Remove DSA.

llvm-svn: 32550
This commit is contained in:
John Criswell 2006-12-13 19:41:57 +00:00
parent 21a589beba
commit ca6e2f71dd
14 changed files with 0 additions and 7235 deletions

View File

@ -1,753 +0,0 @@
//===- BottomUpClosure.cpp - Compute bottom-up interprocedural closure ----===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the BUDataStructures class, which represents the
// Bottom-Up Interprocedural closure of the data structure graph over the
// program. This is useful for applications like pool allocation, but **not**
// applications like alias analysis.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "bu_dsa"
#include "llvm/Analysis/DataStructure/DataStructure.h"
#include "llvm/Analysis/DataStructure/DSGraph.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Timer.h"
using namespace llvm;
namespace {
Statistic MaxSCC("budatastructure", "Maximum SCC Size in Call Graph");
Statistic NumBUInlines("budatastructures", "Number of graphs inlined");
Statistic NumCallEdges("budatastructures", "Number of 'actual' call edges");
cl::opt<bool>
AddGlobals("budatastructures-annotate-calls", cl::Hidden,
cl::desc("Annotate call sites with functions as they are resolved"));
cl::opt<bool>
UpdateGlobals("budatastructures-update-from-globals", cl::Hidden,
cl::desc("Update local graph from global graph when processing function"));
RegisterPass<BUDataStructures>
X("budatastructure", "Bottom-up Data Structure Analysis");
}
static bool GetAllCalleesN(const DSCallSite &CS,
std::vector<Function*> &Callees);
/// BuildGlobalECs - Look at all of the nodes in the globals graph. If any node
/// contains multiple globals, DSA will never, ever, be able to tell the globals
/// apart. Instead of maintaining this information in all of the graphs
/// throughout the entire program, store only a single global (the "leader") in
/// the graphs, and build equivalence classes for the rest of the globals.
static void BuildGlobalECs(DSGraph &GG, std::set<GlobalValue*> &ECGlobals) {
DSScalarMap &SM = GG.getScalarMap();
EquivalenceClasses<GlobalValue*> &GlobalECs = SM.getGlobalECs();
for (DSGraph::node_iterator I = GG.node_begin(), E = GG.node_end();
I != E; ++I) {
if (I->getGlobalsList().size() <= 1) continue;
// First, build up the equivalence set for this block of globals.
const std::vector<GlobalValue*> &GVs = I->getGlobalsList();
GlobalValue *First = GVs[0];
for (unsigned i = 1, e = GVs.size(); i != e; ++i)
GlobalECs.unionSets(First, GVs[i]);
// Next, get the leader element.
assert(First == GlobalECs.getLeaderValue(First) &&
"First did not end up being the leader?");
// Next, remove all globals from the scalar map that are not the leader.
assert(GVs[0] == First && "First had to be at the front!");
for (unsigned i = 1, e = GVs.size(); i != e; ++i) {
ECGlobals.insert(GVs[i]);
SM.erase(SM.find(GVs[i]));
}
// Finally, change the global node to only contain the leader.
I->clearGlobals();
I->addGlobal(First);
}
DEBUG(GG.AssertGraphOK());
}
/// EliminateUsesOfECGlobals - Once we have determined that some globals are in
/// really just equivalent to some other globals, remove the globals from the
/// specified DSGraph (if present), and merge any nodes with their leader nodes.
static void EliminateUsesOfECGlobals(DSGraph &G,
const std::set<GlobalValue*> &ECGlobals) {
DSScalarMap &SM = G.getScalarMap();
EquivalenceClasses<GlobalValue*> &GlobalECs = SM.getGlobalECs();
bool MadeChange = false;
for (DSScalarMap::global_iterator GI = SM.global_begin(), E = SM.global_end();
GI != E; ) {
GlobalValue *GV = *GI++;
if (!ECGlobals.count(GV)) continue;
const DSNodeHandle &GVNH = SM[GV];
assert(!GVNH.isNull() && "Global has null NH!?");
// Okay, this global is in some equivalence class. Start by finding the
// leader of the class.
GlobalValue *Leader = GlobalECs.getLeaderValue(GV);
// If the leader isn't already in the graph, insert it into the node
// corresponding to GV.
if (!SM.global_count(Leader)) {
GVNH.getNode()->addGlobal(Leader);
SM[Leader] = GVNH;
} else {
// Otherwise, the leader is in the graph, make sure the nodes are the
// merged in the specified graph.
const DSNodeHandle &LNH = SM[Leader];
if (LNH.getNode() != GVNH.getNode())
LNH.mergeWith(GVNH);
}
// Next step, remove the global from the DSNode.
GVNH.getNode()->removeGlobal(GV);
// Finally, remove the global from the ScalarMap.
SM.erase(GV);
MadeChange = true;
}
DEBUG(if(MadeChange) G.AssertGraphOK());
}
static void AddGlobalToNode(BUDataStructures* B, DSCallSite D, Function* F) {
if(!AddGlobals)
return;
if(D.isIndirectCall()) {
DSGraph* GI = &B->getDSGraph(D.getCaller());
DSNodeHandle& NHF = GI->getNodeForValue(F);
DSCallSite DL = GI->getDSCallSiteForCallSite(D.getCallSite());
if (DL.getCalleeNode() != NHF.getNode() || NHF.isNull()) {
if (NHF.isNull()) {
DSNode *N = new DSNode(F->getType()->getElementType(), GI); // Create the node
N->addGlobal(F);
NHF.setTo(N,0);
DOUT << "Adding " << F->getName() << " to a call node in "
<< D.getCaller().getName() << "\n";
}
DL.getCalleeNode()->mergeWith(NHF, 0);
}
}
}
// run - Calculate the bottom up data structure graphs for each function in the
// program.
//
bool BUDataStructures::runOnModule(Module &M) {
LocalDataStructures &LocalDSA = getAnalysis<LocalDataStructures>();
GlobalECs = LocalDSA.getGlobalECs();
GlobalsGraph = new DSGraph(LocalDSA.getGlobalsGraph(), GlobalECs);
GlobalsGraph->setPrintAuxCalls();
IndCallGraphMap = new std::map<std::vector<Function*>,
std::pair<DSGraph*, std::vector<DSNodeHandle> > >();
std::vector<Function*> Stack;
hash_map<Function*, unsigned> ValMap;
unsigned NextID = 1;
Function *MainFunc = M.getMainFunction();
if (MainFunc)
calculateGraphs(MainFunc, Stack, NextID, ValMap);
// Calculate the graphs for any functions that are unreachable from main...
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal() && !DSInfo.count(I)) {
if (MainFunc)
DOUT << "*** BU: Function unreachable from main: "
<< I->getName() << "\n";
calculateGraphs(I, Stack, NextID, ValMap); // Calculate all graphs.
}
// If we computed any temporary indcallgraphs, free them now.
for (std::map<std::vector<Function*>,
std::pair<DSGraph*, std::vector<DSNodeHandle> > >::iterator I =
IndCallGraphMap->begin(), E = IndCallGraphMap->end(); I != E; ++I) {
I->second.second.clear(); // Drop arg refs into the graph.
delete I->second.first;
}
delete IndCallGraphMap;
// At the end of the bottom-up pass, the globals graph becomes complete.
// FIXME: This is not the right way to do this, but it is sorta better than
// nothing! In particular, externally visible globals and unresolvable call
// nodes at the end of the BU phase should make things that they point to
// incomplete in the globals graph.
//
GlobalsGraph->removeTriviallyDeadNodes();
GlobalsGraph->maskIncompleteMarkers();
// Mark external globals incomplete.
GlobalsGraph->markIncompleteNodes(DSGraph::IgnoreGlobals);
// Grow the equivalence classes for the globals to include anything that we
// now know to be aliased.
std::set<GlobalValue*> ECGlobals;
BuildGlobalECs(*GlobalsGraph, ECGlobals);
if (!ECGlobals.empty()) {
NamedRegionTimer X("Bottom-UP EC Cleanup");
DOUT << "Eliminating " << ECGlobals.size() << " EC Globals!\n";
for (hash_map<Function*, DSGraph*>::iterator I = DSInfo.begin(),
E = DSInfo.end(); I != E; ++I)
EliminateUsesOfECGlobals(*I->second, ECGlobals);
}
// Merge the globals variables (not the calls) from the globals graph back
// into the main function's graph so that the main function contains all of
// the information about global pools and GV usage in the program.
if (MainFunc && !MainFunc->isExternal()) {
DSGraph &MainGraph = getOrCreateGraph(MainFunc);
const DSGraph &GG = *MainGraph.getGlobalsGraph();
ReachabilityCloner RC(MainGraph, GG,
DSGraph::DontCloneCallNodes |
DSGraph::DontCloneAuxCallNodes);
// Clone the global nodes into this graph.
for (DSScalarMap::global_iterator I = GG.getScalarMap().global_begin(),
E = GG.getScalarMap().global_end(); I != E; ++I)
if (isa<GlobalVariable>(*I))
RC.getClonedNH(GG.getNodeForValue(*I));
MainGraph.maskIncompleteMarkers();
MainGraph.markIncompleteNodes(DSGraph::MarkFormalArgs |
DSGraph::IgnoreGlobals);
//Debug messages if along the way we didn't resolve a call site
//also update the call graph and callsites we did find.
for(DSGraph::afc_iterator ii = MainGraph.afc_begin(),
ee = MainGraph.afc_end(); ii != ee; ++ii) {
std::vector<Function*> Funcs;
GetAllCalleesN(*ii, Funcs);
DOUT << "Lost site\n";
DEBUG(ii->getCallSite().getInstruction()->dump());
for (std::vector<Function*>::iterator iif = Funcs.begin(), eef = Funcs.end();
iif != eef; ++iif) {
AddGlobalToNode(this, *ii, *iif);
DOUT << "Adding\n";
ActualCallees.insert(std::make_pair(ii->getCallSite().getInstruction(), *iif));
}
}
}
NumCallEdges += ActualCallees.size();
return false;
}
DSGraph &BUDataStructures::getOrCreateGraph(Function *F) {
// Has the graph already been created?
DSGraph *&Graph = DSInfo[F];
if (Graph) return *Graph;
DSGraph &LocGraph = getAnalysis<LocalDataStructures>().getDSGraph(*F);
// Steal the local graph.
Graph = new DSGraph(GlobalECs, LocGraph.getTargetData());
Graph->spliceFrom(LocGraph);
Graph->setGlobalsGraph(GlobalsGraph);
Graph->setPrintAuxCalls();
// Start with a copy of the original call sites...
Graph->getAuxFunctionCalls() = Graph->getFunctionCalls();
return *Graph;
}
static bool isVAHackFn(const Function *F) {
return F->getName() == "printf" || F->getName() == "sscanf" ||
F->getName() == "fprintf" || F->getName() == "open" ||
F->getName() == "sprintf" || F->getName() == "fputs" ||
F->getName() == "fscanf" || F->getName() == "malloc" ||
F->getName() == "free";
}
static bool isResolvableFunc(const Function* callee) {
return !callee->isExternal() || isVAHackFn(callee);
}
static void GetAllCallees(const DSCallSite &CS,
std::vector<Function*> &Callees) {
if (CS.isDirectCall()) {
if (isResolvableFunc(CS.getCalleeFunc()))
Callees.push_back(CS.getCalleeFunc());
} else if (!CS.getCalleeNode()->isIncomplete()) {
// Get all callees.
unsigned OldSize = Callees.size();
CS.getCalleeNode()->addFullFunctionList(Callees);
// If any of the callees are unresolvable, remove the whole batch!
for (unsigned i = OldSize, e = Callees.size(); i != e; ++i)
if (!isResolvableFunc(Callees[i])) {
Callees.erase(Callees.begin()+OldSize, Callees.end());
return;
}
}
}
//returns true if all callees were resolved
static bool GetAllCalleesN(const DSCallSite &CS,
std::vector<Function*> &Callees) {
if (CS.isDirectCall()) {
if (isResolvableFunc(CS.getCalleeFunc())) {
Callees.push_back(CS.getCalleeFunc());
return true;
} else
return false;
} else {
// Get all callees.
bool retval = CS.getCalleeNode()->isComplete();
unsigned OldSize = Callees.size();
CS.getCalleeNode()->addFullFunctionList(Callees);
// If any of the callees are unresolvable, remove that one
for (unsigned i = OldSize; i != Callees.size(); ++i)
if (!isResolvableFunc(Callees[i])) {
Callees.erase(Callees.begin()+i);
--i;
retval = false;
}
return retval;
//return false;
}
}
/// GetAllAuxCallees - Return a list containing all of the resolvable callees in
/// the aux list for the specified graph in the Callees vector.
static void GetAllAuxCallees(DSGraph &G, std::vector<Function*> &Callees) {
Callees.clear();
for (DSGraph::afc_iterator I = G.afc_begin(), E = G.afc_end(); I != E; ++I)
GetAllCallees(*I, Callees);
}
unsigned BUDataStructures::calculateGraphs(Function *F,
std::vector<Function*> &Stack,
unsigned &NextID,
hash_map<Function*, unsigned> &ValMap) {
assert(!ValMap.count(F) && "Shouldn't revisit functions!");
unsigned Min = NextID++, MyID = Min;
ValMap[F] = Min;
Stack.push_back(F);
// FIXME! This test should be generalized to be any function that we have
// already processed, in the case when there isn't a main or there are
// unreachable functions!
if (F->isExternal()) { // sprintf, fprintf, sscanf, etc...
// No callees!
Stack.pop_back();
ValMap[F] = ~0;
return Min;
}
DSGraph &Graph = getOrCreateGraph(F);
if (UpdateGlobals)
Graph.updateFromGlobalGraph();
// Find all callee functions.
std::vector<Function*> CalleeFunctions;
GetAllAuxCallees(Graph, CalleeFunctions);
// The edges out of the current node are the call site targets...
for (unsigned i = 0, e = CalleeFunctions.size(); i != e; ++i) {
Function *Callee = CalleeFunctions[i];
unsigned M;
// Have we visited the destination function yet?
hash_map<Function*, unsigned>::iterator It = ValMap.find(Callee);
if (It == ValMap.end()) // No, visit it now.
M = calculateGraphs(Callee, Stack, NextID, ValMap);
else // Yes, get it's number.
M = It->second;
if (M < Min) Min = M;
}
assert(ValMap[F] == MyID && "SCC construction assumption wrong!");
if (Min != MyID)
return Min; // This is part of a larger SCC!
// If this is a new SCC, process it now.
if (Stack.back() == F) { // Special case the single "SCC" case here.
DOUT << "Visiting single node SCC #: " << MyID << " fn: "
<< F->getName() << "\n";
Stack.pop_back();
DSGraph &G = getDSGraph(*F);
DOUT << " [BU] Calculating graph for: " << F->getName()<< "\n";
calculateGraph(G);
DOUT << " [BU] Done inlining: " << F->getName() << " ["
<< G.getGraphSize() << "+" << G.getAuxFunctionCalls().size()
<< "]\n";
if (MaxSCC < 1) MaxSCC = 1;
// Should we revisit the graph? Only do it if there are now new resolvable
// callees.
GetAllAuxCallees(Graph, CalleeFunctions);
if (!CalleeFunctions.empty()) {
DOUT << "Recalculating " << F->getName() << " due to new knowledge\n";
ValMap.erase(F);
return calculateGraphs(F, Stack, NextID, ValMap);
} else {
ValMap[F] = ~0U;
}
return MyID;
} else {
// SCCFunctions - Keep track of the functions in the current SCC
//
std::vector<DSGraph*> SCCGraphs;
unsigned SCCSize = 1;
Function *NF = Stack.back();
ValMap[NF] = ~0U;
DSGraph &SCCGraph = getDSGraph(*NF);
// First thing first, collapse all of the DSGraphs into a single graph for
// the entire SCC. Splice all of the graphs into one and discard all of the
// old graphs.
//
while (NF != F) {
Stack.pop_back();
NF = Stack.back();
ValMap[NF] = ~0U;
DSGraph &NFG = getDSGraph(*NF);
// Update the Function -> DSG map.
for (DSGraph::retnodes_iterator I = NFG.retnodes_begin(),
E = NFG.retnodes_end(); I != E; ++I)
DSInfo[I->first] = &SCCGraph;
SCCGraph.spliceFrom(NFG);
delete &NFG;
++SCCSize;
}
Stack.pop_back();
DOUT << "Calculating graph for SCC #: " << MyID << " of size: "
<< SCCSize << "\n";
// Compute the Max SCC Size.
if (MaxSCC < SCCSize)
MaxSCC = SCCSize;
// Clean up the graph before we start inlining a bunch again...
SCCGraph.removeDeadNodes(DSGraph::KeepUnreachableGlobals);
// Now that we have one big happy family, resolve all of the call sites in
// the graph...
calculateGraph(SCCGraph);
DOUT << " [BU] Done inlining SCC [" << SCCGraph.getGraphSize()
<< "+" << SCCGraph.getAuxFunctionCalls().size() << "]\n"
<< "DONE with SCC #: " << MyID << "\n";
// We never have to revisit "SCC" processed functions...
return MyID;
}
return MyID; // == Min
}
// releaseMemory - If the pass pipeline is done with this pass, we can release
// our memory... here...
//
void BUDataStructures::releaseMyMemory() {
for (hash_map<Function*, DSGraph*>::iterator I = DSInfo.begin(),
E = DSInfo.end(); I != E; ++I) {
I->second->getReturnNodes().erase(I->first);
if (I->second->getReturnNodes().empty())
delete I->second;
}
// Empty map so next time memory is released, data structures are not
// re-deleted.
DSInfo.clear();
delete GlobalsGraph;
GlobalsGraph = 0;
}
DSGraph &BUDataStructures::CreateGraphForExternalFunction(const Function &Fn) {
Function *F = const_cast<Function*>(&Fn);
DSGraph *DSG = new DSGraph(GlobalECs, GlobalsGraph->getTargetData());
DSInfo[F] = DSG;
DSG->setGlobalsGraph(GlobalsGraph);
DSG->setPrintAuxCalls();
// Add function to the graph.
DSG->getReturnNodes().insert(std::make_pair(F, DSNodeHandle()));
if (F->getName() == "free") { // Taking the address of free.
// Free should take a single pointer argument, mark it as heap memory.
DSNode *N = new DSNode(0, DSG);
N->setHeapNodeMarker();
DSG->getNodeForValue(F->arg_begin()).mergeWith(N);
} else {
cerr << "Unrecognized external function: " << F->getName() << "\n";
abort();
}
return *DSG;
}
void BUDataStructures::calculateGraph(DSGraph &Graph) {
// If this graph contains the main function, clone the globals graph into this
// graph before we inline callees and other fun stuff.
bool ContainsMain = false;
DSGraph::ReturnNodesTy &ReturnNodes = Graph.getReturnNodes();
for (DSGraph::ReturnNodesTy::iterator I = ReturnNodes.begin(),
E = ReturnNodes.end(); I != E; ++I)
if (I->first->hasExternalLinkage() && I->first->getName() == "main") {
ContainsMain = true;
break;
}
// If this graph contains main, copy the contents of the globals graph over.
// Note that this is *required* for correctness. If a callee contains a use
// of a global, we have to make sure to link up nodes due to global-argument
// bindings.
if (ContainsMain) {
const DSGraph &GG = *Graph.getGlobalsGraph();
ReachabilityCloner RC(Graph, GG,
DSGraph::DontCloneCallNodes |
DSGraph::DontCloneAuxCallNodes);
// Clone the global nodes into this graph.
for (DSScalarMap::global_iterator I = GG.getScalarMap().global_begin(),
E = GG.getScalarMap().global_end(); I != E; ++I)
if (isa<GlobalVariable>(*I))
RC.getClonedNH(GG.getNodeForValue(*I));
}
// Move our call site list into TempFCs so that inline call sites go into the
// new call site list and doesn't invalidate our iterators!
std::list<DSCallSite> TempFCs;
std::list<DSCallSite> &AuxCallsList = Graph.getAuxFunctionCalls();
TempFCs.swap(AuxCallsList);
bool Printed = false;
std::vector<Function*> CalledFuncs;
while (!TempFCs.empty()) {
DSCallSite &CS = *TempFCs.begin();
CalledFuncs.clear();
// Fast path for noop calls. Note that we don't care about merging globals
// in the callee with nodes in the caller here.
if (CS.getRetVal().isNull() && CS.getNumPtrArgs() == 0) {
TempFCs.erase(TempFCs.begin());
continue;
} else if (CS.isDirectCall() && isVAHackFn(CS.getCalleeFunc())) {
TempFCs.erase(TempFCs.begin());
continue;
}
GetAllCallees(CS, CalledFuncs);
if (CalledFuncs.empty()) {
// Remember that we could not resolve this yet!
AuxCallsList.splice(AuxCallsList.end(), TempFCs, TempFCs.begin());
continue;
} else {
DSGraph *GI;
Instruction *TheCall = CS.getCallSite().getInstruction();
if (CalledFuncs.size() == 1) {
Function *Callee = CalledFuncs[0];
ActualCallees.insert(std::make_pair(TheCall, Callee));
// Get the data structure graph for the called function.
GI = &getDSGraph(*Callee); // Graph to inline
DOUT << " Inlining graph for " << Callee->getName()
<< "[" << GI->getGraphSize() << "+"
<< GI->getAuxFunctionCalls().size() << "] into '"
<< Graph.getFunctionNames() << "' [" << Graph.getGraphSize() <<"+"
<< Graph.getAuxFunctionCalls().size() << "]\n";
Graph.mergeInGraph(CS, *Callee, *GI,
DSGraph::StripAllocaBit|DSGraph::DontCloneCallNodes);
++NumBUInlines;
} else {
if (!Printed)
cerr << "In Fns: " << Graph.getFunctionNames() << "\n";
cerr << " calls " << CalledFuncs.size()
<< " fns from site: " << CS.getCallSite().getInstruction()
<< " " << *CS.getCallSite().getInstruction();
cerr << " Fns =";
unsigned NumPrinted = 0;
for (std::vector<Function*>::iterator I = CalledFuncs.begin(),
E = CalledFuncs.end(); I != E; ++I) {
if (NumPrinted++ < 8) cerr << " " << (*I)->getName();
// Add the call edges to the call graph.
ActualCallees.insert(std::make_pair(TheCall, *I));
}
cerr << "\n";
// See if we already computed a graph for this set of callees.
std::sort(CalledFuncs.begin(), CalledFuncs.end());
std::pair<DSGraph*, std::vector<DSNodeHandle> > &IndCallGraph =
(*IndCallGraphMap)[CalledFuncs];
if (IndCallGraph.first == 0) {
std::vector<Function*>::iterator I = CalledFuncs.begin(),
E = CalledFuncs.end();
// Start with a copy of the first graph.
GI = IndCallGraph.first = new DSGraph(getDSGraph(**I), GlobalECs);
GI->setGlobalsGraph(Graph.getGlobalsGraph());
std::vector<DSNodeHandle> &Args = IndCallGraph.second;
// Get the argument nodes for the first callee. The return value is
// the 0th index in the vector.
GI->getFunctionArgumentsForCall(*I, Args);
// Merge all of the other callees into this graph.
for (++I; I != E; ++I) {
// If the graph already contains the nodes for the function, don't
// bother merging it in again.
if (!GI->containsFunction(*I)) {
GI->cloneInto(getDSGraph(**I));
++NumBUInlines;
}
std::vector<DSNodeHandle> NextArgs;
GI->getFunctionArgumentsForCall(*I, NextArgs);
unsigned i = 0, e = Args.size();
for (; i != e; ++i) {
if (i == NextArgs.size()) break;
Args[i].mergeWith(NextArgs[i]);
}
for (e = NextArgs.size(); i != e; ++i)
Args.push_back(NextArgs[i]);
}
// Clean up the final graph!
GI->removeDeadNodes(DSGraph::KeepUnreachableGlobals);
} else {
cerr << "***\n*** RECYCLED GRAPH ***\n***\n";
}
GI = IndCallGraph.first;
// Merge the unified graph into this graph now.
DOUT << " Inlining multi callee graph "
<< "[" << GI->getGraphSize() << "+"
<< GI->getAuxFunctionCalls().size() << "] into '"
<< Graph.getFunctionNames() << "' [" << Graph.getGraphSize() <<"+"
<< Graph.getAuxFunctionCalls().size() << "]\n";
Graph.mergeInGraph(CS, IndCallGraph.second, *GI,
DSGraph::StripAllocaBit |
DSGraph::DontCloneCallNodes);
++NumBUInlines;
}
}
TempFCs.erase(TempFCs.begin());
}
// Recompute the Incomplete markers
Graph.maskIncompleteMarkers();
Graph.markIncompleteNodes(DSGraph::MarkFormalArgs);
// Delete dead nodes. Treat globals that are unreachable but that can
// reach live nodes as live.
Graph.removeDeadNodes(DSGraph::KeepUnreachableGlobals);
// When this graph is finalized, clone the globals in the graph into the
// globals graph to make sure it has everything, from all graphs.
DSScalarMap &MainSM = Graph.getScalarMap();
ReachabilityCloner RC(*GlobalsGraph, Graph, DSGraph::StripAllocaBit);
// Clone everything reachable from globals in the function graph into the
// globals graph.
for (DSScalarMap::global_iterator I = MainSM.global_begin(),
E = MainSM.global_end(); I != E; ++I)
RC.getClonedNH(MainSM[*I]);
//Graph.writeGraphToFile(cerr, "bu_" + F.getName());
}
static const Function *getFnForValue(const Value *V) {
if (const Instruction *I = dyn_cast<Instruction>(V))
return I->getParent()->getParent();
else if (const Argument *A = dyn_cast<Argument>(V))
return A->getParent();
else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return BB->getParent();
return 0;
}
/// deleteValue/copyValue - Interfaces to update the DSGraphs in the program.
/// These correspond to the interfaces defined in the AliasAnalysis class.
void BUDataStructures::deleteValue(Value *V) {
if (const Function *F = getFnForValue(V)) { // Function local value?
// If this is a function local value, just delete it from the scalar map!
getDSGraph(*F).getScalarMap().eraseIfExists(V);
return;
}
if (Function *F = dyn_cast<Function>(V)) {
assert(getDSGraph(*F).getReturnNodes().size() == 1 &&
"cannot handle scc's");
delete DSInfo[F];
DSInfo.erase(F);
return;
}
assert(!isa<GlobalVariable>(V) && "Do not know how to delete GV's yet!");
}
void BUDataStructures::copyValue(Value *From, Value *To) {
if (From == To) return;
if (const Function *F = getFnForValue(From)) { // Function local value?
// If this is a function local value, just delete it from the scalar map!
getDSGraph(*F).getScalarMap().copyScalarIfExists(From, To);
return;
}
if (Function *FromF = dyn_cast<Function>(From)) {
Function *ToF = cast<Function>(To);
assert(!DSInfo.count(ToF) && "New Function already exists!");
DSGraph *NG = new DSGraph(getDSGraph(*FromF), GlobalECs);
DSInfo[ToF] = NG;
assert(NG->getReturnNodes().size() == 1 && "Cannot copy SCC's yet!");
// Change the Function* is the returnnodes map to the ToF.
DSNodeHandle Ret = NG->retnodes_begin()->second;
NG->getReturnNodes().clear();
NG->getReturnNodes()[ToF] = Ret;
return;
}
if (const Function *F = getFnForValue(To)) {
DSGraph &G = getDSGraph(*F);
G.getScalarMap().copyScalarIfExists(From, To);
return;
}
cerr << *From;
cerr << *To;
assert(0 && "Do not know how to copy this yet!");
abort();
}

