Classify llvm-cfi-verify.

Summary: Move llvm-cfi-verify into a class in preparation for CFI analysis to come.

Reviewers: vlad.tsyrklevich

Reviewed By: vlad.tsyrklevich

Subscribers: mgorny, llvm-commits, pcc, kcc

Differential Revision: https://reviews.llvm.org/D38379

llvm-svn: 315363
This commit is contained in:
Vlad Tsyrklevich 2017-10-10 20:59:08 +00:00
parent b994128d14
commit b5488a2281
7 changed files with 683 additions and 197 deletions

View File

@ -13,4 +13,5 @@ set(LLVM_LINK_COMPONENTS
add_llvm_tool(llvm-cfi-verify
llvm-cfi-verify.cpp
FileAnalysis.cpp
)

View File

@ -0,0 +1,274 @@
//===- FileAnalysis.cpp -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "FileAnalysis.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include <functional>
using Instr = llvm::cfi_verify::FileAnalysis::Instr;
namespace llvm {
namespace cfi_verify {
Expected<FileAnalysis> FileAnalysis::Create(StringRef Filename) {
// Open the filename provided.
Expected<object::OwningBinary<object::Binary>> BinaryOrErr =
object::createBinary(Filename);
if (!BinaryOrErr)
return BinaryOrErr.takeError();
// Construct the object and allow it to take ownership of the binary.
object::OwningBinary<object::Binary> Binary = std::move(BinaryOrErr.get());
FileAnalysis Analysis(std::move(Binary));
Analysis.Object = dyn_cast<object::ObjectFile>(Analysis.Binary.getBinary());
if (!Analysis.Object)
return make_error<UnsupportedDisassembly>();
Analysis.ObjectTriple = Analysis.Object->makeTriple();
Analysis.Features = Analysis.Object->getFeatures();
// Init the rest of the object.
if (auto InitResponse = Analysis.initialiseDisassemblyMembers())
return std::move(InitResponse);
if (auto SectionParseResponse = Analysis.parseCodeSections())
return std::move(SectionParseResponse);
return std::move(Analysis);
}
FileAnalysis::FileAnalysis(object::OwningBinary<object::Binary> Binary)
: Binary(std::move(Binary)) {}
FileAnalysis::FileAnalysis(const Triple &ObjectTriple,
const SubtargetFeatures &Features)
: ObjectTriple(ObjectTriple), Features(Features) {}
const Instr *
FileAnalysis::getPrevInstructionSequential(const Instr &InstrMeta) const {
std::map<uint64_t, Instr>::const_iterator KV =
Instructions.find(InstrMeta.VMAddress);
if (KV == Instructions.end() || KV == Instructions.begin())
return nullptr;
if (!(--KV)->second.Valid)
return nullptr;
return &KV->second;
}
const Instr *
FileAnalysis::getNextInstructionSequential(const Instr &InstrMeta) const {
std::map<uint64_t, Instr>::const_iterator KV =
Instructions.find(InstrMeta.VMAddress);
if (KV == Instructions.end() || ++KV == Instructions.end())
return nullptr;
if (!KV->second.Valid)
return nullptr;
return &KV->second;
}
bool FileAnalysis::usesRegisterOperand(const Instr& InstrMeta) const {
for (const auto &Operand : InstrMeta.Instruction) {
if (Operand.isReg())
return true;
}
return false;
}
const Instr *FileAnalysis::getInstruction(uint64_t Address) const {
const auto &InstrKV = Instructions.find(Address);
if (InstrKV == Instructions.end())
return nullptr;
return &InstrKV->second;
}
const Instr &FileAnalysis::getInstructionOrDie(uint64_t Address) const {
const auto &InstrKV = Instructions.find(Address);
assert(InstrKV != Instructions.end() && "Address doesn't exist.");
return InstrKV->second;
}
const std::set<uint64_t> &FileAnalysis::getIndirectInstructions() const {
return IndirectInstructions;
}
const MCRegisterInfo *FileAnalysis::getRegisterInfo() const {
return RegisterInfo.get();
}
const MCInstrInfo *FileAnalysis::getMCInstrInfo() const { return MII.get(); }
const MCInstrAnalysis *FileAnalysis::getMCInstrAnalysis() const {
return MIA.get();
}
Error FileAnalysis::initialiseDisassemblyMembers() {
std::string TripleName = ObjectTriple.getTriple();
ArchName = "";
MCPU = "";
std::string ErrorString;
