Change all the Type::getAsFoo() methods to specializations of Type::getAs().

Several of the existing methods were identical to their respective
specializations, and so have been removed entirely.  Several more 'leaf'
optimizations were introduced.

The getAsFoo() methods which imposed extra conditions, like
getAsObjCInterfacePointerType(), have been left in place.

llvm-svn: 82501
This commit is contained in:
John McCall 2009-09-21 23:43:11 +00:00
parent fd68c7bdc0
commit 9dd450bb78
49 changed files with 326 additions and 442 deletions

View File

@ -1012,7 +1012,7 @@ public:
unsigned getMinRequiredArguments() const;
QualType getResultType() const {
return getType()->getAsFunctionType()->getResultType();
return getType()->getAs<FunctionType>()->getResultType();
}
StorageClass getStorageClass() const { return StorageClass(SClass); }
void setStorageClass(StorageClass SC) { SClass = SC; }

View File

@ -811,7 +811,7 @@ public:
QualType getThisType(ASTContext &C) const;
unsigned getTypeQualifiers() const {
return getType()->getAsFunctionProtoType()->getTypeQuals();
return getType()->getAs<FunctionProtoType>()->getTypeQuals();
}
// Implement isa/cast/dyncast/etc.
@ -1312,7 +1312,7 @@ public:
/// getConversionType - Returns the type that this conversion
/// function is converting to.
QualType getConversionType() const {
return getType()->getAsFunctionType()->getResultType();
return getType()->getAs<FunctionType>()->getResultType();
}
// Implement isa/cast/dyncast/etc.