View File

@ -1,128 +0,0 @@
//=- lib/Analysis/IPA/CallTargets.cpp - Resolve Call Targets --*- C++ -*-=====//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass uses DSA to map targets of all calls, and reports on if it
// thinks it knows all targets of a given call.
//
// Loop over all callsites, and lookup the DSNode for that site. Pull the
// Functions from the node as callees.
// This is essentially a utility pass to simplify later passes that only depend
// on call sites and callees to operate (such as a devirtualizer).
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure/CallTargets.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/DataStructure/DataStructure.h"
#include "llvm/Analysis/DataStructure/DSGraph.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Streams.h"
#include "llvm/Constants.h"
#include <ostream>
using namespace llvm;
namespace {
Statistic DirCall("calltarget", "Number of direct calls");
Statistic IndCall("calltarget", "Number of indirect calls");
Statistic CompleteInd("calltarget", "Number of complete indirect calls");
Statistic CompleteEmpty("calltarget", "Number of complete empty calls");
RegisterPass<CallTargetFinder> X("calltarget","Find Call Targets (uses DSA)");
}
void CallTargetFinder::findIndTargets(Module &M)
{
TDDataStructures* T = &getAnalysis<TDDataStructures>();
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal())
for (Function::iterator F = I->begin(), FE = I->end(); F != FE; ++F)
for (BasicBlock::iterator B = F->begin(), BE = F->end(); B != BE; ++B)
if (isa<CallInst>(B) || isa<InvokeInst>(B)) {
CallSite cs = CallSite::get(B);
AllSites.push_back(cs);
if (!cs.getCalledFunction()) {
IndCall++;
DSNode* N = T->getDSGraph(*cs.getCaller())
.getNodeForValue(cs.getCalledValue()).getNode();
N->addFullFunctionList(IndMap[cs]);
if (N->isComplete() && IndMap[cs].size()) {
CompleteSites.insert(cs);
++CompleteInd;
}
if (N->isComplete() && !IndMap[cs].size()) {
++CompleteEmpty;
cerr << "Call site empty: '"
<< cs.getInstruction()->getName()
<< "' In '"
<< cs.getInstruction()->getParent()->getParent()->getName()
<< "'\n";
}
} else {
++DirCall;
IndMap[cs].push_back(cs.getCalledFunction());
CompleteSites.insert(cs);
}
}
}
void CallTargetFinder::print(std::ostream &O, const Module *M) const
{
return;
O << "[* = incomplete] CS: func list\n";
for (std::map<CallSite, std::vector<Function*> >::const_iterator ii =
IndMap.begin(),
ee = IndMap.end(); ii != ee; ++ii) {
if (!ii->first.getCalledFunction()) { //only print indirect
if (!isComplete(ii->first)) {
O << "* ";
CallSite cs = ii->first;
cs.getInstruction()->dump();
O << cs.getInstruction()->getParent()->getParent()->getName() << " "
<< cs.getInstruction()->getName() << " ";
}
O << ii->first.getInstruction() << ":";
for (std::vector<Function*>::const_iterator i = ii->second.begin(),
e = ii->second.end(); i != e; ++i) {
O << " " << (*i)->getName();
}
O << "\n";
}
}
}
bool CallTargetFinder::runOnModule(Module &M) {
findIndTargets(M);
return false;
}
void CallTargetFinder::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<TDDataStructures>();
}
std::vector<Function*>::iterator CallTargetFinder::begin(CallSite cs) {
return IndMap[cs].begin();
}
std::vector<Function*>::iterator CallTargetFinder::end(CallSite cs) {
return IndMap[cs].end();
}
bool CallTargetFinder::isComplete(CallSite cs) const {
return CompleteSites.find(cs) != CompleteSites.end();
}
std::list<CallSite>::iterator CallTargetFinder::cs_begin() {
return AllSites.begin();
}
std::list<CallSite>::iterator CallTargetFinder::cs_end() {
return AllSites.end();
}

