[asan] For iOS/AArch64, if the dynamic shadow doesn't fit, restrict the VM space

On iOS/AArch64, the address space is very limited and has a dynamic maximum address based on the configuration of the device. We're already using a dynamic shadow, and we find a large-enough "gap" in the VM where we place the shadow memory. In some cases and some device configuration, we might not be able to find a large-enough gap: E.g. if the main executable is linked against a large number of libraries that are not part of the system, these libraries can fragment the address space, and this happens before ASan starts initializing.

This patch has a solution, where we have a "backup plan" when we cannot find a large-enough gap: We will restrict the address space (via MmapFixedNoAccess) to a limit, for which the shadow limit will fit.

Differential Revision: https://reviews.llvm.org/D35098

llvm-svn: 307865
This commit is contained in:
Kuba Mracek 2017-07-12 23:29:21 +00:00
parent 07df59b7b6
commit c1e903be19
12 changed files with 93 additions and 17 deletions

View File

@ -75,6 +75,7 @@ void NORETURN ShowStatsAndAbort();
void ReplaceSystemMalloc(); void ReplaceSystemMalloc();
// asan_linux.cc / asan_mac.cc / asan_win.cc // asan_linux.cc / asan_mac.cc / asan_win.cc
uptr FindDynamicShadowStart();
void *AsanDoesNotSupportStaticLinkage(); void *AsanDoesNotSupportStaticLinkage();
void AsanCheckDynamicRTPrereqs(); void AsanCheckDynamicRTPrereqs();
void AsanCheckIncompatibleRT(); void AsanCheckIncompatibleRT();

View File

@ -77,6 +77,11 @@ void *AsanDoesNotSupportStaticLinkage() {
return &_DYNAMIC; // defined in link.h return &_DYNAMIC; // defined in link.h
} }
uptr FindDynamicShadowStart() {
UNREACHABLE("FindDynamicShadowStart is not available");
return 0;
}
void AsanApplyToGlobals(globals_op_fptr op, const void *needle) { void AsanApplyToGlobals(globals_op_fptr op, const void *needle) {
UNIMPLEMENTED(); UNIMPLEMENTED();
} }

View File

@ -55,6 +55,29 @@ void *AsanDoesNotSupportStaticLinkage() {
return 0; return 0;
} }
uptr FindDynamicShadowStart() {
uptr granularity = GetMmapGranularity();
uptr alignment = 8 * granularity;
uptr left_padding = granularity;
uptr space_size = kHighShadowEnd + left_padding;
uptr largest_gap_found = 0;
uptr shadow_start = FindAvailableMemoryRange(space_size, alignment,
granularity, &largest_gap_found);
// If the shadow doesn't fit, restrict the address space to make it fit.
if (shadow_start == 0) {
uptr new_max_vm = RoundDownTo(largest_gap_found << SHADOW_SCALE, alignment);
RestrictMemoryToMaxAddress(new_max_vm);
kHighMemEnd = new_max_vm - 1;
space_size = kHighShadowEnd + left_padding;
shadow_start =
FindAvailableMemoryRange(space_size, alignment, granularity, nullptr);
}
CHECK_NE((uptr)0, shadow_start);
CHECK(IsAligned(shadow_start, alignment));
return shadow_start;
}
// No-op. Mac does not support static linkage anyway. // No-op. Mac does not support static linkage anyway.
void AsanCheckDynamicRTPrereqs() {} void AsanCheckDynamicRTPrereqs() {}

View File

@ -438,15 +438,7 @@ static void InitializeShadowMemory() {
if (shadow_start == kDefaultShadowSentinel) { if (shadow_start == kDefaultShadowSentinel) {
__asan_shadow_memory_dynamic_address = 0; __asan_shadow_memory_dynamic_address = 0;
CHECK_EQ(0, kLowShadowBeg); CHECK_EQ(0, kLowShadowBeg);
shadow_start = FindDynamicShadowStart();
uptr granularity = GetMmapGranularity();
uptr alignment = 8 * granularity;
uptr left_padding = granularity;
uptr space_size = kHighShadowEnd + left_padding;
shadow_start = FindAvailableMemoryRange(space_size, alignment, granularity);
CHECK_NE((uptr)0, shadow_start);
CHECK(IsAligned(shadow_start, alignment));
} }
// Update the shadow memory address (potentially) used by instrumentation. // Update the shadow memory address (potentially) used by instrumentation.
__asan_shadow_memory_dynamic_address = shadow_start; __asan_shadow_memory_dynamic_address = shadow_start;

View File

@ -217,6 +217,18 @@ void *AsanDoesNotSupportStaticLinkage() {
return 0; return 0;
} }
uptr FindDynamicShadowStart() {
uptr granularity = GetMmapGranularity();
uptr alignment = 8 * granularity;
uptr left_padding = granularity;
uptr space_size = kHighShadowEnd + left_padding;
uptr shadow_start =
FindAvailableMemoryRange(space_size, alignment, granularity, nullptr);
CHECK_NE((uptr)0, shadow_start);
CHECK(IsAligned(shadow_start, alignment));
return shadow_start;
}
void AsanCheckDynamicRTPrereqs() {} void AsanCheckDynamicRTPrereqs() {}
void AsanCheckIncompatibleRT() {} void AsanCheckIncompatibleRT() {}