ObjectTarget =
TargetRegistry::lookupTarget(ArchName, ObjectTriple, ErrorString);
if (!ObjectTarget)
return make_error<StringError>(Twine("Couldn't find target \"") +
ObjectTriple.getTriple() +
"\", failed with error: " + ErrorString,
inconvertibleErrorCode());
RegisterInfo.reset(ObjectTarget->createMCRegInfo(TripleName));
if (!RegisterInfo)
return make_error<StringError>("Failed to initialise RegisterInfo.",
inconvertibleErrorCode());
AsmInfo.reset(ObjectTarget->createMCAsmInfo(*RegisterInfo, TripleName));
if (!AsmInfo)
return make_error<StringError>("Failed to initialise AsmInfo.",
inconvertibleErrorCode());
SubtargetInfo.reset(ObjectTarget->createMCSubtargetInfo(
TripleName, MCPU, Features.getString()));
if (!SubtargetInfo)
return make_error<StringError>("Failed to initialise SubtargetInfo.",
inconvertibleErrorCode());
MII.reset(ObjectTarget->createMCInstrInfo());
if (!MII)
return make_error<StringError>("Failed to initialise MII.",
inconvertibleErrorCode());
Context.reset(new MCContext(AsmInfo.get(), RegisterInfo.get(), &MOFI));
Disassembler.reset(
ObjectTarget->createMCDisassembler(*SubtargetInfo, *Context));
if (!Disassembler)
return make_error<StringError>("No disassembler available for target",
inconvertibleErrorCode());
MIA.reset(ObjectTarget->createMCInstrAnalysis(MII.get()));
Printer.reset(ObjectTarget->createMCInstPrinter(
ObjectTriple, AsmInfo->getAssemblerDialect(), *AsmInfo, *MII,
*RegisterInfo));
return Error::success();
}
Error FileAnalysis::parseCodeSections() {
for (const object::SectionRef &Section : Object->sections()) {
// Ensure only executable sections get analysed.
if (!(object::ELFSectionRef(Section).getFlags() & ELF::SHF_EXECINSTR))
continue;
StringRef SectionContents;
if (Section.getContents(SectionContents))
return make_error<StringError>("Failed to retrieve section contents",
inconvertibleErrorCode());
ArrayRef<uint8_t> SectionBytes((const uint8_t *)SectionContents.data(),
Section.getSize());
parseSectionContents(SectionBytes, Section.getAddress());
}
return Error::success();
}
void FileAnalysis::parseSectionContents(ArrayRef<uint8_t> SectionBytes,
uint64_t SectionAddress) {
MCInst Instruction;
Instr InstrMeta;
uint64_t InstructionSize;
for (uint64_t Byte = 0; Byte < SectionBytes.size();) {
bool ValidInstruction =
Disassembler->getInstruction(Instruction, InstructionSize,
SectionBytes.drop_front(Byte), 0, nulls(),
outs()) == MCDisassembler::Success;
Byte += InstructionSize;
uint64_t VMAddress = SectionAddress + Byte - InstructionSize;
InstrMeta.Instruction = Instruction;
InstrMeta.VMAddress = VMAddress;
InstrMeta.InstructionSize = InstructionSize;
InstrMeta.Valid = ValidInstruction;
addInstruction(InstrMeta);
if (!ValidInstruction)
continue;
// Skip additional parsing for instructions that do not affect the control
// flow.
const auto &InstrDesc = MII->get(Instruction.getOpcode());
if (!InstrDesc.mayAffectControlFlow(Instruction, *RegisterInfo))
continue;
uint64_t Target;
if (MIA->evaluateBranch(Instruction, VMAddress, InstructionSize, Target)) {
// If the target can be evaluated, it's not indirect.
StaticBranchTargetings[Target].push_back(VMAddress);
continue;
}
if (!usesRegisterOperand(InstrMeta))
continue;
IndirectInstructions.insert(VMAddress);
}
}
void FileAnalysis::addInstruction(const Instr &Instruction) {
const auto &KV =
Instructions.insert(std::make_pair(Instruction.VMAddress, Instruction));
assert(
KV.second &&
"Failed to add instruction, instruction at this address already exists.");
}
char UnsupportedDisassembly::ID;
void UnsupportedDisassembly::log(raw_ostream &OS) const {
OS << "Dissassembling of non-objects not currently supported.\n";
}
std::error_code UnsupportedDisassembly::convertToErrorCode() const {
return std::error_code();
}
} // namespace cfi_verify
} // namespace llvm