View File

@ -1,239 +0,0 @@
//===- CompleteBottomUp.cpp - Complete Bottom-Up Data Structure Graphs ----===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the exact same as the bottom-up graphs, but we use take a completed
// call graph and inline all indirect callees into their callers graphs, making
// the result more useful for things like pool allocation.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "cbudatastructure"
#include "llvm/Analysis/DataStructure/DataStructure.h"
#include "llvm/Module.h"
#include "llvm/Analysis/DataStructure/DSGraph.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
namespace {
RegisterPass<CompleteBUDataStructures>
X("cbudatastructure", "'Complete' Bottom-up Data Structure Analysis");
Statistic NumCBUInlines("cbudatastructures", "Number of graphs inlined");
}
// run - Calculate the bottom up data structure graphs for each function in the
// program.
//
bool CompleteBUDataStructures::runOnModule(Module &M) {
BUDataStructures &BU = getAnalysis<BUDataStructures>();
GlobalECs = BU.getGlobalECs();
GlobalsGraph = new DSGraph(BU.getGlobalsGraph(), GlobalECs);
GlobalsGraph->setPrintAuxCalls();
// Our call graph is the same as the BU data structures call graph
ActualCallees = BU.getActualCallees();
std::vector<DSGraph*> Stack;
hash_map<DSGraph*, unsigned> ValMap;
unsigned NextID = 1;
Function *MainFunc = M.getMainFunction();
if (MainFunc) {
if (!MainFunc->isExternal())
calculateSCCGraphs(getOrCreateGraph(*MainFunc), Stack, NextID, ValMap);
} else {
DOUT << "CBU-DSA: No 'main' function found!\n";
}
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal() && !DSInfo.count(I)) {
if (MainFunc) {
DOUT << "*** CBU: Function unreachable from main: "
<< I->getName() << "\n";
}
calculateSCCGraphs(getOrCreateGraph(*I), Stack, NextID, ValMap);
}
GlobalsGraph->removeTriviallyDeadNodes();
// Merge the globals variables (not the calls) from the globals graph back
// into the main function's graph so that the main function contains all of
// the information about global pools and GV usage in the program.
if (MainFunc && !MainFunc->isExternal()) {
DSGraph &MainGraph = getOrCreateGraph(*MainFunc);
const DSGraph &GG = *MainGraph.getGlobalsGraph();
ReachabilityCloner RC(MainGraph, GG,
DSGraph::DontCloneCallNodes |
DSGraph::DontCloneAuxCallNodes);
// Clone the global nodes into this graph.
for (DSScalarMap::global_iterator I = GG.getScalarMap().global_begin(),
E = GG.getScalarMap().global_end(); I != E; ++I)
if (isa<GlobalVariable>(*I))
RC.getClonedNH(GG.getNodeForValue(*I));
MainGraph.maskIncompleteMarkers();
MainGraph.markIncompleteNodes(DSGraph::MarkFormalArgs |
DSGraph::IgnoreGlobals);
}
return false;
}
DSGraph &CompleteBUDataStructures::getOrCreateGraph(Function &F) {
// Has the graph already been created?
DSGraph *&Graph = DSInfo[&F];
if (Graph) return *Graph;
// Copy the BU graph...
Graph = new DSGraph(getAnalysis<BUDataStructures>().getDSGraph(F), GlobalECs);
Graph->setGlobalsGraph(GlobalsGraph);
Graph->setPrintAuxCalls();
// Make sure to update the DSInfo map for all of the functions currently in
// this graph!
for (DSGraph::retnodes_iterator I = Graph->retnodes_begin();
I != Graph->retnodes_end(); ++I)
DSInfo[I->first] = Graph;
return *Graph;
}
unsigned CompleteBUDataStructures::calculateSCCGraphs(DSGraph &FG,
std::vector<DSGraph*> &Stack,
unsigned &NextID,
hash_map<DSGraph*, unsigned> &ValMap) {
assert(!ValMap.count(&FG) && "Shouldn't revisit functions!");
unsigned Min = NextID++, MyID = Min;
ValMap[&FG] = Min;
Stack.push_back(&FG);
// The edges out of the current node are the call site targets...
for (DSGraph::fc_iterator CI = FG.fc_begin(), CE = FG.fc_end();
CI != CE; ++CI) {
Instruction *Call = CI->getCallSite().getInstruction();
// Loop over all of the actually called functions...
callee_iterator I = callee_begin(Call), E = callee_end(Call);
for (; I != E && I->first == Call; ++I) {
assert(I->first == Call && "Bad callee construction!");
if (!I->second->isExternal()) {
DSGraph &Callee = getOrCreateGraph(*I->second);
unsigned M;
// Have we visited the destination function yet?
hash_map<DSGraph*, unsigned>::iterator It = ValMap.find(&Callee);
if (It == ValMap.end()) // No, visit it now.
M = calculateSCCGraphs(Callee, Stack, NextID, ValMap);
else // Yes, get it's number.
M = It->second;
if (M < Min) Min = M;
}
}
}
assert(ValMap[&FG] == MyID && "SCC construction assumption wrong!");
if (Min != MyID)
return Min; // This is part of a larger SCC!
// If this is a new SCC, process it now.
bool IsMultiNodeSCC = false;
while (Stack.back() != &FG) {
DSGraph *NG = Stack.back();
ValMap[NG] = ~0U;
FG.cloneInto(*NG);
// Update the DSInfo map and delete the old graph...
for (DSGraph::retnodes_iterator I = NG->retnodes_begin();
I != NG->retnodes_end(); ++I)
DSInfo[I->first] = &FG;
// Remove NG from the ValMap since the pointer may get recycled.
ValMap.erase(NG);
delete NG;
Stack.pop_back();
IsMultiNodeSCC = true;
}
// Clean up the graph before we start inlining a bunch again...
if (IsMultiNodeSCC)
FG.removeTriviallyDeadNodes();
Stack.pop_back();
processGraph(FG);
ValMap[&FG] = ~0U;
return MyID;
}
/// processGraph - Process the BU graphs for the program in bottom-up order on
/// the SCC of the __ACTUAL__ call graph. This builds "complete" BU graphs.
void CompleteBUDataStructures::processGraph(DSGraph &G) {
hash_set<Instruction*> calls;
// The edges out of the current node are the call site targets...
unsigned i = 0;
for (DSGraph::fc_iterator CI = G.fc_begin(), CE = G.fc_end(); CI != CE;
++CI, ++i) {
const DSCallSite &CS = *CI;
Instruction *TheCall = CS.getCallSite().getInstruction();
assert(calls.insert(TheCall).second &&
"Call instruction occurs multiple times in graph??");
// Fast path for noop calls. Note that we don't care about merging globals
// in the callee with nodes in the caller here.
if (CS.getRetVal().isNull() && CS.getNumPtrArgs() == 0)
continue;
// Loop over all of the potentially called functions...
// Inline direct calls as well as indirect calls because the direct
// callee may have indirect callees and so may have changed.
//
callee_iterator I = callee_begin(TheCall),E = callee_end(TheCall);
unsigned TNum = 0, Num = 0;
DEBUG(Num = std::distance(I, E));
for (; I != E; ++I, ++TNum) {
assert(I->first == TheCall && "Bad callee construction!");
Function *CalleeFunc = I->second;
if (!CalleeFunc->isExternal()) {
// Merge the callee's graph into this graph. This works for normal
// calls or for self recursion within an SCC.
DSGraph &GI = getOrCreateGraph(*CalleeFunc);
++NumCBUInlines;
G.mergeInGraph(CS, *CalleeFunc, GI,
DSGraph::StripAllocaBit | DSGraph::DontCloneCallNodes |
DSGraph::DontCloneAuxCallNodes);
DOUT << " Inlining graph [" << i << "/"
<< G.getFunctionCalls().size()-1
<< ":" << TNum << "/" << Num-1 << "] for "
<< CalleeFunc->getName() << "["
<< GI.getGraphSize() << "+" << GI.getAuxFunctionCalls().size()
<< "] into '" /*<< G.getFunctionNames()*/ << "' ["
<< G.getGraphSize() << "+" << G.getAuxFunctionCalls().size()
<< "]\n";
}
}
}
// Recompute the Incomplete markers
G.maskIncompleteMarkers();
G.markIncompleteNodes(DSGraph::MarkFormalArgs);
// Delete dead nodes. Treat globals that are unreachable but that can
// reach live nodes as live.
G.removeDeadNodes(DSGraph::KeepUnreachableGlobals);
}

File diff suppressed because it is too large Load Diff

View File

@ -1,300 +0,0 @@
//===- DataStructureAA.cpp - Data Structure Based Alias Analysis ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass uses the top-down data structure graphs to implement a simple
// context sensitive alias analysis.
//
//===----------------------------------------------------------------------===//
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/DataStructure/DataStructure.h"
#include "llvm/Analysis/DataStructure/DSGraph.h"
using namespace llvm;
namespace {
class DSAA : public ModulePass, public AliasAnalysis {
TDDataStructures *TD;
BUDataStructures *BU;
// These members are used to cache mod/ref information to make us return
// results faster, particularly for aa-eval. On the first request of
// mod/ref information for a particular call site, we compute and store the
// calculated nodemap for the call site. Any time DSA info is updated we
// free this information, and when we move onto a new call site, this
// information is also freed.
CallSite MapCS;
std::multimap<DSNode*, const DSNode*> CallerCalleeMap;
public:
DSAA() : TD(0) {}
~DSAA() {
InvalidateCache();
}
void InvalidateCache() {
MapCS = CallSite();
CallerCalleeMap.clear();
}
//------------------------------------------------
// Implement the Pass API
//
// run - Build up the result graph, representing the pointer graph for the
// program.
//
bool runOnModule(Module &M) {
InitializeAliasAnalysis(this);
TD = &getAnalysis<TDDataStructures>();
BU = &getAnalysis<BUDataStructures>();
return false;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AliasAnalysis::getAnalysisUsage(AU);
AU.setPreservesAll(); // Does not transform code
AU.addRequiredTransitive<TDDataStructures>(); // Uses TD Datastructures
AU.addRequiredTransitive<BUDataStructures>(); // Uses BU Datastructures
}
//------------------------------------------------
// Implement the AliasAnalysis API
//
AliasResult alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size);
ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
return AliasAnalysis::getModRefInfo(CS1,CS2);
}
virtual void deleteValue(Value *V) {
InvalidateCache();
BU->deleteValue(V);
TD->deleteValue(V);
}
virtual void copyValue(Value *From, Value *To) {
if (From == To) return;
InvalidateCache();
BU->copyValue(From, To);
TD->copyValue(From, To);
}
private:
DSGraph *getGraphForValue(const Value *V);
};
// Register the pass...
RegisterPass<DSAA> X("ds-aa", "Data Structure Graph Based Alias Analysis");
// Register as an implementation of AliasAnalysis
RegisterAnalysisGroup<AliasAnalysis> Y(X);
}
ModulePass *llvm::createDSAAPass() { return new DSAA(); }
// getGraphForValue - Return the DSGraph to use for queries about the specified
// value...
//
DSGraph *DSAA::getGraphForValue(const Value *V) {
if (const Instruction *I = dyn_cast<Instruction>(V))
return &TD->getDSGraph(*I->getParent()->getParent());
else if (const Argument *A = dyn_cast<Argument>(V))
return &TD->getDSGraph(*A->getParent());
else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return &TD->getDSGraph(*BB->getParent());
return 0;
}
AliasAnalysis::AliasResult DSAA::alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size) {
if (V1 == V2) return MustAlias;
DSGraph *G1 = getGraphForValue(V1);
DSGraph *G2 = getGraphForValue(V2);
assert((!G1 || !G2 || G1 == G2) && "Alias query for 2 different functions?");
// Get the graph to use...
DSGraph &G = *(G1 ? G1 : (G2 ? G2 : &TD->getGlobalsGraph()));
const DSGraph::ScalarMapTy &GSM = G.getScalarMap();
DSGraph::ScalarMapTy::const_iterator I = GSM.find((Value*)V1);
if (I == GSM.end()) return NoAlias;
DSGraph::ScalarMapTy::const_iterator J = GSM.find((Value*)V2);
if (J == GSM.end()) return NoAlias;
DSNode *N1 = I->second.getNode(), *N2 = J->second.getNode();
unsigned O1 = I->second.getOffset(), O2 = J->second.getOffset();
if (N1 == 0 || N2 == 0)
// Can't tell whether anything aliases null.
return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
// We can only make a judgment if one of the nodes is complete.
if (N1->isComplete() || N2->isComplete()) {
if (N1 != N2)
return NoAlias; // Completely different nodes.
// See if they point to different offsets... if so, we may be able to
// determine that they do not alias...
if (O1 != O2) {
if (O2 < O1) { // Ensure that O1 <= O2
std::swap(V1, V2);
std::swap(O1, O2);
std::swap(V1Size, V2Size);
}
if (O1+V1Size <= O2)
return NoAlias;
}
}
// FIXME: we could improve on this by checking the globals graph for aliased
// global queries...
return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
}
/// getModRefInfo - does a callsite modify or reference a value?
///
AliasAnalysis::ModRefResult
DSAA::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
DSNode *N = 0;
// First step, check our cache.
if (CS.getInstruction() == MapCS.getInstruction()) {
{
const Function *Caller = CS.getInstruction()->getParent()->getParent();
DSGraph &CallerTDGraph = TD->getDSGraph(*Caller);
// Figure out which node in the TD graph this pointer corresponds to.
DSScalarMap &CallerSM = CallerTDGraph.getScalarMap();
DSScalarMap::iterator NI = CallerSM.find(P);
if (NI == CallerSM.end()) {
InvalidateCache();
return DSAA::getModRefInfo(CS, P, Size);
}
N = NI->second.getNode();
}
HaveMappingInfo:
assert(N && "Null pointer in scalar map??");
typedef std::multimap<DSNode*, const DSNode*>::iterator NodeMapIt;
std::pair<NodeMapIt, NodeMapIt> Range = CallerCalleeMap.equal_range(N);
// Loop over all of the nodes in the callee that correspond to "N", keeping
// track of aggregate mod/ref info.
bool NeverReads = true, NeverWrites = true;
for (; Range.first != Range.second; ++Range.first) {
if (Range.first->second->isModified())
NeverWrites = false;
if (Range.first->second->isRead())
NeverReads = false;
if (NeverReads == false && NeverWrites == false)
return AliasAnalysis::getModRefInfo(CS, P, Size);
}
ModRefResult Result = ModRef;
if (NeverWrites) // We proved it was not modified.
Result = ModRefResult(Result & ~Mod);
if (NeverReads) // We proved it was not read.
Result = ModRefResult(Result & ~Ref);
return ModRefResult(Result & AliasAnalysis::getModRefInfo(CS, P, Size));
}
// Any cached info we have is for the wrong function.
InvalidateCache();
Function *F = CS.getCalledFunction();
if (!F) return AliasAnalysis::getModRefInfo(CS, P, Size);
if (F->isExternal()) {
// If we are calling an external function, and if this global doesn't escape
// the portion of the program we have analyzed, we can draw conclusions
// based on whether the global escapes the program.
Function *Caller = CS.getInstruction()->getParent()->getParent();
DSGraph *G = &TD->getDSGraph(*Caller);
DSScalarMap::iterator NI = G->getScalarMap().find(P);
if (NI == G->getScalarMap().end()) {
// If it wasn't in the local function graph, check the global graph. This
// can occur for globals who are locally reference but hoisted out to the
// globals graph despite that.
G = G->getGlobalsGraph();
NI = G->getScalarMap().find(P);
if (NI == G->getScalarMap().end())
return AliasAnalysis::getModRefInfo(CS, P, Size);
}
// If we found a node and it's complete, it cannot be passed out to the
// called function.
if (NI->second.getNode()->isComplete())
return NoModRef;
return AliasAnalysis::getModRefInfo(CS, P, Size);
}
// Get the graphs for the callee and caller. Note that we want the BU graph
// for the callee because we don't want all caller's effects incorporated!
const Function *Caller = CS.getInstruction()->getParent()->getParent();
DSGraph &CallerTDGraph = TD->getDSGraph(*Caller);
DSGraph &CalleeBUGraph = BU->getDSGraph(*F);
// Figure out which node in the TD graph this pointer corresponds to.
DSScalarMap &CallerSM = CallerTDGraph.getScalarMap();
DSScalarMap::iterator NI = CallerSM.find(P);
if (NI == CallerSM.end()) {
ModRefResult Result = ModRef;
if (isa<ConstantPointerNull>(P) || isa<UndefValue>(P))
return NoModRef; // null is never modified :)
else {
assert(isa<GlobalVariable>(P) &&
cast<GlobalVariable>(P)->getType()->getElementType()->isFirstClassType() &&
"This isn't a global that DSA inconsiderately dropped "
"from the graph?");
DSGraph &GG = *CallerTDGraph.getGlobalsGraph();
DSScalarMap::iterator NI = GG.getScalarMap().find(P);
if (NI != GG.getScalarMap().end() && !NI->second.isNull()) {
// Otherwise, if the node is only M or R, return this. This can be
// useful for globals that should be marked const but are not.
DSNode *N = NI->second.getNode();
if (!N->isModified())
Result = (ModRefResult)(Result & ~Mod);
if (!N->isRead())
Result = (ModRefResult)(Result & ~Ref);
}
}
if (Result == NoModRef) return Result;
return ModRefResult(Result & AliasAnalysis::getModRefInfo(CS, P, Size));
}
// Compute the mapping from nodes in the callee graph to the nodes in the
// caller graph for this call site.
DSGraph::NodeMapTy CalleeCallerMap;
DSCallSite DSCS = CallerTDGraph.getDSCallSiteForCallSite(CS);
CallerTDGraph.computeCalleeCallerMapping(DSCS, *F, CalleeBUGraph,
CalleeCallerMap);
// Remember the mapping and the call site for future queries.
MapCS = CS;
// Invert the mapping into CalleeCallerInvMap.
for (DSGraph::NodeMapTy::iterator I = CalleeCallerMap.begin(),
E = CalleeCallerMap.end(); I != E; ++I)
CallerCalleeMap.insert(std::make_pair(I->second.getNode(), I->first));
N = NI->second.getNode();
goto HaveMappingInfo;
}

