Support for ThinLTO function importing and symbol linking.

Summary:
Support for necessary linkage changes and symbol renaming during
ThinLTO function importing.

Also includes llvm-link support for manually importing functions
and associated llvm-link based tests.

Note that this does not include support for intelligently importing
metadata, which is currently imported duplicate times. That support will
be in the follow-on patch, and currently is ignored by the tests.

Reviewers: dexonsmith, joker.eph, davidxl

Subscribers: tobiasvk, tejohnson, llvm-commits

Differential Revision: http://reviews.llvm.org/D13515

llvm-svn: 251837
This commit is contained in:
Teresa Johnson 2015-11-02 21:39:10 +00:00
parent def501d1ca
commit b1d4a39990
13 changed files with 760 additions and 49 deletions

View File

@ -64,6 +64,8 @@ namespace llvm {
DiagnosticHandlerFunction DiagnosticHandler);
/// Parse the specified bitcode buffer, returning the function info index.
/// If ExportingModule is true, check for functions in the index from this
/// module when the combined index is built during parsing and set flag.
/// If IsLazy is true, parse the entire function summary into
/// the index. Otherwise skip the function summary section, and only create
/// an index object with a map from function name to function summary offset.
@ -71,6 +73,7 @@ namespace llvm {
ErrorOr<std::unique_ptr<FunctionInfoIndex>>
getFunctionInfoIndex(MemoryBufferRef Buffer, LLVMContext &Context,
DiagnosticHandlerFunction DiagnosticHandler,
const Module *ExportingModule = nullptr,
bool IsLazy = false);
/// This method supports lazy reading of function summary data from the

View File

@ -165,8 +165,18 @@ private:
/// Holds strings for combined index, mapping to the corresponding module ID.
ModulePathStringTableTy ModulePathStringTable;
/// The main module being compiled, that we are importing into, if applicable.
/// Used to check if any of its functions are in the index and therefore
/// potentially exported.
const Module *ExportingModule;
/// Flag indicating whether the exporting module has any functions in the
/// index and therefore potentially exported (imported into another module).
bool HasExportedFunctions;
public:
FunctionInfoIndex() = default;
FunctionInfoIndex(const Module *M = nullptr)
: ExportingModule(M), HasExportedFunctions(false){};
~FunctionInfoIndex() = default;
// Disable the copy constructor and assignment operators, so
@ -186,6 +196,12 @@ public:
/// Add a function info for a function of the given name.
void addFunctionInfo(StringRef FuncName, std::unique_ptr<FunctionInfo> Info) {
if (ExportingModule) {
assert(Info->functionSummary());
if (ExportingModule->getModuleIdentifier() ==
Info->functionSummary()->modulePath())
HasExportedFunctions = true;
}
FunctionMap[FuncName].push_back(std::move(Info));
}
@ -223,6 +239,14 @@ public:
return ModulePathStringTable.insert(std::make_pair(ModPath, ModId))
.first->first();
}
/// Check if the given Module has any functions available for exporting
/// in the index.
bool hasExportedFunctions(const Module *M) {
assert(M == ExportingModule &&
"Checking for exported functions on unexpected module");
return HasExportedFunctions;
}
};
} // End llvm namespace

View File

@ -14,6 +14,7 @@
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/FunctionInfo.h"
namespace llvm {
class Module;
@ -76,8 +77,13 @@ public:
/// \brief Link \p Src into the composite. The source is destroyed.
/// Passing OverrideSymbols as true will have symbols from Src
/// shadow those in the Dest.
/// For ThinLTO function importing/exporting the \p FunctionInfoIndex
/// is passed. If a \p FuncToImport is provided, only that single
/// function is imported from the source module.
/// Returns true on error.
bool linkInModule(Module *Src, unsigned Flags = Flags::None);
bool linkInModule(Module *Src, unsigned Flags = Flags::None,
FunctionInfoIndex *Index = nullptr,
Function *FuncToImport = nullptr);
/// \brief Set the composite to the passed-in module.
void setModule(Module *Dst);

View File

@ -18,6 +18,7 @@
namespace llvm {
class FunctionInfoIndex;
class Module;
namespace object {
class ObjectFile;
@ -84,7 +85,8 @@ public:
/// Return new FunctionIndexObjectFile instance containing parsed function
/// summary/index.
static ErrorOr<std::unique_ptr<FunctionIndexObjectFile>>
create(MemoryBufferRef Object, LLVMContext &Context, bool IsLazy = false);
create(MemoryBufferRef Object, LLVMContext &Context,
const Module *ExportingModule = nullptr, bool IsLazy = false);
/// \brief Parse the function summary information for function with the
/// given name out of the given buffer. Parsed information is

View File

@ -5813,12 +5813,12 @@ llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context,
ErrorOr<std::unique_ptr<FunctionInfoIndex>>
llvm::getFunctionInfoIndex(MemoryBufferRef Buffer, LLVMContext &Context,
DiagnosticHandlerFunction DiagnosticHandler,
bool IsLazy) {
const Module *ExportingModule, bool IsLazy) {
std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler, IsLazy);
std::unique_ptr<FunctionInfoIndex> Index =
llvm::make_unique<FunctionInfoIndex>();
llvm::make_unique<FunctionInfoIndex>(ExportingModule);
auto cleanupOnError = [&](std::error_code EC) {
R.releaseBuffer(); // Never take ownership on error.