View File

@ -0,0 +1,157 @@
//===- FileAnalysis.h -------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CFI_VERIFY_FILE_ANALYSIS_H
#define LLVM_CFI_VERIFY_FILE_ANALYSIS_H
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include <functional>
#include <set>
#include <string>
#include <unordered_map>
namespace llvm {
namespace cfi_verify {
// Disassembler and analysis tool for machine code files. Keeps track of non-
// sequential control flows, including indirect control flow instructions.
class FileAnalysis {
public:
// A metadata struct for an instruction.
struct Instr {
uint64_t VMAddress; // Virtual memory address of this instruction.
MCInst Instruction; // Instruction.
uint64_t InstructionSize; // Size of this instruction.
bool Valid; // Is this a valid instruction? If false, Instr::Instruction is
// undefined.
};
// Construct a FileAnalysis from a file path.
static Expected<FileAnalysis> Create(StringRef Filename);
// Construct and take ownership of the supplied object. Do not use this
// constructor, prefer to use FileAnalysis::Create instead.
FileAnalysis(object::OwningBinary<object::Binary> Binary);
FileAnalysis() = delete;
FileAnalysis(const FileAnalysis &) = delete;
FileAnalysis(FileAnalysis &&Other) = default;
// Returns the instruction at the provided address. Returns nullptr if there
// is no instruction at the provided address.
const Instr *getInstruction(uint64_t Address) const;
// Returns the instruction at the provided adress, dying if the instruction is
// not found.
const Instr &getInstructionOrDie(uint64_t Address) const;
// Returns a pointer to the previous/next instruction in sequence,
// respectively. Returns nullptr if the next/prev instruction doesn't exist,
// or if the provided instruction doesn't exist.
const Instr *getPrevInstructionSequential(const Instr &InstrMeta) const;
const Instr *getNextInstructionSequential(const Instr &InstrMeta) const;
// Returns whether this instruction uses a register operand.
bool usesRegisterOperand(const Instr &InstrMeta) const;
// Returns the list of indirect instructions.
const std::set<uint64_t> &getIndirectInstructions() const;
const MCRegisterInfo *getRegisterInfo() const;
const MCInstrInfo *getMCInstrInfo() const;
const MCInstrAnalysis *getMCInstrAnalysis() const;
protected:
// Construct a blank object with the provided triple and features. Used in
// testing, where a sub class will dependency inject protected methods to
// allow analysis of raw binary, without requiring a fully valid ELF file.
FileAnalysis(const Triple &ObjectTriple, const SubtargetFeatures &Features);
// Add an instruction to this object.
void addInstruction(const Instr &Instruction);
// Disassemble and parse the provided bytes into this object. Instruction
// address calculation is done relative to the provided SectionAddress.
void parseSectionContents(ArrayRef<uint8_t> SectionBytes,
uint64_t SectionAddress);
// Constructs and initialises members required for disassembly.
Error initialiseDisassemblyMembers();
// Parses code sections from the internal object file. Saves them into the
// internal members. Should only be called once by Create().
Error parseCodeSections();
private:
// Members that describe the input file.
object::OwningBinary<object::Binary> Binary;
const object::ObjectFile *Object = nullptr;
Triple ObjectTriple;
std::string ArchName;
std::string MCPU;
const Target *ObjectTarget = nullptr;
SubtargetFeatures Features;
// Members required for disassembly.
std::unique_ptr<const MCRegisterInfo> RegisterInfo;
std::unique_ptr<const MCAsmInfo> AsmInfo;
std::unique_ptr<MCSubtargetInfo> SubtargetInfo;
std::unique_ptr<const MCInstrInfo> MII;
MCObjectFileInfo MOFI;
std::unique_ptr<MCContext> Context;
std::unique_ptr<const MCDisassembler> Disassembler;
std::unique_ptr<const MCInstrAnalysis> MIA;
std::unique_ptr<MCInstPrinter> Printer;
// A mapping between the virtual memory address to the instruction metadata
// struct.
std::map<uint64_t, Instr> Instructions;
// Contains a mapping between a specific address, and a list of instructions
// that use this address as a branch target (including call instructions).
std::unordered_map<uint64_t, std::vector<uint64_t>> StaticBranchTargetings;
// A list of addresses of indirect control flow instructions.
std::set<uint64_t> IndirectInstructions;
};
class UnsupportedDisassembly : public ErrorInfo<UnsupportedDisassembly> {
public:
static char ID;
void log(raw_ostream &OS) const override;
std::error_code convertToErrorCode() const override;
};
} // namespace cfi_verify
} // namespace llvm
#endif // LLVM_CFI_VERIFY_FILE_ANALYSIS_H