View File

@ -1,102 +0,0 @@
//===- DataStructureOpt.cpp - Data Structure Analysis Based Optimizations -===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass uses DSA to a series of simple optimizations, like marking
// unwritten global variables 'constant'.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure/DataStructure.h"
#include "llvm/Analysis/DataStructure/DSGraph.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Module.h"
#include "llvm/Constant.h"
#include "llvm/Type.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
namespace {
Statistic
NumGlobalsConstanted("ds-opt", "Number of globals marked constant");
Statistic
NumGlobalsIsolated("ds-opt", "Number of globals with references dropped");
class DSOpt : public ModulePass {
TDDataStructures *TD;
public:
bool runOnModule(Module &M) {
TD = &getAnalysis<TDDataStructures>();
bool Changed = OptimizeGlobals(M);
return Changed;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TDDataStructures>(); // Uses TD Datastructures
AU.addPreserved<LocalDataStructures>(); // Preserves local...
AU.addPreserved<TDDataStructures>(); // Preserves bu...
AU.addPreserved<BUDataStructures>(); // Preserves td...
}
private:
bool OptimizeGlobals(Module &M);
};
RegisterPass<DSOpt> X("ds-opt", "DSA-based simple optimizations");
}
ModulePass *llvm::createDSOptPass() { return new DSOpt(); }
/// OptimizeGlobals - This method uses information taken from DSA to optimize
/// global variables.
///
bool DSOpt::OptimizeGlobals(Module &M) {
DSGraph &GG = TD->getGlobalsGraph();
const DSGraph::ScalarMapTy &SM = GG.getScalarMap();
bool Changed = false;
for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I)
if (!I->isExternal()) { // Loop over all of the non-external globals...
// Look up the node corresponding to this global, if it exists.
DSNode *GNode = 0;
DSGraph::ScalarMapTy::const_iterator SMI = SM.find(I);
if (SMI != SM.end()) GNode = SMI->second.getNode();
if (GNode == 0 && I->hasInternalLinkage()) {
// If there is no entry in the scalar map for this global, it was never
// referenced in the program. If it has internal linkage, that means we
// can delete it. We don't ACTUALLY want to delete the global, just
// remove anything that references the global: later passes will take
// care of nuking it.
if (!I->use_empty()) {
I->replaceAllUsesWith(Constant::getNullValue((Type*)I->getType()));
++NumGlobalsIsolated;
}
} else if (GNode && GNode->isComplete()) {
// If the node has not been read or written, and it is not externally
// visible, kill any references to it so it can be DCE'd.
if (!GNode->isModified() && !GNode->isRead() &&I->hasInternalLinkage()){
if (!I->use_empty()) {
I->replaceAllUsesWith(Constant::getNullValue((Type*)I->getType()));
++NumGlobalsIsolated;
}
}
// We expect that there will almost always be a node for this global.
// If there is, and the node doesn't have the M bit set, we can set the
// 'constant' bit on the global.
if (!GNode->isModified() && !I->isConstant()) {
I->setConstant(true);
++NumGlobalsConstanted;
Changed = true;
}
}
}
return Changed;
}

View File

@ -1,150 +0,0 @@
//===- DataStructureStats.cpp - Various statistics for DS Graphs ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a little pass that prints out statistics for DS Graphs.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure/DataStructure.h"
#include "llvm/Analysis/DataStructure/DSGraph.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/Streams.h"
#include "llvm/ADT/Statistic.h"
#include <ostream>
using namespace llvm;
namespace {
Statistic TotalNumCallees("totalcallees",
"Total number of callee functions at all indirect call sites");
Statistic NumIndirectCalls("numindirect",
"Total number of indirect call sites in the program");
Statistic NumPoolNodes("numpools",
"Number of allocation nodes that could be pool allocated");
// Typed/Untyped memory accesses: If DSA can infer that the types the loads
// and stores are accessing are correct (ie, the node has not been collapsed),
// increment the appropriate counter.
Statistic NumTypedMemAccesses("numtypedmemaccesses",
"Number of loads/stores which are fully typed");
Statistic NumUntypedMemAccesses("numuntypedmemaccesses",
"Number of loads/stores which are untyped");
class DSGraphStats : public FunctionPass, public InstVisitor<DSGraphStats> {
void countCallees(const Function &F);
const DSGraph *TDGraph;
DSNode *getNodeForValue(Value *V);
bool isNodeForValueCollapsed(Value *V);
public:
/// Driver functions to compute the Load/Store Dep. Graph per function.
bool runOnFunction(Function& F);
/// getAnalysisUsage - This modify nothing, and uses the Top-Down Graph.
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<TDDataStructures>();
}
void visitLoad(LoadInst &LI);
void visitStore(StoreInst &SI);
/// Debugging support methods
void print(std::ostream &O, const Module* = 0) const { }
};
static RegisterPass<DSGraphStats> Z("dsstats", "DS Graph Statistics");
}
FunctionPass *llvm::createDataStructureStatsPass() {
return new DSGraphStats();
}
static bool isIndirectCallee(Value *V) {
if (isa<Function>(V)) return false;
if (CastInst *CI = dyn_cast<CastInst>(V))
return isIndirectCallee(CI->getOperand(0));
return true;
}
void DSGraphStats::countCallees(const Function& F) {
unsigned numIndirectCalls = 0, totalNumCallees = 0;
for (DSGraph::fc_iterator I = TDGraph->fc_begin(), E = TDGraph->fc_end();
I != E; ++I)
if (isIndirectCallee(I->getCallSite().getCalledValue())) {
// This is an indirect function call
std::vector<Function*> Callees;
I->getCalleeNode()->addFullFunctionList(Callees);
if (Callees.size() > 0) {
totalNumCallees += Callees.size();
++numIndirectCalls;
} else
cerr << "WARNING: No callee in Function '" << F.getName()
<< "' at call: \n"
<< *I->getCallSite().getInstruction();
}
TotalNumCallees += totalNumCallees;
NumIndirectCalls += numIndirectCalls;
if (numIndirectCalls)
cout << " In function " << F.getName() << ": "
<< (totalNumCallees / (double) numIndirectCalls)
<< " average callees per indirect call\n";
}
DSNode *DSGraphStats::getNodeForValue(Value *V) {
const DSGraph *G = TDGraph;
if (isa<Constant>(V))
G = TDGraph->getGlobalsGraph();
const DSGraph::ScalarMapTy &ScalarMap = G->getScalarMap();
DSGraph::ScalarMapTy::const_iterator I = ScalarMap.find(V);
if (I != ScalarMap.end())
return I->second.getNode();
return 0;
}
bool DSGraphStats::isNodeForValueCollapsed(Value *V) {
if (DSNode *N = getNodeForValue(V))
return N->isNodeCompletelyFolded() || N->isIncomplete();
return false;
}
void DSGraphStats::visitLoad(LoadInst &LI) {
if (isNodeForValueCollapsed(LI.getOperand(0))) {
NumUntypedMemAccesses++;
} else {
NumTypedMemAccesses++;
}
}
void DSGraphStats::visitStore(StoreInst &SI) {
if (isNodeForValueCollapsed(SI.getOperand(1))) {
NumUntypedMemAccesses++;
} else {
NumTypedMemAccesses++;
}
}
bool DSGraphStats::runOnFunction(Function& F) {
TDGraph = &getAnalysis<TDDataStructures>().getDSGraph(F);
countCallees(F);
visit(F);
return true;
}