View File

@ -369,12 +369,14 @@ class ValueMaterializerTy final : public ValueMaterializer {
TypeMapTy &TypeMap;
Module *DstM;
std::vector<GlobalValue *> &LazilyLinkGlobalValues;
ModuleLinker *ModLinker;
public:
ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM,
std::vector<GlobalValue *> &LazilyLinkGlobalValues)
std::vector<GlobalValue *> &LazilyLinkGlobalValues,
ModuleLinker *ModLinker)
: ValueMaterializer(), TypeMap(TypeMap), DstM(DstM),
LazilyLinkGlobalValues(LazilyLinkGlobalValues) {}
LazilyLinkGlobalValues(LazilyLinkGlobalValues), ModLinker(ModLinker) {}
Value *materializeValueFor(Value *V) override;
};
@ -427,12 +429,38 @@ class ModuleLinker {
/// For symbol clashes, prefer those from Src.
unsigned Flags;
/// Function index passed into ModuleLinker for using in function
/// importing/exporting handling.
FunctionInfoIndex *ImportIndex;
/// Function to import from source module, all other functions are
/// imported as declarations instead of definitions.
Function *ImportFunction;
/// Set to true if the given FunctionInfoIndex contains any functions
/// from this source module, in which case we must conservatively assume
/// that any of its functions may be imported into another module
/// as part of a different backend compilation process.
bool HasExportedFunctions;
public:
ModuleLinker(Module *dstM, Linker::IdentifiedStructTypeSet &Set, Module *srcM,
DiagnosticHandlerFunction DiagnosticHandler, unsigned Flags)
DiagnosticHandlerFunction DiagnosticHandler, unsigned Flags,
FunctionInfoIndex *Index = nullptr,
Function *FuncToImport = nullptr)
: DstM(dstM), SrcM(srcM), TypeMap(Set),
ValMaterializer(TypeMap, DstM, LazilyLinkGlobalValues),
DiagnosticHandler(DiagnosticHandler), Flags(Flags) {}
ValMaterializer(TypeMap, DstM, LazilyLinkGlobalValues, this),
DiagnosticHandler(DiagnosticHandler), Flags(Flags), ImportIndex(Index),
ImportFunction(FuncToImport), HasExportedFunctions(false) {
assert((ImportIndex || !ImportFunction) &&
"Expect a FunctionInfoIndex when importing");
// If we have a FunctionInfoIndex but no function to import,
// then this is the primary module being compiled in a ThinLTO
// backend compilation, and we need to see if it has functions that
// may be exported to another backend compilation.
if (ImportIndex && !ImportFunction)
HasExportedFunctions = ImportIndex->hasExportedFunctions(SrcM);
}
bool run();
@ -442,6 +470,14 @@ public:
return Flags & Linker::InternalizeLinkedSymbols;
}
/// Handles cloning of a global values from the source module into
/// the destination module, including setting the attributes and visibility.
GlobalValue *copyGlobalValueProto(TypeMapTy &TypeMap, const GlobalValue *SGV,
const GlobalValue *DGV = nullptr);
/// Check if we should promote the given local value to global scope.
bool doPromoteLocalToGlobal(const GlobalValue *SGV);
private:
bool shouldLinkFromSource(bool &LinkFromSrc, const GlobalValue &Dest,
const GlobalValue &Src);
@ -508,6 +544,42 @@ private:
void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
bool linkGlobalValueBody(GlobalValue &Src);
/// Functions that take care of cloning a specific global value type
/// into the destination module.
GlobalVariable *copyGlobalVariableProto(TypeMapTy &TypeMap,
const GlobalVariable *SGVar);
Function *copyFunctionProto(TypeMapTy &TypeMap, const Function *SF);
GlobalValue *copyGlobalAliasProto(TypeMapTy &TypeMap, const GlobalAlias *SGA);
/// Helper methods to check if we are importing from or potentially
/// exporting from the current source module.
bool isPerformingImport() { return ImportFunction != nullptr; }
bool isModuleExporting() { return HasExportedFunctions; }
/// If we are importing from the source module, checks if we should
/// import SGV as a definition, otherwise import as a declaration.
bool doImportAsDefinition(const GlobalValue *SGV);
/// Get the name for SGV that should be used in the linked destination
/// module. Specifically, this handles the case where we need to rename
/// a local that is being promoted to global scope.
std::string getName(const GlobalValue *SGV);
/// Get the new linkage for SGV that should be used in the linked destination
/// module. Specifically, for ThinLTO importing or exporting it may need
/// to be adjusted.
GlobalValue::LinkageTypes getLinkage(const GlobalValue *SGV);
/// Copies the necessary global value attributes and name from the source
/// to the newly cloned global value.
void copyGVAttributes(GlobalValue *NewGV, const GlobalValue *SrcGV);
/// Updates the visibility for the new global cloned from the source
/// and, if applicable, linked with an existing destination global.
/// Handles visibility change required for promoted locals.
void setVisibility(GlobalValue *NewGV, const GlobalValue *SGV,
const GlobalValue *DGV = nullptr);
void linkNamedMDNodes();
void stripReplacedSubprograms();
};
@ -519,6 +591,9 @@ private:
static void forceRenaming(GlobalValue *GV, StringRef Name) {
// If the global doesn't force its name or if it already has the right name,
// there is nothing for us to do.
// Note that any required local to global promotion should already be done,
// so promoted locals will not skip this handling as their linkage is no
// longer local.
if (GV->hasLocalLinkage() || GV->getName() == Name)
return;
@ -536,9 +611,23 @@ static void forceRenaming(GlobalValue *GV, StringRef Name) {
/// copy additional attributes (those not needed to construct a GlobalValue)
/// from the SrcGV to the DestGV.
static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
DestGV->copyAttributesFrom(SrcGV);
forceRenaming(DestGV, SrcGV->getName());
void ModuleLinker::copyGVAttributes(GlobalValue *NewGV,
const GlobalValue *SrcGV) {
auto *GA = dyn_cast<GlobalAlias>(SrcGV);
// Check for the special case of converting an alias (definition) to a
// non-alias (declaration). This can happen when we are importing and
// encounter a weak_any alias (weak_any defs may not be imported, see
// comments in ModuleLinker::getLinkage) or an alias whose base object is
// being imported as a declaration. In that case copy the attributes from the
// base object.
if (GA && !dyn_cast<GlobalAlias>(NewGV)) {
assert(isPerformingImport() &&
(GA->hasWeakAnyLinkage() ||
!doImportAsDefinition(GA->getBaseObject())));
NewGV->copyAttributesFrom(GA->getBaseObject());
} else
NewGV->copyAttributesFrom(SrcGV);
forceRenaming(NewGV, getName(SrcGV));
}
static bool isLessConstraining(GlobalValue::VisibilityTypes a,
@ -554,17 +643,169 @@ static bool isLessConstraining(GlobalValue::VisibilityTypes a,
return false;
}
bool ModuleLinker::doImportAsDefinition(const GlobalValue *SGV) {
if (!isPerformingImport())
return false;
// Always import GlobalVariable definitions. The linkage changes
// described in ModuleLinker::getLinkage ensure the correct behavior (e.g.
// global variables with external linkage are transformed to
// available_externally defintions, which are ultimately turned into
// declaratios after the EliminateAvailableExternally pass).
if (dyn_cast<GlobalVariable>(SGV) && !SGV->isDeclaration())
return true;
// Only import the function requested for importing.
auto *SF = dyn_cast<Function>(SGV);
if (SF && SF == ImportFunction)
return true;
// Otherwise no.
return false;
}
bool ModuleLinker::doPromoteLocalToGlobal(const GlobalValue *SGV) {
assert(SGV->hasLocalLinkage());
// Both the imported references and the original local variable must
// be promoted.
if (!isPerformingImport() && !isModuleExporting())
