Revert "LiveRangeCalc: Rewrite subrange calculation"

Revert until I find out why non-subreg enabled targets break.

This reverts commit 6097277eefb9c5fb35a7f493c783ee1fd1b9d6a7.

llvm-svn: 224278
This commit is contained in:
Matthias Braun 2014-12-15 21:36:35 +00:00
parent 1c38396db7
commit c3a72c2e5f
3 changed files with 245 additions and 155 deletions

View File

@ -192,7 +192,8 @@ void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
assert(LRCalc && "LRCalc not initialized.");
assert(LI.empty() && "Should only compute empty intervals.");
LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
LRCalc->calculate(LI);
LRCalc->createDeadDefs(LI);
LRCalc->extendToUses(LI);
computeDeadValues(LI, LI);
}
@ -250,15 +251,22 @@ void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
// may share super-registers. That's OK because createDeadDefs() is
// idempotent. It is very rare for a register unit to have multiple roots, so
// uniquing super-registers is probably not worthwhile.
for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
Supers.isValid(); ++Supers) {
if (!MRI->reg_empty(*Supers))
LRCalc->createDeadDefs(LR, *Supers);
}
}
// Now extend LR to reach all uses.
// Ignore uses of reserved registers. We only track defs of those.
for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
Supers.isValid(); ++Supers) {
unsigned Reg = *Supers;
if (MRI->reg_empty(Reg))
continue;
// Ignore uses of reserved registers. We only track defs of those.
bool IgnoreUses = MRI->isReserved(Reg);
LRCalc->calculate(LR, *Supers, IgnoreUses);
if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
LRCalc->extendToUses(LR, Reg);
}
}
}

View File

@ -29,35 +29,31 @@ void LiveRangeCalc::reset(const MachineFunction *mf,
DomTree = MDT;
Alloc = VNIA;
unsigned NumBlocks = MF->getNumBlockIDs();
Seen.clear();
Seen.resize(NumBlocks);
Map.resize(NumBlocks);
MainLiveOutData.reset(MF->getNumBlockIDs());
LiveIn.clear();
}
static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc,
LiveRange &LR, const MachineOperand &MO) {
const MachineInstr *MI = MO.getParent();
SlotIndex DefIdx;
if (MI->isPHI()) {
DefIdx = Indexes.getMBBStartIdx(MI->getParent());
} else {
DefIdx = Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber());
}
// Create the def in LR. This may find an existing def.
LR.createDeadDef(DefIdx, Alloc);
static SlotIndex getDefIndex(const SlotIndexes &Indexes, const MachineInstr &MI,
bool EarlyClobber) {
// PHI defs begin at the basic block start index.
if (MI.isPHI())
return Indexes.getMBBStartIdx(MI.getParent());
// Instructions are either normal 'r', or early clobber 'e'.
return Indexes.getInstructionIndex(&MI).getRegSlot(EarlyClobber);
}
void LiveRangeCalc::calculate(LiveInterval &LI) {
void LiveRangeCalc::createDeadDefs(LiveInterval &LI) {
assert(MRI && Indexes && "call reset() first");
// Step 1: Create minimal live segments for every definition of Reg.
// Visit all def operands. If the same instruction has multiple defs of Reg,
// LR.createDeadDef() will deduplicate.
const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
unsigned Reg = LI.reg;
for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
for (const MachineOperand &MO : MRI->def_operands(Reg)) {
const MachineInstr *MI = MO.getParent();
SlotIndex Idx = getDefIndex(*Indexes, *MI, MO.isEarlyClobber());
unsigned SubReg = MO.getSubReg();
if (LI.hasSubRanges() || (SubReg != 0 && MRI->tracksSubRegLiveness())) {
unsigned Mask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
@ -86,108 +82,155 @@ void LiveRangeCalc::calculate(LiveInterval &LI) {
assert(Common == S.LaneMask);
CommonRange = &S;
}
if (MO.isDef())
createDeadDef(*Indexes, *Alloc, *CommonRange, MO);
CommonRange->createDeadDef(Idx, *Alloc);
Mask &= ~Common;
}
// Create a new SubRange for subregs we did not cover yet.