View File

@ -1,477 +0,0 @@
//===- EquivClassGraphs.cpp - Merge equiv-class graphs & inline bottom-up -===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass is the same as the complete bottom-up graphs, but
// with functions partitioned into equivalence classes and a single merged
// DS graph for all functions in an equivalence class. After this merging,
// graphs are inlined bottom-up on the SCCs of the final (CBU) call graph.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ECGraphs"
#include "llvm/Analysis/DataStructure/DataStructure.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/DataStructure/DSGraph.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
namespace {
RegisterPass<EquivClassGraphs> X("eqdatastructure",
"Equivalence-class Bottom-up Data Structure Analysis");
Statistic NumEquivBUInlines("equivdatastructures",
"Number of graphs inlined");
Statistic NumFoldGraphInlines("Inline equiv-class graphs bottom up",
"Number of graphs inlined");
}
#ifndef NDEBUG
template<typename GT>
static void CheckAllGraphs(Module *M, GT &ECGraphs) {
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
if (!I->isExternal()) {
DSGraph &G = ECGraphs.getDSGraph(*I);
if (G.retnodes_begin()->first != I)
continue; // Only check a graph once.
DSGraph::NodeMapTy GlobalsGraphNodeMapping;
G.computeGToGGMapping(GlobalsGraphNodeMapping);
}
}
#endif
// getSomeCalleeForCallSite - Return any one callee function at a call site.
//
Function *EquivClassGraphs::getSomeCalleeForCallSite(const CallSite &CS) const{
Function *thisFunc = CS.getCaller();
assert(thisFunc && "getSomeCalleeForCallSite(): Not a valid call site?");
DSGraph &DSG = getDSGraph(*thisFunc);
DSNode *calleeNode = DSG.getNodeForValue(CS.getCalledValue()).getNode();
std::map<DSNode*, Function *>::const_iterator I =
OneCalledFunction.find(calleeNode);
return (I == OneCalledFunction.end())? NULL : I->second;
}
// runOnModule - Calculate the bottom up data structure graphs for each function
// in the program.
//
bool EquivClassGraphs::runOnModule(Module &M) {
CBU = &getAnalysis<CompleteBUDataStructures>();
GlobalECs = CBU->getGlobalECs();
DEBUG(CheckAllGraphs(&M, *CBU));
GlobalsGraph = new DSGraph(CBU->getGlobalsGraph(), GlobalECs);
GlobalsGraph->setPrintAuxCalls();
ActualCallees = CBU->getActualCallees();
// Find equivalence classes of functions called from common call sites.
// Fold the CBU graphs for all functions in an equivalence class.
buildIndirectFunctionSets(M);
// Stack of functions used for Tarjan's SCC-finding algorithm.
std::vector<DSGraph*> Stack;
std::map<DSGraph*, unsigned> ValMap;
unsigned NextID = 1;
Function *MainFunc = M.getMainFunction();
if (MainFunc && !MainFunc->isExternal()) {
processSCC(getOrCreateGraph(*MainFunc), Stack, NextID, ValMap);
} else {
cerr << "Fold Graphs: No 'main' function found!\n";
}
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal())
processSCC(getOrCreateGraph(*I), Stack, NextID, ValMap);
DEBUG(CheckAllGraphs(&M, *this));
getGlobalsGraph().removeTriviallyDeadNodes();
getGlobalsGraph().markIncompleteNodes(DSGraph::IgnoreGlobals);
// Merge the globals variables (not the calls) from the globals graph back
// into the main function's graph so that the main function contains all of
// the information about global pools and GV usage in the program.
if (MainFunc && !MainFunc->isExternal()) {
DSGraph &MainGraph = getOrCreateGraph(*MainFunc);
const DSGraph &GG = *MainGraph.getGlobalsGraph();
ReachabilityCloner RC(MainGraph, GG,
DSGraph::DontCloneCallNodes |
DSGraph::DontCloneAuxCallNodes);
// Clone the global nodes into this graph.
for (DSScalarMap::global_iterator I = GG.getScalarMap().global_begin(),
E = GG.getScalarMap().global_end(); I != E; ++I)
if (isa<GlobalVariable>(*I))
RC.getClonedNH(GG.getNodeForValue(*I));
MainGraph.maskIncompleteMarkers();
MainGraph.markIncompleteNodes(DSGraph::MarkFormalArgs |
DSGraph::IgnoreGlobals);
}
// Final processing. Note that dead node elimination may actually remove
// globals from a function graph that are immediately used. If there are no
// scalars pointing to the node (e.g. because the only use is a direct store
// to a scalar global) we have to make sure to rematerialize the globals back
// into the graphs here, or clients will break!
for (Module::global_iterator GI = M.global_begin(), E = M.global_end();
GI != E; ++GI)
// This only happens to first class typed globals.
if (GI->getType()->getElementType()->isFirstClassType())
for (Value::use_iterator UI = GI->use_begin(), E = GI->use_end();
UI != E; ++UI)
// This only happens to direct uses by instructions.
if (Instruction *User = dyn_cast<Instruction>(*UI)) {
DSGraph &DSG = getOrCreateGraph(*User->getParent()->getParent());
if (!DSG.getScalarMap().count(GI)) {
// If this global does not exist in the graph, but it is immediately
// used by an instruction in the graph, clone it over from the
// globals graph.
ReachabilityCloner RC(DSG, *GlobalsGraph, 0);
RC.getClonedNH(GlobalsGraph->getNodeForValue(GI));
}
}
return false;
}
// buildIndirectFunctionSets - Iterate over the module looking for indirect
// calls to functions. If a call site can invoke any functions [F1, F2... FN],
// unify the N functions together in the FuncECs set.
//
void EquivClassGraphs::buildIndirectFunctionSets(Module &M) {
const ActualCalleesTy& AC = CBU->getActualCallees();
// Loop over all of the indirect calls in the program. If a call site can
// call multiple different functions, we need to unify all of the callees into
// the same equivalence class.
Instruction *LastInst = 0;
Function *FirstFunc = 0;
for (ActualCalleesTy::const_iterator I=AC.begin(), E=AC.end(); I != E; ++I) {
if (I->second->isExternal())
continue; // Ignore functions we cannot modify
CallSite CS = CallSite::get(I->first);
if (CS.getCalledFunction()) { // Direct call:
FuncECs.insert(I->second); // -- Make sure function has equiv class
FirstFunc = I->second; // -- First callee at this site
} else { // Else indirect call
// DOUT << "CALLEE: " << I->second->getName()
// << " from : " << I->first;
if (I->first != LastInst) {
// This is the first callee from this call site.
LastInst = I->first;
FirstFunc = I->second;
// Instead of storing the lastInst For Indirection call Sites we store
// the DSNode for the function ptr arguemnt
Function *thisFunc = LastInst->getParent()->getParent();
DSGraph &TFG = CBU->getDSGraph(*thisFunc);
DSNode *calleeNode = TFG.getNodeForValue(CS.getCalledValue()).getNode();
OneCalledFunction[calleeNode] = FirstFunc;
FuncECs.insert(I->second);
} else {
// This is not the first possible callee from a particular call site.
// Union the callee in with the other functions.
FuncECs.unionSets(FirstFunc, I->second);
#ifndef NDEBUG
Function *thisFunc = LastInst->getParent()->getParent();
DSGraph &TFG = CBU->getDSGraph(*thisFunc);
DSNode *calleeNode = TFG.getNodeForValue(CS.getCalledValue()).getNode();
assert(OneCalledFunction.count(calleeNode) > 0 && "Missed a call?");
#endif
}
}
// Now include all functions that share a graph with any function in the
// equivalence class. More precisely, if F is in the class, and G(F) is
// its graph, then we include all other functions that are also in G(F).
// Currently, that is just the functions in the same call-graph-SCC as F.
//
DSGraph& funcDSGraph = CBU->getDSGraph(*I->second);
for (DSGraph::retnodes_iterator RI = funcDSGraph.retnodes_begin(),
RE = funcDSGraph.retnodes_end(); RI != RE; ++RI)
FuncECs.unionSets(FirstFunc, RI->first);
}
// Now that all of the equivalences have been built, merge the graphs for
// each equivalence class.
//
DOUT << "\nIndirect Function Equivalence Sets:\n";
for (EquivalenceClasses<Function*>::iterator EQSI = FuncECs.begin(), E =
FuncECs.end(); EQSI != E; ++EQSI) {
if (!EQSI->isLeader()) continue;
EquivalenceClasses<Function*>::member_iterator SI =
FuncECs.member_begin(EQSI);
assert(SI != FuncECs.member_end() && "Empty equiv set??");
EquivalenceClasses<Function*>::member_iterator SN = SI;
++SN;
if (SN == FuncECs.member_end())
continue; // Single function equivalence set, no merging to do.
Function* LF = *SI;
#ifndef NDEBUG
DOUT <<" Equivalence set for leader " << LF->getName() <<" = ";
for (SN = SI; SN != FuncECs.member_end(); ++SN)
DOUT << " " << (*SN)->getName() << "," ;
DOUT << "\n";
#endif
// This equiv class has multiple functions: merge their graphs. First,
// clone the CBU graph for the leader and make it the common graph for the
// equivalence graph.
DSGraph &MergedG = getOrCreateGraph(*LF);
// Record the argument nodes for use in merging later below.
std::vector<DSNodeHandle> ArgNodes;
for (Function::arg_iterator AI = LF->arg_begin(), E = LF->arg_end();
AI != E; ++AI)
if (DS::isPointerType(AI->getType()))
ArgNodes.push_back(MergedG.getNodeForValue(AI));
// Merge in the graphs of all other functions in this equiv. class. Note
// that two or more functions may have the same graph, and it only needs
// to be merged in once.
std::set<DSGraph*> GraphsMerged;
GraphsMerged.insert(&CBU->getDSGraph(*LF));
for (++SI; SI != FuncECs.member_end(); ++SI) {
Function *F = *SI;
DSGraph &CBUGraph = CBU->getDSGraph(*F);
if (GraphsMerged.insert(&CBUGraph).second) {
// Record the "folded" graph for the function.
for (DSGraph::retnodes_iterator I = CBUGraph.retnodes_begin(),
E = CBUGraph.retnodes_end(); I != E; ++I) {
assert(DSInfo[I->first] == 0 && "Graph already exists for Fn!");
DSInfo[I->first] = &MergedG;
}
// Clone this member of the equivalence class into MergedG.
MergedG.cloneInto(CBUGraph);
}
// Merge the return nodes of all functions together.
MergedG.getReturnNodes()[LF].mergeWith(MergedG.getReturnNodes()[F]);
// Merge the function arguments with all argument nodes found so far.
// If there are extra function args, add them to the vector of argNodes
Function::arg_iterator AI2 = F->arg_begin(), AI2end = F->arg_end();
for (unsigned arg = 0, numArgs = ArgNodes.size();
arg != numArgs && AI2 != AI2end; ++AI2, ++arg)
if (DS::isPointerType(AI2->getType()))
ArgNodes[arg].mergeWith(MergedG.getNodeForValue(AI2));
for ( ; AI2 != AI2end; ++AI2)
if (DS::isPointerType(AI2->getType()))
ArgNodes.push_back(MergedG.getNodeForValue(AI2));
DEBUG(MergedG.AssertGraphOK());
}
}
DOUT << "\n";
}
DSGraph &EquivClassGraphs::getOrCreateGraph(Function &F) {
// Has the graph already been created?
DSGraph *&Graph = DSInfo[&F];
if (Graph) return *Graph;
DSGraph &CBUGraph = CBU->getDSGraph(F);
// Copy the CBU graph...
Graph = new DSGraph(CBUGraph, GlobalECs); // updates the map via reference
Graph->setGlobalsGraph(&getGlobalsGraph());
Graph->setPrintAuxCalls();
// Make sure to update the DSInfo map for all functions in the graph!
for (DSGraph::retnodes_iterator I = Graph->retnodes_begin();
I != Graph->retnodes_end(); ++I)
if (I->first != &F) {
DSGraph *&FG = DSInfo[I->first];
assert(FG == 0 && "Merging function in SCC twice?");
FG = Graph;
}
return *Graph;
}
unsigned EquivClassGraphs::
processSCC(DSGraph &FG, std::vector<DSGraph*> &Stack, unsigned &NextID,
std::map<DSGraph*, unsigned> &ValMap) {
std::map<DSGraph*, unsigned>::iterator It = ValMap.lower_bound(&FG);
if (It != ValMap.end() && It->first == &FG)
return It->second;
DOUT << " ProcessSCC for function " << FG.getFunctionNames() << "\n";
unsigned Min = NextID++, MyID = Min;
ValMap[&FG] = Min;
Stack.push_back(&FG);
// The edges out of the current node are the call site targets...
for (DSGraph::fc_iterator CI = FG.fc_begin(), CE = FG.fc_end();
CI != CE; ++CI) {
Instruction *Call = CI->getCallSite().getInstruction();
// Loop over all of the actually called functions...
for (callee_iterator I = callee_begin(Call), E = callee_end(Call);
I != E; ++I)
if (!I->second->isExternal()) {
// Process the callee as necessary.
unsigned M = processSCC(getOrCreateGraph(*I->second),
Stack, NextID, ValMap);
if (M < Min) Min = M;
}
}
assert(ValMap[&FG] == MyID && "SCC construction assumption wrong!");
if (Min != MyID)
return Min; // This is part of a larger SCC!
// If this is a new SCC, process it now.
bool MergedGraphs = false;
while (Stack.back() != &FG) {
DSGraph *NG = Stack.back();
ValMap[NG] = ~0U;
// If the SCC found is not the same as those found in CBU, make sure to
// merge the graphs as appropriate.
FG.cloneInto(*NG);
// Update the DSInfo map and delete the old graph...
for (DSGraph::retnodes_iterator I = NG->retnodes_begin();
I != NG->retnodes_end(); ++I)
DSInfo[I->first] = &FG;
// Remove NG from the ValMap since the pointer may get recycled.
ValMap.erase(NG);
delete NG;
MergedGraphs = true;
Stack.pop_back();
}
// Clean up the graph before we start inlining a bunch again.
if (MergedGraphs)
FG.removeTriviallyDeadNodes();
Stack.pop_back();
processGraph(FG);
ValMap[&FG] = ~0U;
return MyID;
}
/// processGraph - Process the CBU graphs for the program in bottom-up order on
/// the SCC of the __ACTUAL__ call graph. This builds final folded CBU graphs.
void EquivClassGraphs::processGraph(DSGraph &G) {
DOUT << " ProcessGraph for function " << G.getFunctionNames() << "\n";
hash_set<Instruction*> calls;
// Else we need to inline some callee graph. Visit all call sites.
// The edges out of the current node are the call site targets...
unsigned i = 0;
for (DSGraph::fc_iterator CI = G.fc_begin(), CE = G.fc_end(); CI != CE;
++CI, ++i) {
const DSCallSite &CS = *CI;
Instruction *TheCall = CS.getCallSite().getInstruction();
assert(calls.insert(TheCall).second &&
"Call instruction occurs multiple times in graph??");
if (CS.getRetVal().isNull() && CS.getNumPtrArgs() == 0)
continue;
// Inline the common callee graph into the current graph, if the callee
// graph has not changed. Note that all callees should have the same
// graph so we only need to do this once.
//
DSGraph* CalleeGraph = NULL;
callee_iterator I = callee_begin(TheCall), E = callee_end(TheCall);
unsigned TNum, Num;
// Loop over all potential callees to find the first non-external callee.
for (TNum = 0, Num = std::distance(I, E); I != E; ++I, ++TNum)
if (!I->second->isExternal())
break;
// Now check if the graph has changed and if so, clone and inline it.
if (I != E) {
Function *CalleeFunc = I->second;
// Merge the callee's graph into this graph, if not already the same.
// Callees in the same equivalence class (which subsumes those
// in the same SCCs) have the same graph. Note that all recursion
// including self-recursion have been folded in the equiv classes.
//
CalleeGraph = &getOrCreateGraph(*CalleeFunc);
if (CalleeGraph != &G) {
++NumFoldGraphInlines;
G.mergeInGraph(CS, *CalleeFunc, *CalleeGraph,
DSGraph::StripAllocaBit |
DSGraph::DontCloneCallNodes |
DSGraph::DontCloneAuxCallNodes);
DOUT << " Inlining graph [" << i << "/"
<< G.getFunctionCalls().size()-1
<< ":" << TNum << "/" << Num-1 << "] for "
<< CalleeFunc->getName() << "["
<< CalleeGraph->getGraphSize() << "+"
<< CalleeGraph->getAuxFunctionCalls().size()
<< "] into '" /*<< G.getFunctionNames()*/ << "' ["
<< G.getGraphSize() << "+" << G.getAuxFunctionCalls().size()
<< "]\n";
}
}
#ifndef NDEBUG
// Now loop over the rest of the callees and make sure they have the
// same graph as the one inlined above.
if (CalleeGraph)
for (++I, ++TNum; I != E; ++I, ++TNum)
if (!I->second->isExternal())
assert(CalleeGraph == &getOrCreateGraph(*I->second) &&
"Callees at a call site have different graphs?");
#endif
}
// Recompute the Incomplete markers.
G.maskIncompleteMarkers();
G.markIncompleteNodes(DSGraph::MarkFormalArgs);
// Delete dead nodes. Treat globals that are unreachable but that can
// reach live nodes as live.
G.removeDeadNodes(DSGraph::KeepUnreachableGlobals);
// When this graph is finalized, clone the globals in the graph into the
// globals graph to make sure it has everything, from all graphs.
ReachabilityCloner RC(*G.getGlobalsGraph(), G, DSGraph::StripAllocaBit);
// Clone everything reachable from globals in the function graph into the
// globals graph.
DSScalarMap &MainSM = G.getScalarMap();
for (DSScalarMap::global_iterator I = MainSM.global_begin(),
E = MainSM.global_end(); I != E; ++I)
RC.getClonedNH(MainSM[*I]);
DOUT << " -- DONE ProcessGraph for function " << G.getFunctionNames() <<"\n";
}