View File

@ -17,64 +17,31 @@
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include "FileAnalysis.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include <cassert>
#include <cstdlib>
using namespace llvm;
using namespace llvm::object;
using namespace llvm::cfi_verify;
cl::opt<bool> ArgDumpSymbols("sym", cl::desc("Dump the symbol table."));
cl::opt<std::string> InputFilename(cl::Positional, cl::desc("<input file>"),
cl::Required);
static void printSymbols(const ObjectFile *Object) {
for (const SymbolRef &Symbol : Object->symbols()) {
outs() << "Symbol [" << format_hex_no_prefix(Symbol.getValue(), 2)
<< "] = ";
auto SymbolName = Symbol.getName();
if (SymbolName)
outs() << *SymbolName;
else
outs() << "UNKNOWN";
if (Symbol.getFlags() & SymbolRef::SF_Hidden)
outs() << " .hidden";
outs() << " (Section = ";
auto SymbolSection = Symbol.getSection();
if (SymbolSection) {
StringRef SymbolSectionName;
if ((*SymbolSection)->getName(SymbolSectionName))
outs() << "UNKNOWN)";
else
outs() << SymbolSectionName << ")";
} else {
outs() << "N/A)";
}
ExitOnError ExitOnErr;
void printIndirectCFInstructions(const FileAnalysis &Verifier) {
for (uint64_t Address : Verifier.getIndirectInstructions()) {
const auto &InstrMeta = Verifier.getInstructionOrDie(Address);
outs() << format_hex(Address, 2) << " |"
<< Verifier.getMCInstrInfo()->getName(
InstrMeta.Instruction.getOpcode())
<< " ";
InstrMeta.Instruction.print(outs());
outs() << "\n";
}
}
@ -87,155 +54,8 @@ int main(int argc, char **argv) {
InitializeAllAsmParsers();
InitializeAllDisassemblers();
Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(InputFilename);
if (!BinaryOrErr) {
errs() << "Failed to open file.\n";
return EXIT_FAILURE;
}
Binary &Binary = *BinaryOrErr.get().getBinary();
ObjectFile *Object = dyn_cast<ObjectFile>(&Binary);
if (!Object) {
errs() << "Disassembling of non-objects not currently supported.\n";
return EXIT_FAILURE;
}
Triple TheTriple = Object->makeTriple();
std::string TripleName = TheTriple.getTriple();
std::string ArchName = "";
std::string ErrorString;
const Target *TheTarget =
TargetRegistry::lookupTarget(ArchName, TheTriple, ErrorString);
if (!TheTarget) {
errs() << "Couldn't find target \"" << TheTriple.getTriple()
<< "\", failed with error: " << ErrorString << ".\n";
return EXIT_FAILURE;
}
SubtargetFeatures Features = Object->getFeatures();
std::unique_ptr<const MCRegisterInfo> RegisterInfo(
TheTarget->createMCRegInfo(TripleName));
if (!RegisterInfo) {
errs() << "Failed to initialise RegisterInfo.\n";
return EXIT_FAILURE;
}
std::unique_ptr<const MCAsmInfo> AsmInfo(
TheTarget->createMCAsmInfo(*RegisterInfo, TripleName));
if (!AsmInfo) {
errs() << "Failed to initialise AsmInfo.\n";
return EXIT_FAILURE;
}
std::string MCPU = "";