View File

@ -58,6 +58,7 @@ set(SANITIZER_LIBCDEP_SOURCES
sanitizer_coverage_libcdep_new.cc sanitizer_coverage_libcdep_new.cc
sanitizer_coverage_win_sections.cc sanitizer_coverage_win_sections.cc
sanitizer_linux_libcdep.cc sanitizer_linux_libcdep.cc
sanitizer_mac_libcdep.cc
sanitizer_posix_libcdep.cc sanitizer_posix_libcdep.cc
sanitizer_stacktrace_libcdep.cc sanitizer_stacktrace_libcdep.cc
sanitizer_stoptheworld_linux_libcdep.cc sanitizer_stoptheworld_linux_libcdep.cc

View File

@ -107,7 +107,8 @@ bool MprotectNoAccess(uptr addr, uptr size);
bool MprotectReadOnly(uptr addr, uptr size); bool MprotectReadOnly(uptr addr, uptr size);
// Find an available address space. // Find an available address space.
uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding); uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
uptr *largest_gap_found);
// Used to check if we can map shadow memory to a fixed location. // Used to check if we can map shadow memory to a fixed location.
bool MemoryRangeIsAvailable(uptr range_start, uptr range_end); bool MemoryRangeIsAvailable(uptr range_start, uptr range_end);

View File

@ -1671,7 +1671,8 @@ void CheckNoDeepBind(const char *filename, int flag) {
#endif #endif
} }
uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding) { uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
uptr *largest_gap_found) {
UNREACHABLE("FindAvailableMemoryRange is not available"); UNREACHABLE("FindAvailableMemoryRange is not available");
return 0; return 0;
} }

View File

@ -840,7 +840,8 @@ uptr GetMaxVirtualAddress() {
uptr FindAvailableMemoryRange(uptr shadow_size, uptr FindAvailableMemoryRange(uptr shadow_size,
uptr alignment, uptr alignment,
uptr left_padding) { uptr left_padding,
uptr *largest_gap_found) {
typedef vm_region_submap_short_info_data_64_t RegionInfo; typedef vm_region_submap_short_info_data_64_t RegionInfo;
enum { kRegionInfoSize = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64 }; enum { kRegionInfoSize = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64 };
// Start searching for available memory region past PAGEZERO, which is // Start searching for available memory region past PAGEZERO, which is
@ -851,6 +852,7 @@ uptr FindAvailableMemoryRange(uptr shadow_size,
mach_vm_address_t address = start_address; mach_vm_address_t address = start_address;
mach_vm_address_t free_begin = start_address; mach_vm_address_t free_begin = start_address;
kern_return_t kr = KERN_SUCCESS; kern_return_t kr = KERN_SUCCESS;
if (largest_gap_found) *largest_gap_found = 0;
while (kr == KERN_SUCCESS) { while (kr == KERN_SUCCESS) {
mach_vm_size_t vmsize = 0; mach_vm_size_t vmsize = 0;
natural_t depth = 0; natural_t depth = 0;
@ -860,10 +862,15 @@ uptr FindAvailableMemoryRange(uptr shadow_size,
(vm_region_info_t)&vminfo, &count); (vm_region_info_t)&vminfo, &count);
if (free_begin != address) { if (free_begin != address) {
// We found a free region [free_begin..address-1]. // We found a free region [free_begin..address-1].
uptr shadow_address = RoundUpTo((uptr)free_begin + left_padding, uptr gap_start = RoundUpTo((uptr)free_begin + left_padding, alignment);
alignment); uptr gap_end = RoundDownTo((uptr)address, alignment);
if (shadow_address + shadow_size < (uptr)address) { uptr gap_size = gap_end > gap_start ? gap_end - gap_start : 0;
return shadow_address; if (shadow_size < gap_size) {
return gap_start;
}
if (largest_gap_found && *largest_gap_found < gap_size) {
*largest_gap_found = gap_size;
} }
} }
// Move to the next region. // Move to the next region.

View File

@ -36,6 +36,8 @@ MacosVersion GetMacosVersion();
char **GetEnviron(); char **GetEnviron();
void RestrictMemoryToMaxAddress(uptr max_address);
} // namespace __sanitizer } // namespace __sanitizer
extern "C" { extern "C" {

View File

@ -0,0 +1,30 @@
//===-- sanitizer_mac_libcdep.cc ------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is shared between various sanitizers' runtime libraries and
// implements OSX-specific functions.
//===----------------------------------------------------------------------===//
#include "sanitizer_platform.h"
#if SANITIZER_MAC
#include "sanitizer_mac.h"
#include <sys/mman.h>
namespace __sanitizer {
void RestrictMemoryToMaxAddress(uptr max_address) {
uptr size_to_mmap = GetMaxVirtualAddress() + 1 - max_address;
void *res = MmapFixedNoAccess(max_address, size_to_mmap, "high gap");
CHECK(res != MAP_FAILED);
}
} // namespace __sanitizer
#endif // SANITIZER_MAC

View File

@ -291,7 +291,8 @@ void DontDumpShadowMemory(uptr addr, uptr length) {
// FIXME: add madvise-analog when we move to 64-bits. // FIXME: add madvise-analog when we move to 64-bits.
} }
uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding) { uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
uptr *largest_gap_found) {
uptr address = 0; uptr address = 0;
while (true) { while (true) {
MEMORY_BASIC_INFORMATION info; MEMORY_BASIC_INFORMATION info;