View File

@ -1,204 +0,0 @@
//===- GraphChecker.cpp - Assert that various graph properties hold -------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass is used to test DSA with regression tests. It can be used to check
// that certain graph properties hold, such as two nodes being disjoint, whether
// or not a node is collapsed, etc. These are the command line arguments that
// it supports:
//
// --dsgc-dspass={local,bu,td} - Specify what flavor of graph to check
// --dsgc-abort-if-any-collapsed - Abort if any collapsed nodes are found
// --dsgc-abort-if-collapsed=<list> - Abort if a node pointed to by an SSA
// value with name in <list> is collapsed
// --dsgc-check-flags=<list> - Abort if the specified nodes have flags
// that are not specified.
// --dsgc-abort-if-merged=<list> - Abort if any of the named SSA values
// point to the same node.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure/DataStructure.h"
#include "llvm/Analysis/DataStructure/DSGraph.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Streams.h"
#include "llvm/Value.h"
#include <set>
using namespace llvm;
namespace {
enum DSPass { local, bu, td };
cl::opt<DSPass>
DSPass("dsgc-dspass", cl::Hidden,
cl::desc("Specify which DSA pass the -datastructure-gc pass should use"),
cl::values(clEnumVal(local, "Local pass"),
clEnumVal(bu, "Bottom-up pass"),
clEnumVal(td, "Top-down pass"),
clEnumValEnd), cl::init(local));
cl::opt<bool>
AbortIfAnyCollapsed("dsgc-abort-if-any-collapsed", cl::Hidden,
cl::desc("Abort if any collapsed nodes are found"));
cl::list<std::string>
AbortIfCollapsed("dsgc-abort-if-collapsed", cl::Hidden, cl::CommaSeparated,
cl::desc("Abort if any of the named symbols is collapsed"));
cl::list<std::string>
CheckFlags("dsgc-check-flags", cl::Hidden, cl::CommaSeparated,
cl::desc("Check that flags are specified for nodes"));
cl::list<std::string>
AbortIfMerged("dsgc-abort-if-merged", cl::Hidden, cl::CommaSeparated,
cl::desc("Abort if any of the named symbols are merged together"));
struct DSGC : public FunctionPass {
DSGC();
bool doFinalization(Module &M);
bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
switch (DSPass) {
case local: AU.addRequired<LocalDataStructures>(); break;
case bu: AU.addRequired<BUDataStructures>(); break;
case td: AU.addRequired<TDDataStructures>(); break;
}
AU.setPreservesAll();
}
void print(std::ostream &O, const Module *M) const {}
private:
void verify(const DSGraph &G);
};
RegisterPass<DSGC> X("datastructure-gc", "DSA Graph Checking Pass");
}
FunctionPass *llvm::createDataStructureGraphCheckerPass() {
return new DSGC();
}
DSGC::DSGC() {
if (!AbortIfAnyCollapsed && AbortIfCollapsed.empty() &&
CheckFlags.empty() && AbortIfMerged.empty()) {
cerr << "The -datastructure-gc is useless if you don't specify any"
<< " -dsgc-* options. See the -help-hidden output for a list.\n";
abort();
}
}
/// doFinalization - Verify that the globals graph is in good shape...
///
bool DSGC::doFinalization(Module &M) {
switch (DSPass) {
case local:verify(getAnalysis<LocalDataStructures>().getGlobalsGraph());break;
case bu: verify(getAnalysis<BUDataStructures>().getGlobalsGraph()); break;
case td: verify(getAnalysis<TDDataStructures>().getGlobalsGraph()); break;
}
return false;
}
/// runOnFunction - Get the DSGraph for this function and verify that it is ok.
///
bool DSGC::runOnFunction(Function &F) {
switch (DSPass) {
case local: verify(getAnalysis<LocalDataStructures>().getDSGraph(F)); break;
case bu: verify(getAnalysis<BUDataStructures>().getDSGraph(F)); break;
case td: verify(getAnalysis<TDDataStructures>().getDSGraph(F)); break;
}
return false;
}
/// verify - This is the function which checks to make sure that all of the
/// invariants established on the command line are true.
///
void DSGC::verify(const DSGraph &G) {
// Loop over all of the nodes, checking to see if any are collapsed...
if (AbortIfAnyCollapsed) {
for (DSGraph::node_const_iterator I = G.node_begin(), E = G.node_end();
I != E; ++I)
if (I->isNodeCompletelyFolded()) {
cerr << "Node is collapsed: ";
I->print(cerr, &G);
abort();
}
}
if (!AbortIfCollapsed.empty() || !CheckFlags.empty() ||
!AbortIfMerged.empty()) {
// Convert from a list to a set, because we don't have cl::set's yet. FIXME
std::set<std::string> AbortIfCollapsedS(AbortIfCollapsed.begin(),
AbortIfCollapsed.end());
std::set<std::string> AbortIfMergedS(AbortIfMerged.begin(),
AbortIfMerged.end());
std::map<std::string, unsigned> CheckFlagsM;
for (cl::list<std::string>::iterator I = CheckFlags.begin(),
E = CheckFlags.end(); I != E; ++I) {
std::string::size_type ColonPos = I->rfind(':');
if (ColonPos == std::string::npos) {
cerr << "Error: '" << *I
<< "' is an invalid value for the --dsgc-check-flags option!\n";
abort();
}
unsigned Flags = 0;
for (unsigned C = ColonPos+1; C != I->size(); ++C)
switch ((*I)[C]) {
case 'S': Flags |= DSNode::AllocaNode; break;
case 'H': Flags |= DSNode::HeapNode; break;
case 'G': Flags |= DSNode::GlobalNode; break;
case 'U': Flags |= DSNode::UnknownNode; break;
case 'I': Flags |= DSNode::Incomplete; break;
case 'M': Flags |= DSNode::Modified; break;
case 'R': Flags |= DSNode::Read; break;
case 'A': Flags |= DSNode::Array; break;
default: cerr << "Invalid DSNode flag!\n"; abort();
}
CheckFlagsM[std::string(I->begin(), I->begin()+ColonPos)] = Flags;
}
// Now we loop over all of the scalars, checking to see if any are collapsed
// that are not supposed to be, or if any are merged together.
const DSGraph::ScalarMapTy &SM = G.getScalarMap();
std::map<DSNode*, std::string> AbortIfMergedNodes;
for (DSGraph::ScalarMapTy::const_iterator I = SM.begin(), E = SM.end();
I != E; ++I)
if (I->first->hasName() && I->second.getNode()) {
const std::string &Name = I->first->getName();
DSNode *N = I->second.getNode();
// Verify it is not collapsed if it is not supposed to be...
if (N->isNodeCompletelyFolded() && AbortIfCollapsedS.count(Name)) {
cerr << "Node for value '%" << Name << "' is collapsed: ";
N->print(cerr, &G);
abort();
}
if (CheckFlagsM.count(Name) && CheckFlagsM[Name] != N->getNodeFlags()) {
cerr << "Node flags are not as expected for node: " << Name
<< " (" << CheckFlagsM[Name] << ":" <<N->getNodeFlags()
<< ")\n";
N->print(cerr, &G);
abort();
}
// Verify that it is not merged if it is not supposed to be...
if (AbortIfMergedS.count(Name)) {
if (AbortIfMergedNodes.count(N)) {
cerr << "Nodes for values '%" << Name << "' and '%"
<< AbortIfMergedNodes[N] << "' is merged: ";
N->print(cerr, &G);
abort();
}
AbortIfMergedNodes[N] = Name;
}
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,14 +0,0 @@
##===- lib/Analysis/DataStructure/Makefile -----------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file was developed by the LLVM research group and is distributed under
# the University of Illinois Open Source License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
LEVEL = ../../..
LIBRARYNAME = LLVMDataStructure
include $(LEVEL)/Makefile.common

View File

@ -1,356 +0,0 @@
//===- Printer.cpp - Code for printing data structure graphs nicely -------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the 'dot' graph printer.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure/DataStructure.h"
#include "llvm/Analysis/DataStructure/DSGraph.h"
#include "llvm/Analysis/DataStructure/DSGraphTraits.h"
#include "llvm/Module.h"
#include "llvm/Constants.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/Streams.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Config/config.h"
#include <ostream>
#include <fstream>
#include <sstream>
using namespace llvm;
// OnlyPrintMain - The DataStructure printer exposes this option to allow
// printing of only the graph for "main".
//
namespace {
cl::opt<bool> OnlyPrintMain("only-print-main-ds", cl::ReallyHidden);
cl::opt<bool> DontPrintAnything("dont-print-ds", cl::ReallyHidden);
Statistic MaxGraphSize ("dsa", "Maximum graph size");
Statistic NumFoldedNodes ("dsa", "Number of folded nodes (in final graph)");
}
void DSNode::dump() const { print(cerr, 0); }
static std::string getCaption(const DSNode *N, const DSGraph *G) {
std::stringstream OS;
Module *M = 0;
if (!G) G = N->getParentGraph();
// Get the module from ONE of the functions in the graph it is available.
if (G && G->retnodes_begin() != G->retnodes_end())
M = G->retnodes_begin()->first->getParent();
if (M == 0 && G) {
// If there is a global in the graph, we can use it to find the module.
const DSScalarMap &SM = G->getScalarMap();
if (SM.global_begin() != SM.global_end())
M = (*SM.global_begin())->getParent();
}
if (N->isNodeCompletelyFolded())
OS << "COLLAPSED";
else {
WriteTypeSymbolic(OS, N->getType(), M);
if (N->isArray())
OS << " array";
}
if (unsigned NodeType = N->getNodeFlags()) {
OS << ": ";
if (NodeType & DSNode::AllocaNode ) OS << "S";
if (NodeType & DSNode::HeapNode ) OS << "H";
if (NodeType & DSNode::GlobalNode ) OS << "G";
if (NodeType & DSNode::UnknownNode) OS << "U";
if (NodeType & DSNode::Incomplete ) OS << "I";
if (NodeType & DSNode::Modified ) OS << "M";
if (NodeType & DSNode::Read ) OS << "R";
#ifndef NDEBUG
if (NodeType & DSNode::DEAD ) OS << "<dead>";
#endif
OS << "\n";
}
EquivalenceClasses<GlobalValue*> *GlobalECs = 0;
if (G) GlobalECs = &G->getGlobalECs();
for (unsigned i = 0, e = N->getGlobalsList().size(); i != e; ++i) {
WriteAsOperand(OS, N->getGlobalsList()[i], false, M);
// Figure out how many globals are equivalent to this one.
if (GlobalECs) {
EquivalenceClasses<GlobalValue*>::iterator I =
GlobalECs->findValue(N->getGlobalsList()[i]);
if (I != GlobalECs->end()) {
unsigned NumMembers =
std::distance(GlobalECs->member_begin(I), GlobalECs->member_end());
if (NumMembers != 1) OS << " + " << (NumMembers-1) << " EC";
}
}
OS << "\n";
}
return OS.str();
}
namespace llvm {
template<>
struct DOTGraphTraits<const DSGraph*> : public DefaultDOTGraphTraits {
static std::string getGraphName(const DSGraph *G) {
switch (G->getReturnNodes().size()) {
case 0: return G->getFunctionNames();
case 1: return "Function " + G->getFunctionNames();
default: return "Functions: " + G->getFunctionNames();
}
}
static std::string getNodeLabel(const DSNode *Node, const DSGraph *Graph) {
return getCaption(Node, Graph);
}
static std::string getNodeAttributes(const DSNode *N, const DSGraph *Graph) {
return "shape=Mrecord";
}
static bool edgeTargetsEdgeSource(const void *Node,
DSNode::const_iterator I) {
unsigned O = I.getNode()->getLink(I.getOffset()).getOffset();
return (O >> DS::PointerShift) != 0;
}
static DSNode::const_iterator getEdgeTarget(const DSNode *Node,
DSNode::const_iterator I) {
unsigned O = I.getNode()->getLink(I.getOffset()).getOffset();
unsigned LinkNo = O >> DS::PointerShift;
const DSNode *N = *I;
DSNode::const_iterator R = N->begin();
for (; LinkNo; --LinkNo)
++R;
return R;
}
/// addCustomGraphFeatures - Use this graph writing hook to emit call nodes
/// and the return node.
///
static void addCustomGraphFeatures(const DSGraph *G,
GraphWriter<const DSGraph*> &GW) {
Module *CurMod = 0;
if (G->retnodes_begin() != G->retnodes_end())
CurMod = G->retnodes_begin()->first->getParent();
else {
// If there is a global in the graph, we can use it to find the module.
const DSScalarMap &SM = G->getScalarMap();
if (SM.global_begin() != SM.global_end())
CurMod = (*SM.global_begin())->getParent();
}
// Add scalar nodes to the graph...
const DSGraph::ScalarMapTy &VM = G->getScalarMap();
for (DSGraph::ScalarMapTy::const_iterator I = VM.begin(); I != VM.end();++I)
if (!isa<GlobalValue>(I->first)) {
std::stringstream OS;
WriteAsOperand(OS, I->first, false, CurMod);
GW.emitSimpleNode(I->first, "", OS.str());
// Add edge from return node to real destination
DSNode *DestNode = I->second.getNode();
int EdgeDest = I->second.getOffset() >> DS::PointerShift;
if (EdgeDest == 0) EdgeDest = -1;
GW.emitEdge(I->first, -1, DestNode,
EdgeDest, "arrowtail=tee,color=gray63");
}
// Output the returned value pointer...
for (DSGraph::retnodes_iterator I = G->retnodes_begin(),
E = G->retnodes_end(); I != E; ++I)
if (I->second.getNode()) {
std::string Label;
if (G->getReturnNodes().size() == 1)
Label = "returning";
else
Label = I->first->getName() + " ret node";
// Output the return node...
GW.emitSimpleNode((void*)I->first, "plaintext=circle", Label);
// Add edge from return node to real destination
DSNode *RetNode = I->second.getNode();
int RetEdgeDest = I->second.getOffset() >> DS::PointerShift;;
if (RetEdgeDest == 0) RetEdgeDest = -1;
GW.emitEdge((void*)I->first, -1, RetNode,
RetEdgeDest, "arrowtail=tee,color=gray63");
}
// Output all of the call nodes...
const std::list<DSCallSite> &FCs =
G->shouldPrintAuxCalls() ? G->getAuxFunctionCalls()
: G->getFunctionCalls();
for (std::list<DSCallSite>::const_iterator I = FCs.begin(), E = FCs.end();
I != E; ++I) {
const DSCallSite &Call = *I;
std::vector<std::string> EdgeSourceCaptions(Call.getNumPtrArgs()+2);
EdgeSourceCaptions[0] = "r";
if (Call.isDirectCall())
EdgeSourceCaptions[1] = Call.getCalleeFunc()->getName();
else
EdgeSourceCaptions[1] = "f";
GW.emitSimpleNode(&Call, "shape=record", "call", Call.getNumPtrArgs()+2,
&EdgeSourceCaptions);
if (DSNode *N = Call.getRetVal().getNode()) {
int EdgeDest = Call.getRetVal().getOffset() >> DS::PointerShift;
if (EdgeDest == 0) EdgeDest = -1;
GW.emitEdge(&Call, 0, N, EdgeDest, "color=gray63,tailclip=false");
}
// Print out the callee...
if (Call.isIndirectCall()) {
DSNode *N = Call.getCalleeNode();
assert(N && "Null call site callee node!");
GW.emitEdge(&Call, 1, N, -1, "color=gray63,tailclip=false");
}
for (unsigned j = 0, e = Call.getNumPtrArgs(); j != e; ++j)
if (DSNode *N = Call.getPtrArg(j).getNode()) {
int EdgeDest = Call.getPtrArg(j).getOffset() >> DS::PointerShift;
if (EdgeDest == 0) EdgeDest = -1;
GW.emitEdge(&Call, j+2, N, EdgeDest, "color=gray63,tailclip=false");
}
}
}
};
} // end namespace llvm
void DSNode::print(std::ostream &O, const DSGraph *G) const {
GraphWriter<const DSGraph *> W(O, G);
W.writeNode(this);
}
void DSGraph::print(std::ostream &O) const {
WriteGraph(O, this, "DataStructures");
}
void DSGraph::writeGraphToFile(std::ostream &O,
const std::string &GraphName) const {
std::string Filename = GraphName + ".dot";
O << "Writing '" << Filename << "'...";
std::ofstream F(Filename.c_str());
if (F.good()) {
print(F);
unsigned NumCalls = shouldPrintAuxCalls() ?
getAuxFunctionCalls().size() : getFunctionCalls().size();
O << " [" << getGraphSize() << "+" << NumCalls << "]\n";
} else {
O << " error opening file for writing!\n";
}
}
/// viewGraph - Emit a dot graph, run 'dot', run gv on the postscript file,
/// then cleanup. For use from the debugger.
///
void DSGraph::viewGraph() const {
ViewGraph(this, "ds.tempgraph", "DataStructures");
}
template <typename Collection>
static void printCollection(const Collection &C, std::ostream &O,
const Module *M, const std::string &Prefix) {
if (M == 0) {
O << "Null Module pointer, cannot continue!\n";
return;
}
unsigned TotalNumNodes = 0, TotalCallNodes = 0;
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
if (C.hasGraph(*I)) {
DSGraph &Gr = C.getDSGraph((Function&)*I);
unsigned NumCalls = Gr.shouldPrintAuxCalls() ?
Gr.getAuxFunctionCalls().size() : Gr.getFunctionCalls().size();
bool IsDuplicateGraph = false;
if (I->getName() == "main" || !OnlyPrintMain) {
Function *SCCFn = Gr.retnodes_begin()->first;
if (&*I == SCCFn) {
Gr.writeGraphToFile(O, Prefix+I->getName());
} else {
IsDuplicateGraph = true; // Don't double count node/call nodes.
O << "Didn't write '" << Prefix+I->getName()
<< ".dot' - Graph already emitted to '" << Prefix+SCCFn->getName()
<< "\n";
}
} else {
Function *SCCFn = Gr.retnodes_begin()->first;
if (&*I == SCCFn) {
O << "Skipped Writing '" << Prefix+I->getName() << ".dot'... ["
<< Gr.getGraphSize() << "+" << NumCalls << "]\n";
} else {
IsDuplicateGraph = true; // Don't double count node/call nodes.
}
}
if (!IsDuplicateGraph) {
unsigned GraphSize = Gr.getGraphSize();
if (MaxGraphSize < GraphSize) MaxGraphSize = GraphSize;
TotalNumNodes += Gr.getGraphSize();
TotalCallNodes += NumCalls;
for (DSGraph::node_iterator NI = Gr.node_begin(), E = Gr.node_end();
NI != E; ++NI)
if (NI->isNodeCompletelyFolded())
++NumFoldedNodes;
}
}
DSGraph &GG = C.getGlobalsGraph();
TotalNumNodes += GG.getGraphSize();
TotalCallNodes += GG.getFunctionCalls().size();
if (!OnlyPrintMain) {
GG.writeGraphToFile(O, Prefix+"GlobalsGraph");
} else {
O << "Skipped Writing '" << Prefix << "GlobalsGraph.dot'... ["
<< GG.getGraphSize() << "+" << GG.getFunctionCalls().size() << "]\n";
}
O << "\nGraphs contain [" << TotalNumNodes << "+" << TotalCallNodes
<< "] nodes total" << std::endl;
}
// print - Print out the analysis results...
void LocalDataStructures::print(std::ostream &O, const Module *M) const {
if (DontPrintAnything) return;
printCollection(*this, O, M, "ds.");
}
void BUDataStructures::print(std::ostream &O, const Module *M) const {
if (DontPrintAnything) return;
printCollection(*this, O, M, "bu.");
}
void TDDataStructures::print(std::ostream &O, const Module *M) const {
if (DontPrintAnything) return;
printCollection(*this, O, M, "td.");
}
void CompleteBUDataStructures::print(std::ostream &O, const Module *M) const {
if (DontPrintAnything) return;
printCollection(*this, O, M, "cbu.");
}
void EquivClassGraphs::print(std::ostream &O, const Module *M) const {
if (DontPrintAnything) return;
printCollection(*this, O, M, "eq.");
}