std::unique_ptr<MCSubtargetInfo> SubtargetInfo(
TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
if (!SubtargetInfo) {
errs() << "Failed to initialise SubtargetInfo.\n";
return EXIT_FAILURE;
}
std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
if (!MII) {
errs() << "Failed to initialise MII.\n";
return EXIT_FAILURE;
}
MCObjectFileInfo MOFI;
MCContext Context(AsmInfo.get(), RegisterInfo.get(), &MOFI);
std::unique_ptr<const MCDisassembler> Disassembler(
TheTarget->createMCDisassembler(*SubtargetInfo, Context));
if (!Disassembler) {
errs() << "No disassembler available for target.";
return EXIT_FAILURE;
}
std::unique_ptr<const MCInstrAnalysis> MIA(
TheTarget->createMCInstrAnalysis(MII.get()));
std::unique_ptr<MCInstPrinter> Printer(
TheTarget->createMCInstPrinter(TheTriple, AsmInfo->getAssemblerDialect(),
*AsmInfo, *MII, *RegisterInfo));
if (ArgDumpSymbols)
printSymbols(Object);
for (const SectionRef &Section : Object->sections()) {
outs() << "Section [" << format_hex_no_prefix(Section.getAddress(), 2)
<< "] = ";
StringRef SectionName;
if (Section.getName(SectionName))
outs() << "UNKNOWN.\n";
else
outs() << SectionName << "\n";
StringRef SectionContents;
if (Section.getContents(SectionContents)) {
errs() << "Failed to retrieve section contents.\n";
return EXIT_FAILURE;
}
MCInst Instruction;
uint64_t InstructionSize;
ArrayRef<uint8_t> SectionBytes((const uint8_t *)SectionContents.data(),
Section.getSize());
for (uint64_t Byte = 0; Byte < Section.getSize();) {
bool BadInstruction = false;
// Disassemble the instruction.
if (Disassembler->getInstruction(
Instruction, InstructionSize, SectionBytes.drop_front(Byte), 0,
nulls(), outs()) != MCDisassembler::Success) {
BadInstruction = true;
}
Byte += InstructionSize;
if (BadInstruction)
continue;
// Skip instructions that do not affect the control flow.
const auto &InstrDesc = MII->get(Instruction.getOpcode());
if (!InstrDesc.mayAffectControlFlow(Instruction, *RegisterInfo))
continue;
// Skip instructions that do not operate on register operands.
bool UsesRegisterOperand = false;
for (const auto &Operand : Instruction) {
if (Operand.isReg())
UsesRegisterOperand = true;
}
if (!UsesRegisterOperand)
continue;
// Print the instruction address.
outs() << " "
<< format_hex(Section.getAddress() + Byte - InstructionSize, 2)
<< ": ";
// Print the instruction bytes.
for (uint64_t i = 0; i < InstructionSize; ++i) {
outs() << format_hex_no_prefix(SectionBytes[Byte - InstructionSize + i],
2)
<< " ";
}
// Print the instruction.
outs() << " | " << MII->getName(Instruction.getOpcode()) << " ";
Instruction.dump_pretty(outs(), Printer.get());
outs() << "\n";
}
}
FileAnalysis Verifier = ExitOnErr(FileAnalysis::Create(InputFilename));
printIndirectCFInstructions(Verifier);
return EXIT_SUCCESS;
}

