Fix line endings.

llvm-svn: 209727
This commit is contained in:
Nikola Smiljanic 2014-05-28 11:19:43 +00:00
parent 753d70ce53
commit a9c452121a
3 changed files with 124 additions and 124 deletions

View File

@ -2767,9 +2767,9 @@ public:
static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID);
typedef redeclarable_base::redecl_range redecl_range;
typedef redeclarable_base::redecl_iterator redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
typedef redeclarable_base::redecl_iterator redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::redecls;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;

View File

@ -1,112 +1,112 @@
//===- ThreadSafetyLogical.cpp ---------------------------------*- C++ --*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This file defines a representation for logical expressions with SExpr leaves
// that are used as part of fact-checking capability expressions.
//===----------------------------------------------------------------------===//
#include "clang/Analysis/Analyses/ThreadSafetyLogical.h"
using namespace llvm;
using namespace clang::threadSafety::lexpr;
// Implication. We implement De Morgan's Laws by maintaining LNeg and RNeg
// to keep track of whether LHS and RHS are negated.
static bool implies(const LExpr *LHS, bool LNeg, const LExpr *RHS, bool RNeg) {
// In comments below, we write => for implication.
// Calculates the logical AND implication operator.
const auto LeftAndOperator = [=](const BinOp *A) {
return implies(A->left(), LNeg, RHS, RNeg) &&
implies(A->right(), LNeg, RHS, RNeg);
};
const auto RightAndOperator = [=](const BinOp *A) {
return implies(LHS, LNeg, A->left(), RNeg) &&
implies(LHS, LNeg, A->right(), RNeg);
};
// Calculates the logical OR implication operator.
const auto LeftOrOperator = [=](const BinOp *A) {
return implies(A->left(), LNeg, RHS, RNeg) ||
implies(A->right(), LNeg, RHS, RNeg);
};
const auto RightOrOperator = [=](const BinOp *A) {
return implies(LHS, LNeg, A->left(), RNeg) ||
implies(LHS, LNeg, A->right(), RNeg);
};
// Recurse on right.
switch (RHS->kind()) {
case LExpr::And:
// When performing right recursion:
// C => A & B [if] C => A and C => B
// When performing right recursion (negated):
// C => !(A & B) [if] C => !A | !B [===] C => !A or C => !B
return RNeg ? RightOrOperator(cast<And>(RHS))
: RightAndOperator(cast<And>(RHS));
case LExpr::Or:
// When performing right recursion:
// C => (A | B) [if] C => A or C => B
// When performing right recursion (negated):
// C => !(A | B) [if] C => !A & !B [===] C => !A and C => !B
return RNeg ? RightAndOperator(cast<Or>(RHS))
: RightOrOperator(cast<Or>(RHS));
case LExpr::Not:
// Note that C => !A is very different from !(C => A). It would be incorrect
// to return !implies(LHS, RHS).
return implies(LHS, LNeg, cast<Not>(RHS)->exp(), !RNeg);
case LExpr::Terminal:
// After reaching the terminal, it's time to recurse on the left.
break;
}
// RHS is now a terminal. Recurse on Left.
switch (LHS->kind()) {
case LExpr::And:
// When performing left recursion:
// A & B => C [if] A => C or B => C
// When performing left recursion (negated):
// !(A & B) => C [if] !A | !B => C [===] !A => C and !B => C
return LNeg ? LeftAndOperator(cast<And>(LHS))
: LeftOrOperator(cast<And>(LHS));
case LExpr::Or:
// When performing left recursion:
// A | B => C [if] A => C and B => C
// When performing left recursion (negated):
// !(A | B) => C [if] !A & !B => C [===] !A => C or !B => C
return LNeg ? LeftOrOperator(cast<Or>(LHS))
: LeftAndOperator(cast<Or>(LHS));
case LExpr::Not:
// Note that A => !C is very different from !(A => C). It would be incorrect
// to return !implies(LHS, RHS).
return implies(cast<Not>(LHS)->exp(), !LNeg, RHS, RNeg);
case LExpr::Terminal:
// After reaching the terminal, it's time to perform identity comparisons.
break;
}
// A => A
// !A => !A
if (LNeg != RNeg)
return false;
// FIXME -- this should compare SExprs for equality, not pointer equality.
return cast<Terminal>(LHS)->expr() == cast<Terminal>(RHS)->expr();
}
namespace clang {
namespace threadSafety {
namespace lexpr {
bool implies(const LExpr *LHS, const LExpr *RHS) {
// Start out by assuming that LHS and RHS are not negated.
return ::implies(LHS, false, RHS, false);
}
}
}
}
//===- ThreadSafetyLogical.cpp ---------------------------------*- C++ --*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This file defines a representation for logical expressions with SExpr leaves
// that are used as part of fact-checking capability expressions.
//===----------------------------------------------------------------------===//
#include "clang/Analysis/Analyses/ThreadSafetyLogical.h"
using namespace llvm;
using namespace clang::threadSafety::lexpr;
// Implication. We implement De Morgan's Laws by maintaining LNeg and RNeg
// to keep track of whether LHS and RHS are negated.
static bool implies(const LExpr *LHS, bool LNeg, const LExpr *RHS, bool RNeg) {
// In comments below, we write => for implication.
// Calculates the logical AND implication operator.
const auto LeftAndOperator = [=](const BinOp *A) {
return implies(A->left(), LNeg, RHS, RNeg) &&
implies(A->right(), LNeg, RHS, RNeg);
};
const auto RightAndOperator = [=](const BinOp *A) {
return implies(LHS, LNeg, A->left(), RNeg) &&
implies(LHS, LNeg, A->right(), RNeg);
};
// Calculates the logical OR implication operator.
const auto LeftOrOperator = [=](const BinOp *A) {
return implies(A->left(), LNeg, RHS, RNeg) ||
implies(A->right(), LNeg, RHS, RNeg);
};
const auto RightOrOperator = [=](const BinOp *A) {
return implies(LHS, LNeg, A->left(), RNeg) ||
implies(LHS, LNeg, A->right(), RNeg);
};
// Recurse on right.
switch (RHS->kind()) {
case LExpr::And:
// When performing right recursion:
// C => A & B [if] C => A and C => B
// When performing right recursion (negated):
// C => !(A & B) [if] C => !A | !B [===] C => !A or C => !B
return RNeg ? RightOrOperator(cast<And>(RHS))
: RightAndOperator(cast<And>(RHS));
case LExpr::Or:
// When performing right recursion:
// C => (A | B) [if] C => A or C => B
// When performing right recursion (negated):
// C => !(A | B) [if] C => !A & !B [===] C => !A and C => !B
return RNeg ? RightAndOperator(cast<Or>(RHS))
: RightOrOperator(cast<Or>(RHS));
case LExpr::Not:
// Note that C => !A is very different from !(C => A). It would be incorrect
// to return !implies(LHS, RHS).
return implies(LHS, LNeg, cast<Not>(RHS)->exp(), !RNeg);
case LExpr::Terminal:
// After reaching the terminal, it's time to recurse on the left.
break;
}
// RHS is now a terminal. Recurse on Left.
switch (LHS->kind()) {
case LExpr::And:
// When performing left recursion:
// A & B => C [if] A => C or B => C
// When performing left recursion (negated):
// !(A & B) => C [if] !A | !B => C [===] !A => C and !B => C
return LNeg ? LeftAndOperator(cast<And>(LHS))
: LeftOrOperator(cast<And>(LHS));
case LExpr::Or:
// When performing left recursion:
// A | B => C [if] A => C and B => C
// When performing left recursion (negated):
// !(A | B) => C [if] !A & !B => C [===] !A => C or !B => C
return LNeg ? LeftOrOperator(cast<Or>(LHS))
: LeftAndOperator(cast<Or>(LHS));
case LExpr::Not:
// Note that A => !C is very different from !(A => C). It would be incorrect
// to return !implies(LHS, RHS).
return implies(cast<Not>(LHS)->exp(), !LNeg, RHS, RNeg);
case LExpr::Terminal:
// After reaching the terminal, it's time to perform identity comparisons.
break;
}
// A => A
// !A => !A
if (LNeg != RNeg)
return false;
// FIXME -- this should compare SExprs for equality, not pointer equality.
return cast<Terminal>(LHS)->expr() == cast<Terminal>(RHS)->expr();
}
namespace clang {
namespace threadSafety {
namespace lexpr {
bool implies(const LExpr *LHS, const LExpr *RHS) {
// Start out by assuming that LHS and RHS are not negated.
return ::implies(LHS, false, RHS, false);
}
}
}
}