View File

@ -1,278 +0,0 @@
//===- Steensgaard.cpp - Context Insensitive Alias Analysis ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass uses the data structure graphs to implement a simple context
// insensitive alias analysis. It does this by computing the local analysis
// graphs for all of the functions, then merging them together into a single big
// graph without cloning.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure/DataStructure.h"
#include "llvm/Analysis/DataStructure/DSGraph.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Module.h"
#include "llvm/Support/Debug.h"
#include <ostream>
using namespace llvm;
namespace {
class Steens : public ModulePass, public AliasAnalysis {
DSGraph *ResultGraph;
EquivalenceClasses<GlobalValue*> GlobalECs; // Always empty
public:
Steens() : ResultGraph(0) {}
~Steens() {
releaseMyMemory();
assert(ResultGraph == 0 && "releaseMemory not called?");
}
//------------------------------------------------
// Implement the Pass API
//
// run - Build up the result graph, representing the pointer graph for the
// program.
//
bool runOnModule(Module &M);
virtual void releaseMyMemory() { delete ResultGraph; ResultGraph = 0; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AliasAnalysis::getAnalysisUsage(AU);
AU.setPreservesAll(); // Does not transform code...
AU.addRequired<LocalDataStructures>(); // Uses local dsgraph
}
// print - Implement the Pass::print method...
void print(OStream O, const Module *M) const {
if (O.stream()) print(*O.stream(), M);
}
void print(std::ostream &O, const Module *M) const {
assert(ResultGraph && "Result graph has not yet been computed!");
ResultGraph->writeGraphToFile(O, "steensgaards");
}
//------------------------------------------------
// Implement the AliasAnalysis API
//
AliasResult alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size);
virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
private:
void ResolveFunctionCall(Function *F, const DSCallSite &Call,
DSNodeHandle &RetVal);
};
// Register the pass...
RegisterPass<Steens> X("steens-aa",
"Steensgaard's alias analysis (DSGraph based)");
// Register as an implementation of AliasAnalysis
RegisterAnalysisGroup<AliasAnalysis> Y(X);
}
ModulePass *llvm::createSteensgaardPass() { return new Steens(); }
/// ResolveFunctionCall - Resolve the actual arguments of a call to function F
/// with the specified call site descriptor. This function links the arguments
/// and the return value for the call site context-insensitively.
///
void Steens::ResolveFunctionCall(Function *F, const DSCallSite &Call,
DSNodeHandle &RetVal) {
assert(ResultGraph != 0 && "Result graph not allocated!");
DSGraph::ScalarMapTy &ValMap = ResultGraph->getScalarMap();
// Handle the return value of the function...
if (Call.getRetVal().getNode() && RetVal.getNode())
RetVal.mergeWith(Call.getRetVal());
// Loop over all pointer arguments, resolving them to their provided pointers
unsigned PtrArgIdx = 0;
for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
AI != AE && PtrArgIdx < Call.getNumPtrArgs(); ++AI) {
DSGraph::ScalarMapTy::iterator I = ValMap.find(AI);
if (I != ValMap.end()) // If its a pointer argument...
I->second.mergeWith(Call.getPtrArg(PtrArgIdx++));
}
}
/// run - Build up the result graph, representing the pointer graph for the
/// program.
///
bool Steens::runOnModule(Module &M) {
InitializeAliasAnalysis(this);
assert(ResultGraph == 0 && "Result graph already allocated!");
LocalDataStructures &LDS = getAnalysis<LocalDataStructures>();
// Create a new, empty, graph...
ResultGraph = new DSGraph(GlobalECs, getTargetData());
ResultGraph->spliceFrom(LDS.getGlobalsGraph());
// Loop over the rest of the module, merging graphs for non-external functions
// into this graph.
//
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal())
ResultGraph->spliceFrom(LDS.getDSGraph(*I));
ResultGraph->removeTriviallyDeadNodes();
// FIXME: Must recalculate and use the Incomplete markers!!
// Now that we have all of the graphs inlined, we can go about eliminating
// call nodes...
//
std::list<DSCallSite> &Calls = ResultGraph->getAuxFunctionCalls();
assert(Calls.empty() && "Aux call list is already in use??");
// Start with a copy of the original call sites.
Calls = ResultGraph->getFunctionCalls();
for (std::list<DSCallSite>::iterator CI = Calls.begin(), E = Calls.end();
CI != E;) {
DSCallSite &CurCall = *CI++;
// Loop over the called functions, eliminating as many as possible...
std::vector<Function*> CallTargets;
if (CurCall.isDirectCall())
CallTargets.push_back(CurCall.getCalleeFunc());
else
CurCall.getCalleeNode()->addFullFunctionList(CallTargets);
for (unsigned c = 0; c != CallTargets.size(); ) {
// If we can eliminate this function call, do so!
Function *F = CallTargets[c];
if (!F->isExternal()) {
ResolveFunctionCall(F, CurCall, ResultGraph->getReturnNodes()[F]);
CallTargets[c] = CallTargets.back();
CallTargets.pop_back();
} else
++c; // Cannot eliminate this call, skip over it...
}
if (CallTargets.empty()) { // Eliminated all calls?
std::list<DSCallSite>::iterator I = CI;
Calls.erase(--I); // Remove entry
}
}
// Remove our knowledge of what the return values of the functions are, except
// for functions that are externally visible from this module (e.g. main). We
// keep these functions so that their arguments are marked incomplete.
for (DSGraph::ReturnNodesTy::iterator I =
ResultGraph->getReturnNodes().begin(),
E = ResultGraph->getReturnNodes().end(); I != E; )
if (I->first->hasInternalLinkage())
ResultGraph->getReturnNodes().erase(I++);
else
++I;
// Update the "incomplete" markers on the nodes, ignoring unknownness due to
// incoming arguments...
ResultGraph->maskIncompleteMarkers();
ResultGraph->markIncompleteNodes(DSGraph::IgnoreGlobals |
DSGraph::MarkFormalArgs);
// Remove any nodes that are dead after all of the merging we have done...
// FIXME: We should be able to disable the globals graph for steens!
//ResultGraph->removeDeadNodes(DSGraph::KeepUnreachableGlobals);
print(DOUT, &M);
return false;
}
AliasAnalysis::AliasResult Steens::alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size) {
assert(ResultGraph && "Result graph has not been computed yet!");
DSGraph::ScalarMapTy &GSM = ResultGraph->getScalarMap();
DSGraph::ScalarMapTy::iterator I = GSM.find(const_cast<Value*>(V1));
DSGraph::ScalarMapTy::iterator J = GSM.find(const_cast<Value*>(V2));
if (I != GSM.end() && !I->second.isNull() &&
J != GSM.end() && !J->second.isNull()) {
DSNodeHandle &V1H = I->second;
DSNodeHandle &V2H = J->second;
// If at least one of the nodes is complete, we can say something about
// this. If one is complete and the other isn't, then they are obviously
// different nodes. If they are both complete, we can't say anything
// useful.
if (I->second.getNode()->isComplete() ||
J->second.getNode()->isComplete()) {
// If the two pointers point to different data structure graph nodes, they
// cannot alias!
if (V1H.getNode() != V2H.getNode())
return NoAlias;
// See if they point to different offsets... if so, we may be able to
// determine that they do not alias...
unsigned O1 = I->second.getOffset(), O2 = J->second.getOffset();
if (O1 != O2) {
if (O2 < O1) { // Ensure that O1 <= O2
std::swap(V1, V2);
std::swap(O1, O2);
std::swap(V1Size, V2Size);
}
if (O1+V1Size <= O2)
return NoAlias;
}
}
}
// If we cannot determine alias properties based on our graph, fall back on
// some other AA implementation.
//
return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
}
AliasAnalysis::ModRefResult
Steens::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
AliasAnalysis::ModRefResult Result = ModRef;
// Find the node in question.
DSGraph::ScalarMapTy &GSM = ResultGraph->getScalarMap();
DSGraph::ScalarMapTy::iterator I = GSM.find(P);
if (I != GSM.end() && !I->second.isNull()) {
DSNode *N = I->second.getNode();
if (N->isComplete()) {
// If this is a direct call to an external function, and if the pointer
// points to a complete node, the external function cannot modify or read
// the value (we know it's not passed out of the program!).
if (Function *F = CS.getCalledFunction())
if (F->isExternal())
return NoModRef;
// Otherwise, if the node is complete, but it is only M or R, return this.
// This can be useful for globals that should be marked const but are not.
if (!N->isModified())
Result = (ModRefResult)(Result & ~Mod);
if (!N->isRead())
Result = (ModRefResult)(Result & ~Ref);
}
}
return (ModRefResult)(Result & AliasAnalysis::getModRefInfo(CS, P, Size));
}
AliasAnalysis::ModRefResult
Steens::getModRefInfo(CallSite CS1, CallSite CS2)
{
return AliasAnalysis::getModRefInfo(CS1,CS2);
}