return false;
// Local const variables never need to be promoted unless they are address
// taken. The imported uses can simply use the clone created in this module.
// For now we are conservative in determining which variables are not
// address taken by checking the unnamed addr flag. To be more aggressive,
// the address taken information must be checked earlier during parsing
// of the module and recorded in the function index for use when importing
// from that module.
auto *GVar = dyn_cast<GlobalVariable>(SGV);
if (GVar && GVar->isConstant() && GVar->hasUnnamedAddr())
return false;
// Eventually we only need to promote functions in the exporting module that
// are referenced by a potentially exported function (i.e. one that is in the
// function index).
return true;
}
std::string ModuleLinker::getName(const GlobalValue *SGV) {
// For locals that must be promoted to global scope, ensure that
// the promoted name uniquely identifies the copy in the original module,
// using the ID assigned during combined index creation. When importing,
// we rename all locals (not just those that are promoted) in order to
// avoid naming conflicts between locals imported from different modules.
if (SGV->hasLocalLinkage() &&
(doPromoteLocalToGlobal(SGV) || isPerformingImport()))
return FunctionInfoIndex::getGlobalNameForLocal(
SGV->getName(),
ImportIndex->getModuleId(SGV->getParent()->getModuleIdentifier()));
return SGV->getName();
}
GlobalValue::LinkageTypes ModuleLinker::getLinkage(const GlobalValue *SGV) {
// Any local variable that is referenced by an exported function needs
// to be promoted to global scope. Since we don't currently know which
// functions reference which local variables/functions, we must treat
// all as potentially exported if this module is exporting anything.
if (isModuleExporting()) {
if (SGV->hasLocalLinkage() && doPromoteLocalToGlobal(SGV))
return GlobalValue::ExternalLinkage;
return SGV->getLinkage();
}
// Otherwise, if we aren't importing, no linkage change is needed.
if (!isPerformingImport())
return SGV->getLinkage();
switch (SGV->getLinkage()) {
case GlobalValue::ExternalLinkage:
// External defnitions are converted to available_externally
// definitions upon import, so that they are available for inlining
// and/or optimization, but are turned into declarations later
// during the EliminateAvailableExternally pass.
if (doImportAsDefinition(SGV))
return GlobalValue::AvailableExternallyLinkage;
// An imported external declaration stays external.
return SGV->getLinkage();
case GlobalValue::AvailableExternallyLinkage:
// An imported available_externally definition converts
// to external if imported as a declaration.
if (!doImportAsDefinition(SGV))
return GlobalValue::ExternalLinkage;
// An imported available_externally declaration stays that way.
return SGV->getLinkage();
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
// These both stay the same when importing the definition.
// The ThinLTO pass will eventually force-import their definitions.
return SGV->getLinkage();
case GlobalValue::WeakAnyLinkage:
// Can't import weak_any definitions correctly, or we might change the
// program semantics, since the linker will pick the first weak_any
// definition and importing would change the order they are seen by the
// linker. The module linking caller needs to enforce this.
assert(!doImportAsDefinition(SGV));
// If imported as a declaration, it becomes external_weak.
return GlobalValue::ExternalWeakLinkage;
case GlobalValue::WeakODRLinkage:
// For weak_odr linkage, there is a guarantee that all copies will be
// equivalent, so the issue described above for weak_any does not exist,
// and the definition can be imported. It can be treated similarly
// to an imported externally visible global value.
if (doImportAsDefinition(SGV))
return GlobalValue::AvailableExternallyLinkage;
else
return GlobalValue::ExternalLinkage;
case GlobalValue::AppendingLinkage:
// It would be incorrect to import an appending linkage variable,
// since it would cause global constructors/destructors to be
// executed multiple times. This should have already been handled
// by linkGlobalValueProto.
assert(false && "Cannot import appending linkage variable");
case GlobalValue::InternalLinkage:
case GlobalValue::PrivateLinkage:
// If we are promoting the local to global scope, it is handled
// similarly to a normal externally visible global.
if (doPromoteLocalToGlobal(SGV)) {
if (doImportAsDefinition(SGV))
return GlobalValue::AvailableExternallyLinkage;
else
return GlobalValue::ExternalLinkage;
}
// A non-promoted imported local definition stays local.
// The ThinLTO pass will eventually force-import their definitions.
return SGV->getLinkage();
case GlobalValue::ExternalWeakLinkage:
// External weak doesn't apply to definitions, must be a declaration.
assert(!doImportAsDefinition(SGV));
// Linkage stays external_weak.
return SGV->getLinkage();
case GlobalValue::CommonLinkage:
// Linkage stays common on definitions.
// The ThinLTO pass will eventually force-import their definitions.
return SGV->getLinkage();
}
llvm_unreachable("unknown linkage type");
}
/// Loop through the global variables in the src module and merge them into the
/// dest module.
static GlobalVariable *copyGlobalVariableProto(TypeMapTy &TypeMap, Module &DstM,
const GlobalVariable *SGVar) {
GlobalVariable *
ModuleLinker::copyGlobalVariableProto(TypeMapTy &TypeMap,
const GlobalVariable *SGVar) {
// No linking to be performed or linking from the source: simply create an
// identical version of the symbol over in the dest module... the
// initializer will be filled in later by LinkGlobalInits.
GlobalVariable *NewDGV = new GlobalVariable(
DstM, TypeMap.get(SGVar->getType()->getElementType()),
SGVar->isConstant(), SGVar->getLinkage(), /*init*/ nullptr,
SGVar->getName(), /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
*DstM, TypeMap.get(SGVar->getType()->getElementType()),
SGVar->isConstant(), getLinkage(SGVar), /*init*/ nullptr, getName(SGVar),
/*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
SGVar->getType()->getAddressSpace());
return NewDGV;
@ -572,34 +813,75 @@ static GlobalVariable *copyGlobalVariableProto(TypeMapTy &TypeMap, Module &DstM,
/// Link the function in the source module into the destination module if
/// needed, setting up mapping information.
static Function *copyFunctionProto(TypeMapTy &TypeMap, Module &DstM,
const Function *SF) {
Function *ModuleLinker::copyFunctionProto(TypeMapTy &TypeMap,
const Function *SF) {
// If there is no linkage to be performed or we are linking from the source,
// bring SF over.
return Function::Create(TypeMap.get(SF->getFunctionType()), SF->getLinkage(),
SF->getName(), &DstM);
return Function::Create(TypeMap.get(SF->getFunctionType()), getLinkage(SF),
getName(SF), DstM);
}
/// Set up prototypes for any aliases that come over from the source module.
static GlobalAlias *copyGlobalAliasProto(TypeMapTy &TypeMap, Module &DstM,
const GlobalAlias *SGA) {
GlobalValue *ModuleLinker::copyGlobalAliasProto(TypeMapTy &TypeMap,
const GlobalAlias *SGA) {
// If we are importing and encounter a weak_any alias, or an alias to
// an object being imported as a declaration, we must import the alias
// as a declaration as well, which involves converting it to a non-alias.
// See comments in ModuleLinker::getLinkage for why we cannot import
// weak_any defintions.
if (isPerformingImport() && (SGA->hasWeakAnyLinkage() ||