View File

@ -3251,15 +3251,15 @@ bool Parser::ParseCXX11AttributeArgs(IdentifierInfo *AttrName,
// parsing an argument list, we need to determine whether this attribute
// was allowed to have an argument list (such as [[deprecated]]), and how
// many arguments were parsed (so we can diagnose on [[deprecated()]]).
if (Attr->getMaxArgs() && !NumArgs) {
// The attribute was allowed to have arguments, but none were provided
// even though the attribute parsed successfully. This is an error.
// FIXME: This is a good place for a fixit which removes the parens.
Diag(LParenLoc, diag::err_attribute_requires_arguments) << AttrName;
return false;
} else if (!Attr->getMaxArgs()) {
// The attribute parsed successfully, but was not allowed to have any
// arguments. It doesn't matter whether any were provided -- the
if (Attr->getMaxArgs() && !NumArgs) {
// The attribute was allowed to have arguments, but none were provided
// even though the attribute parsed successfully. This is an error.
// FIXME: This is a good place for a fixit which removes the parens.
Diag(LParenLoc, diag::err_attribute_requires_arguments) << AttrName;
return false;
} else if (!Attr->getMaxArgs()) {
// The attribute parsed successfully, but was not allowed to have any
// arguments. It doesn't matter whether any were provided -- the
// presence of the argument list (even if empty) is diagnosed.
Diag(LParenLoc, diag::err_cxx11_attribute_forbids_arguments)
<< AttrName;