View File

@ -1,466 +0,0 @@
//===- TopDownClosure.cpp - Compute the top-down interprocedure closure ---===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TDDataStructures class, which represents the
// Top-down Interprocedural closure of the data structure graph over the
// program. This is useful (but not strictly necessary?) for applications
// like pointer analysis.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "td_dsa"
#include "llvm/Analysis/DataStructure/DataStructure.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Analysis/DataStructure/DSGraph.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Timer.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
#if 0
#define TIME_REGION(VARNAME, DESC) \
NamedRegionTimer VARNAME(DESC)
#else
#define TIME_REGION(VARNAME, DESC)
#endif
namespace {
RegisterPass<TDDataStructures> // Register the pass
Y("tddatastructure", "Top-down Data Structure Analysis");
Statistic NumTDInlines("tddatastructures", "Number of graphs inlined");
}
void TDDataStructures::markReachableFunctionsExternallyAccessible(DSNode *N,
hash_set<DSNode*> &Visited) {
if (!N || Visited.count(N)) return;
Visited.insert(N);
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) {
DSNodeHandle &NH = N->getLink(i*N->getPointerSize());
if (DSNode *NN = NH.getNode()) {
std::vector<Function*> Functions;
NN->addFullFunctionList(Functions);
ArgsRemainIncomplete.insert(Functions.begin(), Functions.end());
markReachableFunctionsExternallyAccessible(NN, Visited);
}
}
}
// run - Calculate the top down data structure graphs for each function in the
// program.
//
bool TDDataStructures::runOnModule(Module &M) {
BUInfo = &getAnalysis<BUDataStructures>();
GlobalECs = BUInfo->getGlobalECs();
GlobalsGraph = new DSGraph(BUInfo->getGlobalsGraph(), GlobalECs);
GlobalsGraph->setPrintAuxCalls();
// Figure out which functions must not mark their arguments complete because
// they are accessible outside this compilation unit. Currently, these
// arguments are functions which are reachable by global variables in the
// globals graph.
const DSScalarMap &GGSM = GlobalsGraph->getScalarMap();
hash_set<DSNode*> Visited;
for (DSScalarMap::global_iterator I=GGSM.global_begin(), E=GGSM.global_end();
I != E; ++I) {
DSNode *N = GGSM.find(*I)->second.getNode();
if (N->isIncomplete())
markReachableFunctionsExternallyAccessible(N, Visited);
}
// Loop over unresolved call nodes. Any functions passed into (but not
// returned!) from unresolvable call nodes may be invoked outside of the
// current module.
for (DSGraph::afc_iterator I = GlobalsGraph->afc_begin(),
E = GlobalsGraph->afc_end(); I != E; ++I)
for (unsigned arg = 0, e = I->getNumPtrArgs(); arg != e; ++arg)
markReachableFunctionsExternallyAccessible(I->getPtrArg(arg).getNode(),
Visited);
Visited.clear();
// Functions without internal linkage also have unknown incoming arguments!
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal() && !I->hasInternalLinkage())
ArgsRemainIncomplete.insert(I);
// We want to traverse the call graph in reverse post-order. To do this, we
// calculate a post-order traversal, then reverse it.
hash_set<DSGraph*> VisitedGraph;
std::vector<DSGraph*> PostOrder;
#if 0
{TIME_REGION(XXX, "td:Copy graphs");
// Visit each of the graphs in reverse post-order now!
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal())
getOrCreateDSGraph(*I);
return false;
}
#endif
{TIME_REGION(XXX, "td:Compute postorder");
// Calculate top-down from main...
if (Function *F = M.getMainFunction())
ComputePostOrder(*F, VisitedGraph, PostOrder);
// Next calculate the graphs for each unreachable function...
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
ComputePostOrder(*I, VisitedGraph, PostOrder);
VisitedGraph.clear(); // Release memory!
}
{TIME_REGION(XXX, "td:Inline stuff");
// Visit each of the graphs in reverse post-order now!
while (!PostOrder.empty()) {
InlineCallersIntoGraph(*PostOrder.back());
PostOrder.pop_back();
}
}
// Free the IndCallMap.
while (!IndCallMap.empty()) {
delete IndCallMap.begin()->second;
IndCallMap.erase(IndCallMap.begin());
}
ArgsRemainIncomplete.clear();
GlobalsGraph->removeTriviallyDeadNodes();
return false;
}
DSGraph &TDDataStructures::getOrCreateDSGraph(Function &F) {
DSGraph *&G = DSInfo[&F];
if (G == 0) { // Not created yet? Clone BU graph...
G = new DSGraph(getAnalysis<BUDataStructures>().getDSGraph(F), GlobalECs,
DSGraph::DontCloneAuxCallNodes);
assert(G->getAuxFunctionCalls().empty() && "Cloned aux calls?");
G->setPrintAuxCalls();
G->setGlobalsGraph(GlobalsGraph);
// Note that this graph is the graph for ALL of the function in the SCC, not
// just F.
for (DSGraph::retnodes_iterator RI = G->retnodes_begin(),
E = G->retnodes_end(); RI != E; ++RI)
if (RI->first != &F)
DSInfo[RI->first] = G;
}
return *G;
}
void TDDataStructures::ComputePostOrder(Function &F,hash_set<DSGraph*> &Visited,
std::vector<DSGraph*> &PostOrder) {
if (F.isExternal()) return;
DSGraph &G = getOrCreateDSGraph(F);
if (Visited.count(&G)) return;
Visited.insert(&G);
// Recursively traverse all of the callee graphs.
for (DSGraph::fc_iterator CI = G.fc_begin(), CE = G.fc_end(); CI != CE; ++CI){
Instruction *CallI = CI->getCallSite().getInstruction();
for (BUDataStructures::callee_iterator I = BUInfo->callee_begin(CallI),
E = BUInfo->callee_end(CallI); I != E; ++I)
ComputePostOrder(*I->second, Visited, PostOrder);
}
PostOrder.push_back(&G);
}
// releaseMemory - If the pass pipeline is done with this pass, we can release
// our memory... here...
//
// FIXME: This should be releaseMemory and will work fine, except that LoadVN
// has no way to extend the lifetime of the pass, which screws up ds-aa.
//
void TDDataStructures::releaseMyMemory() {
for (hash_map<Function*, DSGraph*>::iterator I = DSInfo.begin(),
E = DSInfo.end(); I != E; ++I) {
I->second->getReturnNodes().erase(I->first);
if (I->second->getReturnNodes().empty())
delete I->second;
}
// Empty map so next time memory is released, data structures are not
// re-deleted.
DSInfo.clear();
delete GlobalsGraph;
GlobalsGraph = 0;
}
/// InlineCallersIntoGraph - Inline all of the callers of the specified DS graph
/// into it, then recompute completeness of nodes in the resultant graph.
void TDDataStructures::InlineCallersIntoGraph(DSGraph &DSG) {
// Inline caller graphs into this graph. First step, get the list of call
// sites that call into this graph.
std::vector<CallerCallEdge> EdgesFromCaller;
std::map<DSGraph*, std::vector<CallerCallEdge> >::iterator
CEI = CallerEdges.find(&DSG);
if (CEI != CallerEdges.end()) {
std::swap(CEI->second, EdgesFromCaller);
CallerEdges.erase(CEI);
}
// Sort the caller sites to provide a by-caller-graph ordering.
std::sort(EdgesFromCaller.begin(), EdgesFromCaller.end());
// Merge information from the globals graph into this graph. FIXME: This is
// stupid. Instead of us cloning information from the GG into this graph,
// then having RemoveDeadNodes clone it back, we should do all of this as a
// post-pass over all of the graphs. We need to take cloning out of
// removeDeadNodes and gut removeDeadNodes at the same time first though. :(
{
DSGraph &GG = *DSG.getGlobalsGraph();
ReachabilityCloner RC(DSG, GG,
DSGraph::DontCloneCallNodes |
DSGraph::DontCloneAuxCallNodes);
for (DSScalarMap::global_iterator
GI = DSG.getScalarMap().global_begin(),
E = DSG.getScalarMap().global_end(); GI != E; ++GI)
RC.getClonedNH(GG.getNodeForValue(*GI));
}
DOUT << "[TD] Inlining callers into '" << DSG.getFunctionNames() << "'\n";
// Iteratively inline caller graphs into this graph.
while (!EdgesFromCaller.empty()) {
DSGraph &CallerGraph = *EdgesFromCaller.back().CallerGraph;
// Iterate through all of the call sites of this graph, cloning and merging
// any nodes required by the call.
ReachabilityCloner RC(DSG, CallerGraph,
DSGraph::DontCloneCallNodes |
DSGraph::DontCloneAuxCallNodes);
// Inline all call sites from this caller graph.
do {
const DSCallSite &CS = *EdgesFromCaller.back().CS;
Function &CF = *EdgesFromCaller.back().CalledFunction;
DOUT << " [TD] Inlining graph into Fn '" << CF.getName() << "' from ";
if (CallerGraph.getReturnNodes().empty())
DOUT << "SYNTHESIZED INDIRECT GRAPH";
else
DOUT << "Fn '" << CS.getCallSite().getInstruction()->
getParent()->getParent()->getName() << "'";
DOUT << ": " << CF.getFunctionType()->getNumParams() << " args\n";
// Get the formal argument and return nodes for the called function and
// merge them with the cloned subgraph.
DSCallSite T1 = DSG.getCallSiteForArguments(CF);
RC.mergeCallSite(T1, CS);
++NumTDInlines;
EdgesFromCaller.pop_back();
} while (!EdgesFromCaller.empty() &&
EdgesFromCaller.back().CallerGraph == &CallerGraph);
}
// Next, now that this graph is finalized, we need to recompute the
// incompleteness markers for this graph and remove unreachable nodes.
DSG.maskIncompleteMarkers();
// If any of the functions has incomplete incoming arguments, don't mark any
// of them as complete.
bool HasIncompleteArgs = false;
for (DSGraph::retnodes_iterator I = DSG.retnodes_begin(),
E = DSG.retnodes_end(); I != E; ++I)
if (ArgsRemainIncomplete.count(I->first)) {
HasIncompleteArgs = true;
break;
}
// Recompute the Incomplete markers. Depends on whether args are complete
unsigned Flags
= HasIncompleteArgs ? DSGraph::MarkFormalArgs : DSGraph::IgnoreFormalArgs;
DSG.markIncompleteNodes(Flags | DSGraph::IgnoreGlobals);
// Delete dead nodes. Treat globals that are unreachable as dead also.
DSG.removeDeadNodes(DSGraph::RemoveUnreachableGlobals);
// We are done with computing the current TD Graph! Finally, before we can
// finish processing this function, we figure out which functions it calls and
// records these call graph edges, so that we have them when we process the
// callee graphs.
if (DSG.fc_begin() == DSG.fc_end()) return;
// Loop over all the call sites and all the callees at each call site, and add
// edges to the CallerEdges structure for each callee.
for (DSGraph::fc_iterator CI = DSG.fc_begin(), E = DSG.fc_end();
CI != E; ++CI) {
// Handle direct calls efficiently.
if (CI->isDirectCall()) {
if (!CI->getCalleeFunc()->isExternal() &&
!DSG.getReturnNodes().count(CI->getCalleeFunc()))
CallerEdges[&getDSGraph(*CI->getCalleeFunc())]
.push_back(CallerCallEdge(&DSG, &*CI, CI->getCalleeFunc()));
continue;
}
Instruction *CallI = CI->getCallSite().getInstruction();
// For each function in the invoked function list at this call site...
BUDataStructures::callee_iterator IPI =
BUInfo->callee_begin(CallI), IPE = BUInfo->callee_end(CallI);
// Skip over all calls to this graph (SCC calls).
while (IPI != IPE && &getDSGraph(*IPI->second) == &DSG)
++IPI;
// All SCC calls?
if (IPI == IPE) continue;
Function *FirstCallee = IPI->second;
++IPI;
// Skip over more SCC calls.
while (IPI != IPE && &getDSGraph(*IPI->second) == &DSG)
++IPI;
// If there is exactly one callee from this call site, remember the edge in
// CallerEdges.
if (IPI == IPE) {
if (!FirstCallee->isExternal())
CallerEdges[&getDSGraph(*FirstCallee)]
.push_back(CallerCallEdge(&DSG, &*CI, FirstCallee));
continue;
}
// Otherwise, there are multiple callees from this call site, so it must be
// an indirect call. Chances are that there will be other call sites with
// this set of targets. If so, we don't want to do M*N inlining operations,
// so we build up a new, private, graph that represents the calls of all
// calls to this set of functions.
std::vector<Function*> Callees;
for (BUDataStructures::ActualCalleesTy::const_iterator I =
BUInfo->callee_begin(CallI), E = BUInfo->callee_end(CallI);
I != E; ++I)
if (!I->second->isExternal())
Callees.push_back(I->second);
std::sort(Callees.begin(), Callees.end());
std::map<std::vector<Function*>, DSGraph*>::iterator IndCallRecI =
IndCallMap.lower_bound(Callees);
DSGraph *IndCallGraph;
// If we already have this graph, recycle it.
if (IndCallRecI != IndCallMap.end() && IndCallRecI->first == Callees) {
DOUT << " [TD] *** Reuse of indcall graph for " << Callees.size()
<< " callees!\n";
IndCallGraph = IndCallRecI->second;
} else {
// Otherwise, create a new DSGraph to represent this.
IndCallGraph = new DSGraph(DSG.getGlobalECs(), DSG.getTargetData());
// Make a nullary dummy call site, which will eventually get some content
// merged into it. The actual callee function doesn't matter here, so we
// just pass it something to keep the ctor happy.
std::vector<DSNodeHandle> ArgDummyVec;
DSCallSite DummyCS(CI->getCallSite(), DSNodeHandle(), Callees[0]/*dummy*/,
ArgDummyVec);
IndCallGraph->getFunctionCalls().push_back(DummyCS);
IndCallRecI = IndCallMap.insert(IndCallRecI,
std::make_pair(Callees, IndCallGraph));
// Additionally, make sure that each of the callees inlines this graph
// exactly once.
DSCallSite *NCS = &IndCallGraph->getFunctionCalls().front();
for (unsigned i = 0, e = Callees.size(); i != e; ++i) {
DSGraph& CalleeGraph = getDSGraph(*Callees[i]);
if (&CalleeGraph != &DSG)
CallerEdges[&CalleeGraph].push_back(CallerCallEdge(IndCallGraph, NCS,
Callees[i]));
}
}
// Now that we know which graph to use for this, merge the caller
// information into the graph, based on information from the call site.
ReachabilityCloner RC(*IndCallGraph, DSG, 0);
RC.mergeCallSite(IndCallGraph->getFunctionCalls().front(), *CI);
}
}
static const Function *getFnForValue(const Value *V) {
if (const Instruction *I = dyn_cast<Instruction>(V))
return I->getParent()->getParent();
else if (const Argument *A = dyn_cast<Argument>(V))
return A->getParent();
else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return BB->getParent();
return 0;
}
void TDDataStructures::deleteValue(Value *V) {
if (const Function *F = getFnForValue(V)) { // Function local value?
// If this is a function local value, just delete it from the scalar map!
getDSGraph(*F).getScalarMap().eraseIfExists(V);
return;
}
if (Function *F = dyn_cast<Function>(V)) {
assert(getDSGraph(*F).getReturnNodes().size() == 1 &&
"cannot handle scc's");
delete DSInfo[F];
DSInfo.erase(F);
return;
}
assert(!isa<GlobalVariable>(V) && "Do not know how to delete GV's yet!");
}
void TDDataStructures::copyValue(Value *From, Value *To) {
if (From == To) return;
if (const Function *F = getFnForValue(From)) { // Function local value?
// If this is a function local value, just delete it from the scalar map!
getDSGraph(*F).getScalarMap().copyScalarIfExists(From, To);
return;
}
if (Function *FromF = dyn_cast<Function>(From)) {
Function *ToF = cast<Function>(To);
assert(!DSInfo.count(ToF) && "New Function already exists!");
DSGraph *NG = new DSGraph(getDSGraph(*FromF), GlobalECs);
DSInfo[ToF] = NG;
assert(NG->getReturnNodes().size() == 1 && "Cannot copy SCC's yet!");
// Change the Function* is the returnnodes map to the ToF.
DSNodeHandle Ret = NG->retnodes_begin()->second;
NG->getReturnNodes().clear();
NG->getReturnNodes()[ToF] = Ret;
return;
}
if (const Function *F = getFnForValue(To)) {
DSGraph &G = getDSGraph(*F);
G.getScalarMap().copyScalarIfExists(From, To);
return;
}
DOUT << *From;
DOUT << *To;
assert(0 && "Do not know how to copy this yet!");
abort();
}