!doImportAsDefinition(SGA->getBaseObject()))) {
// Need to convert to declaration. All aliases must be definitions.
const GlobalValue *GVal = SGA->getBaseObject();
GlobalValue *NewGV;
if (auto *GVar = dyn_cast<GlobalVariable>(GVal))
NewGV = copyGlobalVariableProto(TypeMap, GVar);
else {
auto *F = dyn_cast<Function>(GVal);
assert(F);
NewGV = copyFunctionProto(TypeMap, F);
}
// Set the linkage to ExternalWeak, see also comments in
// ModuleLinker::getLinkage.
if (SGA->hasWeakAnyLinkage())
NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
// Don't attempt to link body, needs to be a declaration.
DoNotLinkFromSource.insert(SGA);
return NewGV;
}
// If there is no linkage to be performed or we're linking from the source,
// bring over SGA.
auto *Ty = TypeMap.get(SGA->getValueType());
return GlobalAlias::create(Ty, SGA->getType()->getPointerAddressSpace(),
SGA->getLinkage(), SGA->getName(), &DstM);
getLinkage(SGA), getName(SGA), DstM);
}
static GlobalValue *copyGlobalValueProto(TypeMapTy &TypeMap, Module &DstM,
const GlobalValue *SGV) {
void ModuleLinker::setVisibility(GlobalValue *NewGV, const GlobalValue *SGV,
const GlobalValue *DGV) {
GlobalValue::VisibilityTypes Visibility = SGV->getVisibility();
if (DGV)
Visibility = isLessConstraining(Visibility, DGV->getVisibility())
? DGV->getVisibility()
: Visibility;
// For promoted locals, mark them hidden so that they can later be
// stripped from the symbol table to reduce bloat.
if (SGV->hasLocalLinkage() && doPromoteLocalToGlobal(SGV))
Visibility = GlobalValue::HiddenVisibility;
NewGV->setVisibility(Visibility);
}
GlobalValue *ModuleLinker::copyGlobalValueProto(TypeMapTy &TypeMap,
const GlobalValue *SGV,
const GlobalValue *DGV) {
GlobalValue *NewGV;
if (auto *SGVar = dyn_cast<GlobalVariable>(SGV))
NewGV = copyGlobalVariableProto(TypeMap, DstM, SGVar);
NewGV = copyGlobalVariableProto(TypeMap, SGVar);
else if (auto *SF = dyn_cast<Function>(SGV))
NewGV = copyFunctionProto(TypeMap, DstM, SF);
NewGV = copyFunctionProto(TypeMap, SF);
else
NewGV = copyGlobalAliasProto(TypeMap, DstM, cast<GlobalAlias>(SGV));
NewGV = copyGlobalAliasProto(TypeMap, cast<GlobalAlias>(SGV));
copyGVAttributes(NewGV, SGV);
setVisibility(NewGV, SGV, DGV);
return NewGV;
}
@ -608,7 +890,7 @@ Value *ValueMaterializerTy::materializeValueFor(Value *V) {
if (!SGV)
return nullptr;
GlobalValue *DGV = copyGlobalValueProto(TypeMap, *DstM, SGV);
GlobalValue *DGV = ModLinker->copyGlobalValueProto(TypeMap, SGV);
if (Comdat *SC = SGV->getComdat()) {
if (auto *DGO = dyn_cast<GlobalObject>(DGV)) {
@ -742,6 +1024,9 @@ bool ModuleLinker::shouldLinkFromSource(bool &LinkFromSrc,
// We always have to add Src if it has appending linkage.
if (Src.hasAppendingLinkage()) {
// Caller should have already determined that we can't link from source
// when importing (see comments in linkGlobalValueProto).
assert(!isPerformingImport());
LinkFromSrc = true;
return false;
}
@ -749,6 +1034,28 @@ bool ModuleLinker::shouldLinkFromSource(bool &LinkFromSrc,
bool SrcIsDeclaration = Src.isDeclarationForLinker();
bool DestIsDeclaration = Dest.isDeclarationForLinker();
if (isPerformingImport()) {
if (isa<Function>(&Src)) {
// For functions, LinkFromSrc iff this is the function requested
// for importing. For variables, decide below normally.
LinkFromSrc = (&Src == ImportFunction);
return false;
}
// Check if this is an alias with an already existing definition
// in Dest, which must have come from a prior importing pass from
// the same Src module. Unlike imported function and variable
// definitions, which are imported as available_externally and are
// not definitions for the linker, that is not a valid linkage for
// imported aliases which must be definitions. Simply use the existing
// Dest copy.
if (isa<GlobalAlias>(&Src) && !DestIsDeclaration) {
assert(isa<GlobalAlias>(&Dest));
LinkFromSrc = false;
return false;
}
}
if (SrcIsDeclaration) {
// If Src is external or if both Src & Dest are external.. Just link the
// external globals, we aren't adding anything.
@ -1040,13 +1347,21 @@ bool ModuleLinker::linkGlobalValueProto(GlobalValue *SGV) {
GlobalValue *DGV = getLinkedToGlobal(SGV);
// Handle the ultra special appending linkage case first.
assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage());
if (SGV->hasAppendingLinkage() && isPerformingImport()) {
// Don't want to append to global_ctors list, for example, when we
// are importing for ThinLTO, otherwise the global ctors and dtors
// get executed multiple times for local variables (the latter causing
// double frees).
DoNotLinkFromSource.insert(SGV);
return false;
}
if (DGV && DGV->hasAppendingLinkage())
return linkAppendingVarProto(cast<GlobalVariable>(DGV),
cast<GlobalVariable>(SGV));
bool LinkFromSrc = true;
Comdat *C = nullptr;
GlobalValue::VisibilityTypes Visibility = SGV->getVisibility();
bool HasUnnamedAddr = SGV->hasUnnamedAddr();
if (const Comdat *SC = SGV->getComdat()) {
@ -1070,12 +1385,8 @@ bool ModuleLinker::linkGlobalValueProto(GlobalValue *SGV) {
ConstantExpr::getBitCast(DGV, TypeMap.get(SGV->getType()));
}
if (DGV) {
Visibility = isLessConstraining(Visibility, DGV->getVisibility())
? DGV->getVisibility()
: Visibility;
if (DGV)
HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
}
if (!LinkFromSrc && !DGV)
return false;
@ -1083,10 +1394,12 @@ bool ModuleLinker::linkGlobalValueProto(GlobalValue *SGV) {
GlobalValue *NewGV;
if (!LinkFromSrc) {
NewGV = DGV;
// When linking from source we setVisibility from copyGlobalValueProto.
setVisibility(NewGV, SGV, DGV);
} else {
// If the GV is to be lazily linked, don't create it just yet.
// The ValueMaterializerTy will deal with creating it if it's used.
if (!DGV && !shouldOverrideFromSrc() &&
if (!DGV && !shouldOverrideFromSrc() && SGV != ImportFunction &&
(SGV->hasLocalLinkage() || SGV->hasLinkOnceLinkage() ||
SGV->hasAvailableExternallyLinkage())) {
DoNotLinkFromSource.insert(SGV);
@ -1100,7 +1413,7 @@ bool ModuleLinker::linkGlobalValueProto(GlobalValue *SGV) {
return false;
}
NewGV = copyGlobalValueProto(TypeMap, *DstM, SGV);
NewGV = copyGlobalValueProto(TypeMap, SGV, DGV);
if (DGV && isa<Function>(DGV))
if (auto *NewF = dyn_cast<Function>(NewGV))
@ -1108,7 +1421,6 @@ bool ModuleLinker::linkGlobalValueProto(GlobalValue *SGV) {
}
NewGV->setUnnamedAddr(HasUnnamedAddr);
NewGV->setVisibility(Visibility);
if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
if (C)
@ -1613,6 +1925,10 @@ bool ModuleLinker::run() {
if (DoNotLinkFromSource.count(&SF))
continue;
// When importing, only materialize the function requested for import.
if (isPerformingImport() && &SF != ImportFunction)
continue;
if (linkGlobalValueBody(SF))
return true;
}
@ -1646,6 +1962,8 @@ bool ModuleLinker::run() {
while (!LazilyLinkGlobalValues.empty()) {
GlobalValue *SGV = LazilyLinkGlobalValues.back();
LazilyLinkGlobalValues.pop_back();
if (isPerformingImport() && !doImportAsDefinition(SGV))
continue;
// Skip declarations that ValueMaterializer may have created in
// case we link in only some of SrcM.
@ -1779,9 +2097,10 @@ void Linker::deleteModule() {
Composite = nullptr;
}
bool Linker::linkInModule(Module *Src, unsigned Flags) {
bool Linker::linkInModule(Module *Src, unsigned Flags, FunctionInfoIndex *Index,
Function *FuncToImport) {
ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src,
DiagnosticHandler, Flags);
DiagnosticHandler, Flags, Index, FuncToImport);
bool RetCode = TheLinker.run();
Composite->dropTriviallyDeadConstantArrays();
return RetCode;

