[X86] Turn an if condition that should always be true into an assert. NFCI

If Values.size() == 0, we should have returned 0 or undef earlier. If it was 1, it's a splat and we already handled that too.

llvm-svn: 318894
This commit is contained in:
Craig Topper 2017-11-23 03:24:01 +00:00
parent 6a0177bcf1
commit a7864ed64a
1 changed files with 46 additions and 47 deletions

View File

@ -8140,57 +8140,56 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], MaskVec); return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], MaskVec);
} }
if (Values.size() > 1) { assert(Values.size() > 1 && "Expected non-undef and non-splat vector");
// Check for a build vector from mostly shuffle plus few inserting.
if (SDValue Sh = buildFromShuffleMostly(Op, DAG))
return Sh;
// For SSE 4.1, use insertps to put the high elements into the low element. // Check for a build vector from mostly shuffle plus few inserting.
if (Subtarget.hasSSE41()) { if (SDValue Sh = buildFromShuffleMostly(Op, DAG))
SDValue Result; return Sh;
if (!Op.getOperand(0).isUndef())
Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
else
Result = DAG.getUNDEF(VT);
for (unsigned i = 1; i < NumElems; ++i) { // For SSE 4.1, use insertps to put the high elements into the low element.
if (Op.getOperand(i).isUndef()) continue; if (Subtarget.hasSSE41()) {
Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result, SDValue Result;
Op.getOperand(i), DAG.getIntPtrConstant(i, dl)); if (!Op.getOperand(0).isUndef())
} Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
return Result; else
Result = DAG.getUNDEF(VT);
for (unsigned i = 1; i < NumElems; ++i) {
if (Op.getOperand(i).isUndef()) continue;
Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
Op.getOperand(i), DAG.getIntPtrConstant(i, dl));
} }
return Result;
// Otherwise, expand into a number of unpckl*, start by extending each of
// our (non-undef) elements to the full vector width with the element in the
// bottom slot of the vector (which generates no code for SSE).
SmallVector<SDValue, 8> Ops(NumElems);
for (unsigned i = 0; i < NumElems; ++i) {
if (!Op.getOperand(i).isUndef())
Ops[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
else
Ops[i] = DAG.getUNDEF(VT);
}
// Next, we iteratively mix elements, e.g. for v4f32:
// Step 1: unpcklps 0, 1 ==> X: <?, ?, 1, 0>
// : unpcklps 2, 3 ==> Y: <?, ?, 3, 2>
// Step 2: unpcklpd X, Y ==> <3, 2, 1, 0>
for (unsigned Scale = 1; Scale < NumElems; Scale *= 2) {
// Generate scaled UNPCKL shuffle mask.
SmallVector<int, 16> Mask;
for(unsigned i = 0; i != Scale; ++i)
Mask.push_back(i);
for (unsigned i = 0; i != Scale; ++i)
Mask.push_back(NumElems+i);
Mask.append(NumElems - Mask.size(), SM_SentinelUndef);
for (unsigned i = 0, e = NumElems / (2 * Scale); i != e; ++i)
Ops[i] = DAG.getVectorShuffle(VT, dl, Ops[2*i], Ops[(2*i)+1], Mask);
}
return Ops[0];
} }
return SDValue();
// Otherwise, expand into a number of unpckl*, start by extending each of
// our (non-undef) elements to the full vector width with the element in the
// bottom slot of the vector (which generates no code for SSE).
SmallVector<SDValue, 8> Ops(NumElems);
for (unsigned i = 0; i < NumElems; ++i) {
if (!Op.getOperand(i).isUndef())
Ops[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
else
Ops[i] = DAG.getUNDEF(VT);
}
// Next, we iteratively mix elements, e.g. for v4f32:
// Step 1: unpcklps 0, 1 ==> X: <?, ?, 1, 0>
// : unpcklps 2, 3 ==> Y: <?, ?, 3, 2>
// Step 2: unpcklpd X, Y ==> <3, 2, 1, 0>
for (unsigned Scale = 1; Scale < NumElems; Scale *= 2) {
// Generate scaled UNPCKL shuffle mask.
SmallVector<int, 16> Mask;
for(unsigned i = 0; i != Scale; ++i)
Mask.push_back(i);
for (unsigned i = 0; i != Scale; ++i)
Mask.push_back(NumElems+i);
Mask.append(NumElems - Mask.size(), SM_SentinelUndef);
for (unsigned i = 0, e = NumElems / (2 * Scale); i != e; ++i)
Ops[i] = DAG.getVectorShuffle(VT, dl, Ops[2*i], Ops[(2*i)+1], Mask);
}
return Ops[0];
} }
// 256-bit AVX can use the vinsertf128 instruction // 256-bit AVX can use the vinsertf128 instruction