if (Mask != 0) {
LiveInterval::SubRange *NewRange = LI.createSubRange(*Alloc, Mask);
if (MO.isDef())
createDeadDef(*Indexes, *Alloc, *NewRange, MO);
LiveInterval::SubRange *SubRange = LI.createSubRange(*Alloc, Mask);
SubRange->createDeadDef(Idx, *Alloc);
}
}
// Create the def in the main liverange.
if (MO.isDef())
createDeadDef(*Indexes, *Alloc, LI, MO);
// Create the def in LR. This may find an existing def.
LI.createDeadDef(Idx, *Alloc);
}
// Step 2: Extend live segments to all uses, constructing SSA form as
// necessary.
for (LiveInterval::SubRange &S : LI.subranges()) {
extendToUses(S, Reg, S.LaneMask);
}
extendToUses(LI, Reg, ~0u);
}
void LiveRangeCalc::calculate(LiveRange &LR, unsigned Reg, bool IgnoreUses) {
void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
assert(MRI && Indexes && "call reset() first");
// Step 1: Create minimal live segments for every definition of Reg.
// Visit all def operands. If the same instruction has multiple defs of Reg,
// LR.createDeadDef() will deduplicate.
for (MachineOperand &MO : MRI->def_operands(Reg)) {
createDeadDef(*Indexes, *Alloc, LR, MO);
const MachineInstr *MI = MO.getParent();
SlotIndex Idx = getDefIndex(*Indexes, *MI, MO.isEarlyClobber());
// Create the def in LR. This may find an existing def.
LR.createDeadDef(Idx, *Alloc);
}
// Step 2: Extend live segments to all uses, constructing SSA form as
// necessary.
if (!IgnoreUses)
extendToUses(LR, Reg, ~0u);
}
void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, unsigned Mask) {
unsigned NumBlocks = MF->getNumBlockIDs();
Seen.clear();
Seen.resize(NumBlocks);
Map.resize(NumBlocks);
static SlotIndex getUseIndex(const SlotIndexes &Indexes,
const MachineOperand &MO) {
const MachineInstr *MI = MO.getParent();
unsigned OpNo = (&MO - &MI->getOperand(0));
if (MI->isPHI()) {
assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
// The actual place where a phi operand is used is the end of the pred MBB.
// PHI operands are paired: (Reg, PredMBB).
return Indexes.getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
}
// Check for early-clobber redefs.
bool isEarlyClobber = false;
unsigned DefIdx;
if (MO.isDef()) {
isEarlyClobber = MO.isEarlyClobber();
} else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
// FIXME: This would be a lot easier if tied early-clobber uses also
// had an early-clobber flag.
isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
}
return Indexes.getInstructionIndex(MI).getRegSlot(isEarlyClobber);
}
void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg) {
assert(MRI && Indexes && "call reset() first");
// Visit all operands that read Reg. This may include partial defs.
const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
// Clear all kill flags. They will be reinserted after register allocation
// by LiveIntervalAnalysis::addKillFlags().
if (MO.isUse())
MO.setIsKill(false);
// We are only interested in uses. For the main range this also includes
// the reads happening on partial register defs.
if (!MO.isUse() && (!MO.readsReg() || Mask != ~0u))
if (!MO.readsReg())
continue;
unsigned SubReg = MO.getSubReg();
if (SubReg != 0) {
unsigned SubRegMask = TRI.getSubRegIndexLaneMask(SubReg);
// Ignore uses not covering the current subrange.
if ((SubRegMask & Mask) == 0)
continue;
// The create dead-defs logic in calculate() splits subranges as fine as
// necessary for all uses, so SubRegMask shouldn't be smaller than Mask.
assert((SubRegMask & ~Mask) == 0);
}
// Determine the actual place of the use.
const MachineInstr *MI = MO.getParent();
unsigned OpNo = (&MO - &MI->getOperand(0));
SlotIndex UseIdx;
if (MI->isPHI()) {
assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
// The actual place where a phi operand is used is the end of the pred
// MBB. PHI operands are paired: (Reg, PredMBB).
UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
} else {
// Check for early-clobber redefs.
bool isEarlyClobber = false;
unsigned DefIdx;
if (MO.isDef()) {
isEarlyClobber = MO.isEarlyClobber();
} else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
// FIXME: This would be a lot easier if tied early-clobber uses also
// had an early-clobber flag.
isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
}
UseIdx = Indexes->getInstructionIndex(MI).getRegSlot(isEarlyClobber);
}
// MI is reading Reg. We may have visited MI before if it happens to be
// reading Reg multiple times. That is OK, extend() is idempotent.
extend(LR, UseIdx, Reg);
SlotIndex Idx = getUseIndex(*Indexes, MO);
extend(LR, Idx, Reg, MainLiveOutData);
}
}
void LiveRangeCalc::updateFromLiveIns() {
void LiveRangeCalc::extendToUses(LiveInterval &LI) {
assert(MRI && Indexes && "call reset() first");
const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
SmallVector<LiveOutData,2> LiveOuts;
unsigned NumSubRanges = 0;
for (const auto &S : LI.subranges()) {
(void)S;
++NumSubRanges;
LiveOuts.push_back(LiveOutData());
LiveOuts.back().reset(MF->getNumBlockIDs());
}
// Visit all operands that read Reg. This may include partial defs.
unsigned Reg = LI.reg;
for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
// Clear all kill flags. They will be reinserted after register allocation
// by LiveIntervalAnalysis::addKillFlags().
if (MO.isUse())
MO.setIsKill(false);
if (!MO.readsReg())
continue;
SlotIndex Idx = getUseIndex(*Indexes, MO);
unsigned SubReg = MO.getSubReg();
if (MO.isUse() && (LI.hasSubRanges() ||
(MRI->tracksSubRegLiveness() && SubReg != 0))) {
unsigned Mask = SubReg != 0
? TRI.getSubRegIndexLaneMask(SubReg)
: MRI->getMaxLaneMaskForVReg(Reg);
// If this is the first time we see a subregister def/use. Initialize
// subranges by creating a copy of the main range.
if (!LI.hasSubRanges()) {
unsigned ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
LI.createSubRangeFrom(*Alloc, ClassMask, LI);
LiveOuts.insert(LiveOuts.begin(), LiveOutData());
LiveOuts.front().reset(MF->getNumBlockIDs());
++NumSubRanges;
}
unsigned SubRangeIdx = 0;
for (LiveInterval::subrange_iterator S = LI.subrange_begin(),
SE = LI.subrange_end(); S != SE; ++S, ++SubRangeIdx) {
// A Mask for subregs common to the existing subrange and current def.
unsigned Common = S->LaneMask & Mask;
if (Common == 0)
continue;
// A Mask for subregs covered by the subrange but not the current def.
unsigned LRest = S->LaneMask & ~Mask;
LiveInterval::SubRange *CommonRange;
unsigned CommonRangeIdx;
if (LRest != 0) {
// Split current subrange into Common and LRest ranges.
S->LaneMask = LRest;
CommonRange = LI.createSubRangeFrom(*Alloc, Common, *S);
CommonRangeIdx = 0;
LiveOuts.insert(LiveOuts.begin(), LiveOutData());
LiveOuts.front().reset(MF->getNumBlockIDs());
++NumSubRanges;
++SubRangeIdx;
} else {
// The subrange and current def lanemasks match completely.
assert(Common == S->LaneMask);
CommonRange = &*S;
CommonRangeIdx = SubRangeIdx;
}
extend(*CommonRange, Idx, Reg, LiveOuts[CommonRangeIdx]);
Mask &= ~Common;
}
assert(SubRangeIdx == NumSubRanges);
}
extend(LI, Idx, Reg, MainLiveOutData);
}
}
void LiveRangeCalc::updateFromLiveIns(LiveOutData &LiveOuts) {
LiveRangeUpdater Updater;
for (const LiveInBlock &I : LiveIn) {
if (!I.DomNode)
@ -203,8 +246,8 @@ void LiveRangeCalc::updateFromLiveIns() {
else {
// The value is live-through, update LiveOut as well.