View File

@ -1,5 +1,4 @@
//===- FunctionIndexObjectFile.cpp - Function index file implementation
//----===//
//===- FunctionIndexObjectFile.cpp - Function index file implementation ---===//
//
// The LLVM Compiler Infrastructure
//
@ -86,15 +85,15 @@ bool FunctionIndexObjectFile::hasFunctionSummaryInMemBuffer(
// function summary/index.
ErrorOr<std::unique_ptr<FunctionIndexObjectFile>>
FunctionIndexObjectFile::create(MemoryBufferRef Object, LLVMContext &Context,
bool IsLazy) {
const Module *ExportingModule, bool IsLazy) {
std::unique_ptr<FunctionInfoIndex> Index;
ErrorOr<MemoryBufferRef> BCOrErr = findBitcodeInMemBuffer(Object);
if (!BCOrErr)
return BCOrErr.getError();
ErrorOr<std::unique_ptr<FunctionInfoIndex>> IOrErr =
getFunctionInfoIndex(BCOrErr.get(), Context, nullptr, IsLazy);
ErrorOr<std::unique_ptr<FunctionInfoIndex>> IOrErr = getFunctionInfoIndex(
BCOrErr.get(), Context, nullptr, ExportingModule, IsLazy);
if (std::error_code EC = IOrErr.getError())
return EC;