View File

@ -0,0 +1,17 @@
set(LLVM_LINK_COMPONENTS
AllTargetsAsmPrinters
AllTargetsAsmParsers
AllTargetsDescs
AllTargetsDisassemblers
AllTargetsInfos
MC
Object
MCParser
Object
Support
)
add_llvm_unittest(CFIVerifyTests
FileAnalysis.cpp ../FileAnalysis.cpp)

View File

@ -0,0 +1,216 @@
//===- llvm/tools/llvm-cfi-verify/unittests/FileAnalysis.cpp --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "../FileAnalysis.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include <cstdlib>
using Instr = ::llvm::cfi_verify::FileAnalysis::Instr;
using ::testing::Eq;
namespace llvm {
namespace cfi_verify {
namespace {
class ELFx86TestFileAnalysis : public FileAnalysis {
public:
ELFx86TestFileAnalysis()
: FileAnalysis(Triple("x86_64--"), SubtargetFeatures()) {}
// Expose this method publicly for testing.
void parseSectionContents(ArrayRef<uint8_t> SectionBytes,
uint64_t SectionAddress) {
FileAnalysis::parseSectionContents(SectionBytes, SectionAddress);
}
Error initialiseDisassemblyMembers() {
return FileAnalysis::initialiseDisassemblyMembers();
}
};
class BasicFileAnalysisTest : public ::testing::Test {
protected:
virtual void SetUp() {
if (Verifier.initialiseDisassemblyMembers()) {
FAIL() << "Failed to initialise FileAnalysis.";
}
}
ELFx86TestFileAnalysis Verifier;
};
TEST_F(BasicFileAnalysisTest, BasicDisassemblyTraversalTest) {
Verifier.parseSectionContents(
{
0x90, // 0: nop
0xb0, 0x00, // 1: mov $0x0, %al
0x48, 0x89, 0xe5, // 3: mov %rsp, %rbp
0x48, 0x83, 0xec, 0x18, // 6: sub $0x18, %rsp
0x48, 0xbe, 0xc4, 0x07, 0x40,
0x00, 0x00, 0x00, 0x00, 0x00, // 10: movabs $0x4007c4, %rsi
0x2f, // 20: (bad)
0x41, 0x0e, // 21: rex.B (bad)
0x62, 0x72, 0x65, 0x61, 0x6b, // 23: (bad) {%k1}
},
0xDEADBEEF);
EXPECT_EQ(nullptr, Verifier.getInstruction(0x0));
EXPECT_EQ(nullptr, Verifier.getInstruction(0x1000));
// 0xDEADBEEF: nop
const auto *InstrMeta = Verifier.getInstruction(0xDEADBEEF);
EXPECT_NE(nullptr, InstrMeta);
EXPECT_EQ(0xDEADBEEF, InstrMeta->VMAddress);
EXPECT_EQ(1u, InstrMeta->InstructionSize);
EXPECT_TRUE(InstrMeta->Valid);
const auto *NextInstrMeta = Verifier.getNextInstructionSequential(*InstrMeta);
EXPECT_EQ(nullptr, Verifier.getPrevInstructionSequential(*InstrMeta));
const auto *PrevInstrMeta = InstrMeta;
// 0xDEADBEEF + 1: mov $0x0, %al
InstrMeta = Verifier.getInstruction(0xDEADBEEF + 1);
EXPECT_NE(nullptr, InstrMeta);
EXPECT_EQ(NextInstrMeta, InstrMeta);
EXPECT_EQ(0xDEADBEEF + 1, InstrMeta->VMAddress);
EXPECT_EQ(2u, InstrMeta->InstructionSize);
EXPECT_TRUE(InstrMeta->Valid);
NextInstrMeta = Verifier.getNextInstructionSequential(*InstrMeta);
EXPECT_EQ(PrevInstrMeta, Verifier.getPrevInstructionSequential(*InstrMeta));
PrevInstrMeta = InstrMeta;
// 0xDEADBEEF + 3: mov %rsp, %rbp
InstrMeta = Verifier.getInstruction(0xDEADBEEF + 3);
EXPECT_NE(nullptr, InstrMeta);
EXPECT_EQ(NextInstrMeta, InstrMeta);
EXPECT_EQ(0xDEADBEEF + 3, InstrMeta->VMAddress);
EXPECT_EQ(3u, InstrMeta->InstructionSize);
EXPECT_TRUE(InstrMeta->Valid);
NextInstrMeta = Verifier.getNextInstructionSequential(*InstrMeta);
EXPECT_EQ(PrevInstrMeta, Verifier.getPrevInstructionSequential(*InstrMeta));
PrevInstrMeta = InstrMeta;
// 0xDEADBEEF + 6: sub $0x18, %rsp
InstrMeta = Verifier.getInstruction(0xDEADBEEF + 6);