// Defer the Domtree lookup until it is needed.
assert(Seen.test(MBB->getNumber()));
Map[MBB] = LiveOutPair(I.Value, nullptr);
assert(LiveOuts.Seen.test(MBB->getNumber()));
LiveOuts.Map[MBB] = LiveOutPair(I.Value, nullptr);
}
Updater.setDest(&I.LR);
Updater.add(Start, End, I.Value);
@ -213,7 +256,8 @@ void LiveRangeCalc::updateFromLiveIns() {
}
void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg) {
void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg,
LiveOutData &LiveOuts) {
assert(Kill.isValid() && "Invalid SlotIndex");
assert(Indexes && "Missing SlotIndexes");
assert(DomTree && "Missing dominator tree");
@ -229,27 +273,28 @@ void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg) {
// multiple values, and we may need to create even more phi-defs to preserve
// VNInfo SSA form. Perform a search for all predecessor blocks where we
// know the dominating VNInfo.
if (findReachingDefs(LR, *KillMBB, Kill, PhysReg))
if (findReachingDefs(LR, *KillMBB, Kill, PhysReg, LiveOuts))
return;
// When there were multiple different values, we may need new PHIs.
calculateValues();
calculateValues(LiveOuts);
}
// This function is called by a client after using the low-level API to add
// live-out and live-in blocks. The unique value optimization is not
// available, SplitEditor::transferValues handles that case directly anyway.
void LiveRangeCalc::calculateValues() {
void LiveRangeCalc::calculateValues(LiveOutData &LiveOuts) {
assert(Indexes && "Missing SlotIndexes");
assert(DomTree && "Missing dominator tree");
updateSSA();
updateFromLiveIns();
updateSSA(LiveOuts);
updateFromLiveIns(LiveOuts);
}
bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
SlotIndex Kill, unsigned PhysReg) {
SlotIndex Kill, unsigned PhysReg,
LiveOutData &LiveOuts) {
unsigned KillMBBNum = KillMBB.getNumber();
// Block numbers where LR should be live-in.
@ -283,8 +328,8 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
MachineBasicBlock *Pred = *PI;
// Is this a known live-out block?
if (Seen.test(Pred->getNumber())) {
if (VNInfo *VNI = Map[Pred].first) {
if (LiveOuts.Seen.test(Pred->getNumber())) {
if (VNInfo *VNI = LiveOuts.Map[Pred].first) {
if (TheVNI && TheVNI != VNI)
UniqueVNI = false;
TheVNI = VNI;
@ -298,7 +343,7 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
// First time we see Pred. Try to determine the live-out value, but set
// it as null if Pred is live-through with an unknown value.
VNInfo *VNI = LR.extendInBlock(Start, End);
setLiveOutValue(Pred, VNI);
LiveOuts.setLiveOutValue(Pred, VNI);
if (VNI) {
if (TheVNI && TheVNI != VNI)
UniqueVNI = false;
@ -333,7 +378,8 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
if (*I == KillMBBNum && Kill.isValid())
End = Kill;
else
Map[MF->getBlockNumbered(*I)] = LiveOutPair(TheVNI, nullptr);
LiveOuts.Map[MF->getBlockNumbered(*I)] =
LiveOutPair(TheVNI, nullptr);
Updater.add(Start, End, TheVNI);
}
return true;
@ -356,7 +402,7 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
// This is essentially the same iterative algorithm that SSAUpdater uses,
// except we already have a dominator tree, so we don't have to recompute it.
void LiveRangeCalc::updateSSA() {
void LiveRangeCalc::updateSSA(LiveOutData &LiveOuts) {
assert(Indexes && "Missing SlotIndexes");
assert(DomTree && "Missing dominator tree");
@ -377,22 +423,23 @@ void LiveRangeCalc::updateSSA() {
// We need a live-in value to a block with no immediate dominator?