View File

@ -49,9 +49,46 @@ ModulePass *llvm::createEliminateAvailableExternallyPass() {
return new EliminateAvailableExternally();
}
static void convertAliasToDeclaration(GlobalAlias &GA, Module &M) {
GlobalValue *GVal = GA.getBaseObject();
GlobalValue *NewGV;
if (auto *GVar = dyn_cast<GlobalVariable>(GVal)) {
GlobalVariable *NewGVar = new GlobalVariable(
M, GVar->getType()->getElementType(), GVar->isConstant(),
GVar->getLinkage(), /*init*/ nullptr, GA.getName(), GVar,
GVar->getThreadLocalMode(), GVar->getType()->getAddressSpace());
NewGV = NewGVar;
NewGV->copyAttributesFrom(GVar);
} else {
auto *F = dyn_cast<Function>(GVal);
assert(F);
Function *NewF = Function::Create(F->getFunctionType(), F->getLinkage(),
GA.getName(), &M);
NewGV = NewF;
NewGV->copyAttributesFrom(F);
}
GA.replaceAllUsesWith(ConstantExpr::getBitCast(NewGV, GA.getType()));
GA.eraseFromParent();
}
bool EliminateAvailableExternally::runOnModule(Module &M) {
bool Changed = false;
// Convert any aliases that alias with an available externally
// value (which will be turned into declarations later on in this routine)
// into declarations themselves. All aliases must be definitions, and
// must alias with a definition. So this involves creating a declaration
// equivalent to the alias's base object.
for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); I != E;) {
// Increment the iterator first since we may delete the current alias.
GlobalAlias &GA = *(I++);
GlobalValue *GVal = GA.getBaseObject();
if (!GVal->hasAvailableExternallyLinkage())
continue;
convertAliasToDeclaration(GA, M);
Changed = true;
}
// Drop initializers of available externally global variables.
for (GlobalVariable &GV : M.globals()) {
if (!GV.hasAvailableExternallyLinkage())
@ -65,6 +102,7 @@ bool EliminateAvailableExternally::runOnModule(Module &M) {
GV.removeDeadConstantUsers();
GV.setLinkage(GlobalValue::ExternalLinkage);
NumVariables++;
Changed = true;
}
// Drop the bodies of available externally functions.
@ -76,6 +114,7 @@ bool EliminateAvailableExternally::runOnModule(Module &M) {
F.deleteBody();
F.removeDeadConstantUsers();
NumFunctions++;
Changed = true;
}
return Changed;

View File

@ -0,0 +1,28 @@
define i32 @main() #0 {
entry:
call void (...) @weakalias()
call void (...) @analias()
%call = call i32 (...) @referencestatics()
%call1 = call i32 (...) @referenceglobals()
%call2 = call i32 (...) @referencecommon()
call void (...) @setfuncptr()
call void (...) @callfuncptr()
call void (...) @callweakfunc()
ret i32 0
}
declare void @weakalias(...) #1
declare void @analias(...) #1
declare i32 @referencestatics(...) #1
declare i32 @referenceglobals(...) #1
declare i32 @referencecommon(...) #1
declare void @setfuncptr(...) #1
declare void @callfuncptr(...) #1
declare void @callweakfunc(...) #1

