_free)> Ctx(isl_ctx_alloc(),
&isl_ctx_free);
// No element found
EXPECT_EQ(SET("{ [] : 1 = 0 }"), singleton(USET("{ }"), SPACE("{ [] }")));
EXPECT_EQ(MAP("{ [] -> [] : 1 = 0 }"),
singleton(UMAP("{ }"), SPACE("{ [] -> [] }")));
// One element found
EXPECT_EQ(SET("{ [] }"), singleton(USET("{ [] }"), SPACE("{ [] }")));
EXPECT_EQ(MAP("{ [] -> [] }"),
singleton(UMAP("{ [] -> [] }"), SPACE("{ [] -> [] }")));
// Many elements found
EXPECT_EQ(SET("{ [i] : 0 <= i < 10 }"),
singleton(USET("{ [i] : 0 <= i < 10 }"), SPACE("{ [i] }")));
EXPECT_EQ(
MAP("{ [i] -> [i] : 0 <= i < 10 }"),
singleton(UMAP("{ [i] -> [i] : 0 <= i < 10 }"), SPACE("{ [i] -> [j] }")));
// Different parameters
EXPECT_EQ(SET("[i] -> { [i] }"),
singleton(USET("[i] -> { [i] }"), SPACE("{ [i] }")));
EXPECT_EQ(MAP("[i] -> { [i] -> [i] }"),
singleton(UMAP("[i] -> { [i] -> [i] }"), SPACE("{ [i] -> [j] }")));
}
TEST(ISLTools, getNumScatterDims) {
std::unique_ptr<isl_ctx, decltype(&isl_ctx_free)> Ctx(isl_ctx_alloc(),
&isl_ctx_free);
// Basic usage
EXPECT_EQ(0u, getNumScatterDims(UMAP("{ [] -> [] }")));
EXPECT_EQ(1u, getNumScatterDims(UMAP("{ [] -> [i] }")));
EXPECT_EQ(2u, getNumScatterDims(UMAP("{ [] -> [i,j] }")));
EXPECT_EQ(3u, getNumScatterDims(UMAP("{ [] -> [i,j,k] }")));
// Different scatter spaces
EXPECT_EQ(0u, getNumScatterDims(UMAP("{ A[] -> []; [] -> []}")));
EXPECT_EQ(1u, getNumScatterDims(UMAP("{ A[] -> []; [] -> [i] }")));
EXPECT_EQ(2u, getNumScatterDims(UMAP("{ A[] -> [i]; [] -> [i,j] }")));
EXPECT_EQ(3u, getNumScatterDims(UMAP("{ A[] -> [i]; [] -> [i,j,k] }")));
}
TEST(ISLTools, getScatterSpace) {
std::unique_ptr<isl_ctx, decltype(&isl_ctx_free)> Ctx(isl_ctx_alloc(),
&isl_ctx_free);
// Basic usage
EXPECT_EQ(SPACE("{ [] }"), getScatterSpace(UMAP("{ [] -> [] }")));
EXPECT_EQ(SPACE("{ [i] }"), getScatterSpace(UMAP("{ [] -> [i] }")));
EXPECT_EQ(SPACE("{ [i,j] }"), getScatterSpace(UMAP("{ [] -> [i,j] }")));
EXPECT_EQ(SPACE("{ [i,j,k] }"), getScatterSpace(UMAP("{ [] -> [i,j,k] }")));
// Different scatter spaces
EXPECT_EQ(SPACE("{ [] }"), getScatterSpace(UMAP("{ A[] -> []; [] -> [] }")));
EXPECT_EQ(SPACE("{ [i] }"),
getScatterSpace(UMAP("{ A[] -> []; [] -> [i] }")));
EXPECT_EQ(SPACE("{ [i,j] }"),
getScatterSpace(UMAP("{ A[] -> [i]; [] -> [i,j] }")));
EXPECT_EQ(SPACE("{ [i,j,k] }"),
getScatterSpace(UMAP("{ A[] -> [i]; [] -> [i,j,k] }")));
}
TEST(ISLTools, makeIdentityMap) {
std::unique_ptr<isl_ctx, decltype(&isl_ctx_free)> Ctx(isl_ctx_alloc(),
&isl_ctx_free);
// Basic usage
EXPECT_EQ(UMAP("{ [i] -> [i] }"), makeIdentityMap(USET("{ [0] }"), false));
EXPECT_EQ(UMAP("{ [0] -> [0] }"), makeIdentityMap(USET("{ [0] }"), true));
// Multiple spaces
EXPECT_EQ(UMAP("{ [] -> []; [i] -> [i] }"),
makeIdentityMap(USET("{ []; [0] }"), false));
EXPECT_EQ(UMAP("{ [] -> []; [0] -> [0] }"),
makeIdentityMap(USET("{ []; [0] }"), true));
// Edge case: empty
EXPECT_EQ(UMAP("{ }"), makeIdentityMap(USET("{ }"), false));
EXPECT_EQ(UMAP("{ }"), makeIdentityMap(USET("{ }"), true));
}
TEST(ISLTools, reverseDomain) {
std::unique_ptr<isl_ctx, decltype(&isl_ctx_free)> Ctx(isl_ctx_alloc(),
&isl_ctx_free);
// Basic usage
EXPECT_EQ(MAP("{ [B[] -> A[]] -> [] }"),
reverseDomain(MAP("{ [A[] -> B[]] -> [] }")));
EXPECT_EQ(UMAP("{ [B[] -> A[]] -> [] }"),
reverseDomain(UMAP("{ [A[] -> B[]] -> [] }")));
}
TEST(ISLTools, shiftDim) {
std::unique_ptr<isl_ctx, decltype(&isl_ctx_free)> Ctx(isl_ctx_alloc(),
&isl_ctx_free);
// Basic usage
EXPECT_EQ(SET("{ [1] }"), shiftDim(SET("{ [0] }"), 0, 1));
EXPECT_EQ(USET("{ [1] }"), shiftDim(USET("{ [0] }"), 0, 1));
// From-end indexing
EXPECT_EQ(USET("{ [0,0,1] }"), shiftDim(USET("{ [0,0,0] }"), -1, 1));
EXPECT_EQ(USET("{ [0,1,0] }"), shiftDim(USET("{ [0,0,0] }"), -2, 1));
EXPECT_EQ(USET("{ [1,0,0] }"), shiftDim(USET("{ [0,0,0] }"), -3, 1));
// Parametrized
EXPECT_EQ(USET("[n] -> { [n+1] }"), shiftDim(USET("[n] -> { [n] }"), 0, 1));
}
} // anonymous namespace