// This is probably an unreachable block that has survived somehow.
bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());
bool needPHI = !IDom
|| !LiveOuts.Seen.test(IDom->getBlock()->getNumber());
// IDom dominates all of our predecessors, but it may not be their
// immediate dominator. Check if any of them have live-out values that are
// properly dominated by IDom. If so, we need a phi-def here.
if (!needPHI) {
IDomValue = Map[IDom->getBlock()];
IDomValue = LiveOuts.Map[IDom->getBlock()];
// Cache the DomTree node that defined the value.
if (IDomValue.first && !IDomValue.second)
Map[IDom->getBlock()].second = IDomValue.second =
LiveOuts.Map[IDom->getBlock()].second = IDomValue.second =
DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
LiveOutPair &Value = Map[*PI];
LiveOutPair &Value = LiveOuts.Map[*PI];
if (!Value.first || Value.first == IDomValue.first)
continue;
@ -414,7 +461,7 @@ void LiveRangeCalc::updateSSA() {
// The value may be live-through even if Kill is set, as can happen when
// we are called from extendRange. In that case LiveOutSeen is true, and
// LiveOut indicates a foreign or missing value.
LiveOutPair &LOP = Map[MBB];
LiveOutPair &LOP = LiveOuts.Map[MBB];
// Create a phi-def if required.
if (needPHI) {

View File

@ -47,30 +47,44 @@ class LiveRangeCalc {
/// LiveOutMap - Map basic blocks to the value leaving the block.
typedef IndexedMap<LiveOutPair, MBB2NumberFunctor> LiveOutMap;
/// Seen - Bit vector of active entries in LiveOut, also used as a visited
/// set by findReachingDefs. One entry per basic block, indexed by block
/// number. This is kept as a separate bit vector because it can be cleared
/// quickly when switching live ranges.
BitVector Seen;
struct LiveOutData {
/// Seen - Bit vector of active entries in LiveOut, also used as a visited
/// set by findReachingDefs. One entry per basic block, indexed by block
/// number. This is kept as a separate bit vector because it can be cleared
/// quickly when switching live ranges.
BitVector Seen;
/// LiveOut - Map each basic block where a live range is live out to the
/// live-out value and its defining block.
///
/// For every basic block, MBB, one of these conditions shall be true:
///
/// 1. !Seen.count(MBB->getNumber())
/// Blocks without a Seen bit are ignored.
/// 2. LiveOut[MBB].second.getNode() == MBB
/// The live-out value is defined in MBB.
/// 3. forall P in preds(MBB): LiveOut[P] == LiveOut[MBB]
/// The live-out value passses through MBB. All predecessors must carry
/// the same value.
///
/// The domtree node may be null, it can be computed.
///
/// The map can be shared by multiple live ranges as long as no two are
/// live-out of the same block.
LiveOutMap Map;
/// LiveOut - Map each basic block where a live range is live out to the
/// live-out value and its defining block.
///
/// For every basic block, MBB, one of these conditions shall be true:
///
/// 1. !Seen.count(MBB->getNumber())
/// Blocks without a Seen bit are ignored.
/// 2. LiveOut[MBB].second.getNode() == MBB
/// The live-out value is defined in MBB.
/// 3. forall P in preds(MBB): LiveOut[P] == LiveOut[MBB]
/// The live-out value passses through MBB. All predecessors must carry
/// the same value.
///
/// The domtree node may be null, it can be computed.
///
/// The map can be shared by multiple live ranges as long as no two are
/// live-out of the same block.
LiveOutMap Map;
void reset(unsigned NumBlocks) {
Seen.clear();
Seen.resize(NumBlocks);
Map.resize(NumBlocks);
}
void setLiveOutValue(MachineBasicBlock *MBB, VNInfo *VNI) {
Seen.set(MBB->getNumber());
Map[MBB] = LiveOutPair(VNI, nullptr);
}
};
LiveOutData MainLiveOutData;
/// LiveInBlock - Information about a basic block where a live range is known
/// to be live-in, but the value has not yet been determined.