View File

@ -0,0 +1,169 @@
; Do setup work for all below tests: generate bitcode and combined index
; RUN: llvm-as -function-summary %s -o %t.bc
; RUN: llvm-as -function-summary %p/Inputs/funcimport.ll -o %t2.bc
; RUN: llvm-lto -thinlto -o %t3 %t.bc %t2.bc
; Ensure statics are promoted/renamed correctly from this file (all but
; constant variable need promotion).
; RUN: llvm-link %t.bc -functionindex=%t3.thinlto.bc -S | FileCheck %s --check-prefix=EXPORTSTATIC
; EXPORTSTATIC: @staticvar.llvm.1 = hidden global
; EXPORTSTATIC: @staticconstvar = internal unnamed_addr constant
; EXPORTSTATIC: @P.llvm.1 = hidden global void ()* null
; EXPORTSTATIC: define hidden i32 @staticfunc.llvm.1
; EXPORTSTATIC: define hidden void @staticfunc2.llvm.1
; Ensure that both weak alias to an imported function and strong alias to a
; non-imported function are correctly turned into declarations.
; RUN: llvm-link %t2.bc -functionindex=%t3.thinlto.bc -import=globalfunc1:%t.bc -S | FileCheck %s --check-prefix=IMPORTGLOB1
; IMPORTGLOB1: define available_externally void @globalfunc1
; IMPORTGLOB1: declare void @globalfunc2
; IMPORTGLOB1: declare extern_weak void @weakalias
; IMPORTGLOB1: declare void @analias
; Ensure that weak alias to a non-imported function is correctly
; turned into a declaration, but that strong alias to an imported function
; is imported as alias.
; RUN: llvm-link %t2.bc -functionindex=%t3.thinlto.bc -import=globalfunc2:%t.bc -S | FileCheck %s --check-prefix=IMPORTGLOB2
; IMPORTGLOB2: @analias = alias void (...), bitcast (void ()* @globalfunc2
; IMPORTGLOB2: declare void @globalfunc1
; IMPORTGLOB2: define available_externally void @globalfunc2
; IMPORTGLOB2: declare extern_weak void @weakalias
; Ensure that strong alias imported in second pass of importing ends up
; as an alias.
; RUN: llvm-link %t2.bc -functionindex=%t3.thinlto.bc -import=globalfunc1:%t.bc -import=globalfunc2:%t.bc -S | FileCheck %s --check-prefix=IMPORTGLOB3
; IMPORTGLOB3: @analias = alias void (...), bitcast (void ()* @globalfunc2
; IMPORTGLOB3: define available_externally void @globalfunc1
; IMPORTGLOB3: define available_externally void @globalfunc2
; IMPORTGLOB3: declare extern_weak void @weakalias
; Ensure that strong alias imported in first pass of importing ends up
; as an alias, and that seeing the alias definition during a second inlining
; pass is handled correctly.
; RUN: llvm-link %t2.bc -functionindex=%t3.thinlto.bc -import=globalfunc2:%t.bc -import=globalfunc1:%t.bc -S | FileCheck %s --check-prefix=IMPORTGLOB4
; IMPORTGLOB4: @analias = alias void (...), bitcast (void ()* @globalfunc2
; IMPORTGLOB4: define available_externally void @globalfunc2
; IMPORTGLOB4: define available_externally void @globalfunc1
; IMPORTGLOB4: declare extern_weak void @weakalias
; Ensure that imported static variable and function references are correctly
; promoted and renamed (including static constant variable).
; RUN: llvm-link %t2.bc -functionindex=%t3.thinlto.bc -import=referencestatics:%t.bc -S | FileCheck %s --check-prefix=IMPORTSTATIC
; IMPORTSTATIC: @staticvar.llvm.1 = available_externally hidden global
; IMPORTSTATIC: @staticconstvar.llvm.1 = internal unnamed_addr constant
; IMPORTSTATIC: define available_externally i32 @referencestatics
; IMPORTSTATIC: %call = call i32 @staticfunc.llvm.1
; IMPORTSTATIC: %0 = load i32, i32* @staticvar.llvm.1
; IMPORTSTATIC: declare hidden i32 @staticfunc.llvm.1
; Ensure that imported global (external) function and variable references
; are handled correctly (including referenced variable imported as
; available_externally definition)
; RUN: llvm-link %t2.bc -functionindex=%t3.thinlto.bc -import=referenceglobals:%t.bc -S | FileCheck %s --check-prefix=IMPORTGLOBALS
; IMPORTGLOBALS: @globalvar = available_externally global
; IMPORTGLOBALS: declare void @globalfunc1()
; IMPORTGLOBALS: define available_externally i32 @referenceglobals
; Ensure that common variable correctly imported as common defition.
; RUN: llvm-link %t2.bc -functionindex=%t3.thinlto.bc -import=referencecommon:%t.bc -S | FileCheck %s --check-prefix=IMPORTCOMMON
; IMPORTCOMMON: @commonvar = common global
; IMPORTCOMMON: define available_externally i32 @referencecommon
; Ensure that imported static function pointer correctly promoted and renamed.
; RUN: llvm-link %t2.bc -functionindex=%t3.thinlto.bc -import=callfuncptr:%t.bc -S | FileCheck %s --check-prefix=IMPORTFUNCPTR
; IMPORTFUNCPTR: @P.llvm.1 = available_externally hidden global void ()* null
; IMPORTFUNCPTR: define available_externally void @callfuncptr
; IMPORTFUNCPTR: %0 = load void ()*, void ()** @P.llvm.1
; Ensure that imported weak function reference/definition handled properly.
; Imported weak_any definition should be skipped with warning, and imported
; reference should turned into an external_weak declaration.
; RUN: llvm-link %t2.bc -functionindex=%t3.thinlto.bc -import=callweakfunc:%t.bc -import=weakfunc:%t.bc -S 2>&1 | FileCheck %s --check-prefix=IMPORTWEAKFUNC
; IMPORTWEAKFUNC: Ignoring import request for weak-any function weakfunc
; IMPORTWEAKFUNC: declare extern_weak void @weakfunc
; IMPORTWEAKFUNC: define available_externally void @callweakfunc
@globalvar = global i32 1, align 4
@staticvar = internal global i32 1, align 4
@staticconstvar = internal unnamed_addr constant [2 x i32] [i32 10, i32 20], align 4
@commonvar = common global i32 0, align 4
@P = internal global void ()* null, align 8
@weakalias = weak alias void (...), bitcast (void ()* @globalfunc1 to void (...)*)
@analias = alias void (...), bitcast (void ()* @globalfunc2 to void (...)*)
define void @globalfunc1() #0 {
entry:
ret void
}
define void @globalfunc2() #0 {
entry:
ret void
}
define i32 @referencestatics(i32 %i) #0 {
entry:
%i.addr = alloca i32, align 4
store i32 %i, i32* %i.addr, align 4
%call = call i32 @staticfunc()
%0 = load i32, i32* @staticvar, align 4
%add = add nsw i32 %call, %0
%1 = load i32, i32* %i.addr, align 4
%idxprom = sext i32 %1 to i64
%arrayidx = getelementptr inbounds [2 x i32], [2 x i32]* @staticconstvar, i64 0, i64 %idxprom
%2 = load i32, i32* %arrayidx, align 4
%add1 = add nsw i32 %add, %2
ret i32 %add1
}
define i32 @referenceglobals(i32 %i) #0 {
entry:
%i.addr = alloca i32, align 4
store i32 %i, i32* %i.addr, align 4
call void @globalfunc1()
%0 = load i32, i32* @globalvar, align 4
ret i32 %0
}
define i32 @referencecommon(i32 %i) #0 {
entry:
%i.addr = alloca i32, align 4
store i32 %i, i32* %i.addr, align 4
%0 = load i32, i32* @commonvar, align 4
ret i32 %0
}
define void @setfuncptr() #0 {
entry:
store void ()* @staticfunc2, void ()** @P, align 8
ret void
}
define void @callfuncptr() #0 {
entry:
%0 = load void ()*, void ()** @P, align 8
call void %0()
ret void
}
define weak void @weakfunc() #0 {
entry:
ret void
}
define void @callweakfunc() #0 {
entry:
call void @weakfunc()
ret void
}
define internal i32 @staticfunc() #0 {
entry:
ret i32 1
}
define internal void @staticfunc2() #0 {
entry:
ret void
}