EXPECT_NE(nullptr, InstrMeta);
EXPECT_EQ(NextInstrMeta, InstrMeta);
EXPECT_EQ(0xDEADBEEF + 6, InstrMeta->VMAddress);
EXPECT_EQ(4u, InstrMeta->InstructionSize);
EXPECT_TRUE(InstrMeta->Valid);
NextInstrMeta = Verifier.getNextInstructionSequential(*InstrMeta);
EXPECT_EQ(PrevInstrMeta, Verifier.getPrevInstructionSequential(*InstrMeta));
PrevInstrMeta = InstrMeta;
// 0xDEADBEEF + 10: movabs $0x4007c4, %rsi
InstrMeta = Verifier.getInstruction(0xDEADBEEF + 10);
EXPECT_NE(nullptr, InstrMeta);
EXPECT_EQ(NextInstrMeta, InstrMeta);
EXPECT_EQ(0xDEADBEEF + 10, InstrMeta->VMAddress);
EXPECT_EQ(10u, InstrMeta->InstructionSize);
EXPECT_TRUE(InstrMeta->Valid);
EXPECT_EQ(nullptr, Verifier.getNextInstructionSequential(*InstrMeta));
EXPECT_EQ(PrevInstrMeta, Verifier.getPrevInstructionSequential(*InstrMeta));
PrevInstrMeta = InstrMeta;
// 0xDEADBEEF + 20: (bad)
InstrMeta = Verifier.getInstruction(0xDEADBEEF + 20);
EXPECT_NE(nullptr, InstrMeta);
EXPECT_EQ(0xDEADBEEF + 20, InstrMeta->VMAddress);
EXPECT_EQ(1u, InstrMeta->InstructionSize);
EXPECT_FALSE(InstrMeta->Valid);
EXPECT_EQ(nullptr, Verifier.getNextInstructionSequential(*InstrMeta));
EXPECT_EQ(PrevInstrMeta, Verifier.getPrevInstructionSequential(*InstrMeta));
// 0xDEADBEEF + 21: rex.B (bad)
InstrMeta = Verifier.getInstruction(0xDEADBEEF + 21);
EXPECT_NE(nullptr, InstrMeta);
EXPECT_EQ(0xDEADBEEF + 21, InstrMeta->VMAddress);
EXPECT_EQ(2u, InstrMeta->InstructionSize);
EXPECT_FALSE(InstrMeta->Valid);
EXPECT_EQ(nullptr, Verifier.getNextInstructionSequential(*InstrMeta));
EXPECT_EQ(nullptr, Verifier.getPrevInstructionSequential(*InstrMeta));
// 0xDEADBEEF + 6: (bad) {%k1}
InstrMeta = Verifier.getInstruction(0xDEADBEEF + 23);
EXPECT_NE(nullptr, InstrMeta);
EXPECT_EQ(0xDEADBEEF + 23, InstrMeta->VMAddress);
EXPECT_EQ(5u, InstrMeta->InstructionSize);
EXPECT_FALSE(InstrMeta->Valid);
EXPECT_EQ(nullptr, Verifier.getNextInstructionSequential(*InstrMeta));
EXPECT_EQ(nullptr, Verifier.getPrevInstructionSequential(*InstrMeta));
}
TEST_F(BasicFileAnalysisTest, PrevAndNextFromBadInst) {
Verifier.parseSectionContents(
{
0x90, // 0: nop
0x2f, // 1: (bad)
0x90 // 2: nop
},
0xDEADBEEF);
const auto &BadInstrMeta = Verifier.getInstructionOrDie(0xDEADBEEF + 1);
const auto *GoodInstrMeta =
Verifier.getPrevInstructionSequential(BadInstrMeta);
EXPECT_NE(nullptr, GoodInstrMeta);
EXPECT_EQ(0xDEADBEEF, GoodInstrMeta->VMAddress);
EXPECT_EQ(1u, GoodInstrMeta->InstructionSize);
GoodInstrMeta = Verifier.getNextInstructionSequential(BadInstrMeta);
EXPECT_NE(nullptr, GoodInstrMeta);
EXPECT_EQ(0xDEADBEEF + 2, GoodInstrMeta->VMAddress);
EXPECT_EQ(1u, GoodInstrMeta->InstructionSize);
}
} // anonymous namespace
} // end namespace cfi_verify
} // end namespace llvm
int main(int argc, char **argv) {
::testing::InitGoogleTest(&argc, argv);
llvm::cl::ParseCommandLineOptions(argc, argv);
llvm::InitializeAllTargetInfos();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllAsmParsers();
llvm::InitializeAllDisassemblers();
return RUN_ALL_TESTS();
}

View File

@ -27,3 +27,4 @@ add_subdirectory(Support)
add_subdirectory(Target)
add_subdirectory(Transforms)
add_subdirectory(XRay)
add_subdirectory(../tools/llvm-cfi-verify/unittests ../tools/llvm-cfi-verify/unittests)