@ -112,24 +126,19 @@ class LiveRangeCalc {
///
/// PhysReg, when set, is used to verify live-in lists on basic blocks.
bool findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
SlotIndex Kill, unsigned PhysReg);
SlotIndex Kill, unsigned PhysReg,
LiveOutData &LiveOuts);
/// updateSSA - Compute the values that will be live in to all requested
/// blocks in LiveIn. Create PHI-def values as required to preserve SSA form.
///
/// Every live-in block must be jointly dominated by the added live-out
/// blocks. No values are read from the live ranges.
void updateSSA();
void updateSSA(LiveOutData &LiveOuts);
/// Transfer information from the LiveIn vector to the live ranges and update
/// the given @p LiveOuts.
void updateFromLiveIns();
/// Extend the live range of @p LR to reach all uses of Reg.
///
/// All uses must be jointly dominated by existing liveness. PHI-defs are
/// inserted as needed to preserve SSA form.
void extendToUses(LiveRange &LR, unsigned Reg, unsigned LaneMask = ~0u);
void updateFromLiveIns(LiveOutData &LiveOuts);
public:
LiveRangeCalc() : MF(nullptr), MRI(nullptr), Indexes(nullptr),
@ -167,16 +176,39 @@ public:
/// single existing value, Alloc may be null.
///
/// PhysReg, when set, is used to verify live-in lists on basic blocks.
void extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg = 0);
void extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg,
LiveOutData &LiveOuts);
/// Calculates liveness for the uses/defs of a given registers. The results
/// are written to @p LR.
void calculate(LiveRange &LR, unsigned Reg, bool IgnoreUses);
void extend(LiveRange &LR, SlotIndex Kill) {
extend(LR, Kill, 0, MainLiveOutData);
}
/// Calculates liveness for the register specified in live interval @p LI.
/// Creates subregister live ranges as needed if subreg liveness tracking is
/// enabled.
void calculate(LiveInterval &LI);
/// createDeadDefs - Create a dead def in LI for every def operand of Reg.
/// Each instruction defining Reg gets a new VNInfo with a corresponding
/// minimal live range.
void createDeadDefs(LiveRange &LR, unsigned Reg);
/// Subregister aware version of createDeadDefs(LiveRange &LR, unsigned Reg).
/// If subregister liveness tracking is enabled new subranges are created as
/// necessary when subregister defs are found. As with
/// createDeadDefs(LiveRange &LR, unsigned Reg) new short live segments are
/// created for every def of LI.reg. The new segments start and end at the
/// defining instruction (hence the name "DeadDef").
void createDeadDefs(LiveInterval &LI);
/// extendToUses - Extend the live range of LI to reach all uses of Reg.
///
/// All uses must be jointly dominated by existing liveness. PHI-defs are
/// inserted as needed to preserve SSA form.
void extendToUses(LiveRange &LR, unsigned Reg);
/// Subregister aware version of extendToUses(LiveRange &LR, unsigned Reg).
/// If subregister liveness tracking is enabled new subranges are created
/// as necessary when subregister uses are found. As with
/// extendToUses(LiveRange &LR, unsigned Reg) the segments existing at the
/// defs are extend until they reach all uses. New value numbers are created
/// at CFG joins as necessary (SSA construction).
void extendToUses(LiveInterval &LI);
//===--------------------------------------------------------------------===//
// Low-level interface.
@ -198,8 +230,7 @@ public:
/// VNI may be null only if MBB is a live-through block also passed to
/// addLiveInBlock().
void setLiveOutValue(MachineBasicBlock *MBB, VNInfo *VNI) {
Seen.set(MBB->getNumber());
Map[MBB] = LiveOutPair(VNI, nullptr);
MainLiveOutData.setLiveOutValue(MBB, VNI);
}
/// addLiveInBlock - Add a block with an unknown live-in value. This
@ -224,7 +255,11 @@ public:
///
/// Every predecessor of a live-in block must have been given a value with
/// setLiveOutValue, the value may be null for live-trough blocks.
void calculateValues();
void calculateValues(LiveOutData &LiveOuts);
void calculateValues() {
calculateValues(MainLiveOutData);
}
};
} // end namespace llvm