View File

@ -3,6 +3,7 @@ set(LLVM_LINK_COMPONENTS
Core
IRReader
Linker
Object
Support
)

View File

@ -19,4 +19,4 @@
type = Tool
name = llvm-link
parent = Tools
required_libraries = AsmParser BitReader BitWriter IRReader Linker
required_libraries = AsmParser BitReader BitWriter IRReader Linker Object

View File

@ -18,10 +18,12 @@
#include "llvm/IR/AutoUpgrade.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/FunctionInfo.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/Object/FunctionIndexObjectFile.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/ManagedStatic.h"
@ -43,6 +45,23 @@ static cl::list<std::string> OverridingInputs(
cl::desc(
"input bitcode file which can override previously defined symbol(s)"));
// Option to simulate function importing for testing. This enables using
// llvm-link to simulate ThinLTO backend processes.
static cl::list<std::string> Imports(
"import", cl::ZeroOrMore, cl::value_desc("function:filename"),
cl::desc("Pair of function name and filename, where function should be "
"imported from bitcode in filename"));
// Option to support testing of function importing. The function index
// must be specified in the case were we request imports via the -import
// option, as well as when compiling any module with functions that may be
// exported (imported by a different llvm-link -import invocation), to ensure
// consistent promotion and renaming of locals.
static cl::opt<std::string> FunctionIndex("functionindex",
cl::desc("Function index filename"),
cl::init(""),
cl::value_desc("filename"));
static cl::opt<std::string>
OutputFilename("o", cl::desc("Override output filename"), cl::init("-"),
cl::value_desc("filename"));
@ -118,6 +137,90 @@ static void diagnosticHandler(const DiagnosticInfo &DI) {
errs() << '\n';
}
/// Load a function index if requested by the -functionindex option.
static ErrorOr<std::unique_ptr<FunctionInfoIndex>>
loadIndex(LLVMContext &Context, const Module *ExportingModule = nullptr) {
assert(!FunctionIndex.empty());
ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
MemoryBuffer::getFileOrSTDIN(FunctionIndex);
std::error_code EC = FileOrErr.getError();
if (EC)
return EC;
MemoryBufferRef BufferRef = (FileOrErr.get())->getMemBufferRef();
ErrorOr<std::unique_ptr<object::FunctionIndexObjectFile>> ObjOrErr =
object::FunctionIndexObjectFile::create(BufferRef, Context,
ExportingModule);
EC = ObjOrErr.getError();
if (EC)
return EC;
object::FunctionIndexObjectFile &Obj = **ObjOrErr;
return Obj.takeIndex();
}
/// Import any functions requested via the -import option.
static bool importFunctions(const char *argv0, LLVMContext &Context,
Linker &L) {
for (const auto &Import : Imports) {
// Identify the requested function and its bitcode source file.
size_t Idx = Import.find(':');
if (Idx == std::string::npos) {
errs() << "Import parameter bad format: " << Import << "\n";
return false;
}
std::string FunctionName = Import.substr(0, Idx);
std::string FileName = Import.substr(Idx + 1, std::string::npos);
// Load the specified source module.
std::unique_ptr<Module> M = loadFile(argv0, FileName, Context);
if (!M.get()) {
errs() << argv0 << ": error loading file '" << FileName << "'\n";
return false;
}
if (verifyModule(*M, &errs())) {
errs() << argv0 << ": " << FileName
<< ": error: input module is broken!\n";
return false;
}
Function *F = M->getFunction(FunctionName);
if (!F) {
errs() << "Ignoring import request for non-existent function "
<< FunctionName << " from " << FileName << "\n";
continue;
}
// We cannot import weak_any functions without possibly affecting the
// order they are seen and selected by the linker, changing program
// semantics.
if (F->hasWeakAnyLinkage()) {
errs() << "Ignoring import request for weak-any function " << FunctionName
<< " from " << FileName << "\n";
continue;
}
if (Verbose)
errs() << "Importing " << FunctionName << " from " << FileName << "\n";
std::unique_ptr<FunctionInfoIndex> Index;
if (!FunctionIndex.empty()) {
ErrorOr<std::unique_ptr<FunctionInfoIndex>> IndexOrErr =
loadIndex(Context);
std::error_code EC = IndexOrErr.getError();
if (EC) {
errs() << EC.message() << '\n';
return false;
}
Index = std::move(IndexOrErr.get());
}
// Link in the specified function.
if (L.linkInModule(M.get(), false, Index.get(), F))
return false;
}
return true;
}
static bool linkFiles(const char *argv0, LLVMContext &Context, Linker &L,
const cl::list<std::string> &Files,
unsigned Flags) {
@ -135,10 +238,24 @@ static bool linkFiles(const char *argv0, LLVMContext &Context, Linker &L,
return false;
}
// If a function index is supplied, load it so linkInModule can treat
// local functions/variables as exported and promote if necessary.
std::unique_ptr<FunctionInfoIndex> Index;
if (!FunctionIndex.empty()) {
ErrorOr<std::unique_ptr<FunctionInfoIndex>> IndexOrErr =
loadIndex(Context, &*M);
std::error_code EC = IndexOrErr.getError();
if (EC) {
errs() << EC.message() << '\n';
return false;
}
Index = std::move(IndexOrErr.get());
}
if (Verbose)
errs() << "Linking in '" << File << "'\n";
if (L.linkInModule(M.get(), ApplicableFlags))
if (L.linkInModule(M.get(), ApplicableFlags, Index.get()))
return false;
// All linker flags apply to linking of subsequent files.
ApplicableFlags = Flags;
@ -174,6 +291,10 @@ int main(int argc, char **argv) {
Flags | Linker::Flags::OverrideFromSrc))
return 1;
// Import any functions requested via -import
if (!importFunctions(argv[0], Context, L))
return 1;
if (DumpAsm) errs() << "Here's the assembly:\n" << *Composite;
std::error_code EC;