View File

@ -384,8 +384,8 @@ public:
// Type Predicates: Check to see if this type is structurally the specified
// type, ignoring typedefs and qualifiers.
bool isFunctionType() const;
bool isFunctionNoProtoType() const { return getAsFunctionNoProtoType() != 0; }
bool isFunctionProtoType() const { return getAsFunctionProtoType() != 0; }
bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
bool isPointerType() const;
bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
bool isBlockPointerType() const;
@ -440,36 +440,24 @@ public:
// Type Checking Functions: Check to see if this type is structurally the
// specified type, ignoring typedefs and qualifiers, and return a pointer to
// the best type we can.
const BuiltinType *getAsBuiltinType() const;
const FunctionType *getAsFunctionType() const;
const FunctionNoProtoType *getAsFunctionNoProtoType() const;
const FunctionProtoType *getAsFunctionProtoType() const;
const RecordType *getAsStructureType() const;
/// NOTE: getAs*ArrayType are methods on ASTContext.
const TypedefType *getAsTypedefType() const;
const RecordType *getAsUnionType() const;
const EnumType *getAsEnumType() const;
const VectorType *getAsVectorType() const; // GCC vector type.
const ComplexType *getAsComplexType() const;
const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
const ExtVectorType *getAsExtVectorType() const; // Extended vector type.
const ObjCObjectPointerType *getAsObjCObjectPointerType() const;
// The following is a convenience method that returns an ObjCObjectPointerType
// for object declared using an interface.
const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
const ObjCInterfaceType *getAsObjCInterfaceType() const;
const ObjCInterfaceType *getAsObjCQualifiedInterfaceType() const;
const TemplateTypeParmType *getAsTemplateTypeParmType() const;
const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
// Member-template getAs<specific type>'. This scheme will eventually
// replace the specific getAsXXXX methods above.
//
// There are some specializations of this member template listed
// immediately following this class.
template <typename T> const T *getAs() const;
const TemplateSpecializationType *
getAsTemplateSpecializationType() const;
/// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
/// interface, return the interface type, otherwise return null.
const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
@ -522,6 +510,20 @@ public:
static bool classof(const Type *) { return true; }
};
template <> inline const TypedefType *Type::getAs() const {
return dyn_cast<TypedefType>(this);
}
// We can do canonical leaf types faster, because we don't have to
// worry about preserving child type decoration.
#define TYPE(Class, Base)
#define LEAF_TYPE(Class) \
template <> inline const Class##Type *Type::getAs() const { \
return dyn_cast<Class##Type>(CanonicalType.getUnqualifiedType()); \
}
#include "clang/AST/TypeNodes.def"
/// ExtQualType - TR18037 (C embedded extensions) 6.2.5p26
/// This supports all kinds of type attributes; including,
/// address space qualified types, objective-c's __weak and
@ -2155,7 +2157,7 @@ public:
QualType getPointeeType() const { return PointeeType; }
const ObjCInterfaceType *getInterfaceType() const {
return PointeeType->getAsObjCInterfaceType();
return PointeeType->getAs<ObjCInterfaceType>();
}
/// getInterfaceDecl - returns an interface decl for user-defined types.
ObjCInterfaceDecl *getInterfaceDecl() const {
@ -2233,7 +2235,7 @@ inline QualType::GCAttrTypes QualType::getObjCGCAttr() const {
return AT->getElementType().getObjCGCAttr();
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
return EXTQT->getObjCGCAttr();
if (const ObjCObjectPointerType *PT = CT->getAsObjCObjectPointerType())
if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
return PT->getPointeeType().getObjCGCAttr();
// We most look at all pointer types, not just pointer to interface types.
if (const PointerType *PT = CT->getAs<PointerType>())
@ -2246,9 +2248,9 @@ inline QualType::GCAttrTypes QualType::getObjCGCAttr() const {
inline bool QualType::getNoReturnAttr() const {
QualType CT = getTypePtr()->getCanonicalTypeInternal();
if (const PointerType *PT = getTypePtr()->getAs<PointerType>()) {
if (const FunctionType *FT = PT->getPointeeType()->getAsFunctionType())
if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
return FT->getNoReturnAttr();
} else if (const FunctionType *FT = getTypePtr()->getAsFunctionType())
} else if (const FunctionType *FT = getTypePtr()->getAs<FunctionType>())
return FT->getNoReturnAttr();
return false;
@ -2295,12 +2297,9 @@ inline QualType QualType::getNonReferenceType() const {
return *this;
}
inline const TypedefType* Type::getAsTypedefType() const {
return dyn_cast<TypedefType>(this);
}
inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
if (const PointerType *PT = getAs<PointerType>())
return PT->getPointeeType()->getAsObjCInterfaceType();
return PT->getPointeeType()->getAs<ObjCInterfaceType>();
return 0;
}
@ -2376,22 +2375,22 @@ inline bool Type::isObjCInterfaceType() const {
return isa<ObjCInterfaceType>(CanonicalType.getUnqualifiedType());
}
inline bool Type::isObjCQualifiedIdType() const {
if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
return OPT->isObjCQualifiedIdType();
return false;
}
inline bool Type::isObjCQualifiedClassType() const {
if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
return OPT->isObjCQualifiedClassType();
return false;
}
inline bool Type::isObjCIdType() const {
if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
return OPT->isObjCIdType();
return false;
}
inline bool Type::isObjCClassType() const {
if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
return OPT->isObjCClassType();
return false;
}
@ -2403,7 +2402,7 @@ inline bool Type::isTemplateTypeParmType() const {
}
inline bool Type::isSpecificBuiltinType(unsigned K) const {
if (const BuiltinType *BT = getAsBuiltinType())
if (const BuiltinType *BT = getAs<BuiltinType>())
if (BT->getKind() == (BuiltinType::Kind) K)
return true;
return false;

View File

@ -31,6 +31,12 @@
// type that is always dependent. Clients that do not need to deal
// with uninstantiated C++ templates can ignore these types.
//
// There is a fifth macro, independent of the others. Most clients
// will not need to use it.
//
// LEAF_TYPE(Class) - A type that never has inner types. Clients
// which can operate on such types more efficiently may wish to do so.
//
//===----------------------------------------------------------------------===//
#ifndef ABSTRACT_TYPE
@ -83,6 +89,17 @@ DEPENDENT_TYPE(Typename, Type)
TYPE(ObjCInterface, Type)
TYPE(ObjCObjectPointer, Type)
// These types are always leaves in the type hierarchy.
#ifdef LEAF_TYPE
LEAF_TYPE(Enum)
LEAF_TYPE(Builtin)
LEAF_TYPE(FixedWidthInt)
LEAF_TYPE(ObjCInterface)
LEAF_TYPE(ObjCObjectPointer)
LEAF_TYPE(TemplateTypeParm)
#undef LEAF_TYPE
#endif
#undef DEPENDENT_TYPE
#undef NON_CANONICAL_TYPE
#undef ABSTRACT_TYPE

View File

@ -91,8 +91,8 @@ NODE_XML(FunctionDecl, "Function")
ATTRIBUTE_FILE_LOCATION_XML
ATTRIBUTE_XML(getDeclContext(), "context")
ATTRIBUTE_XML(getNameAsString(), "name")
TYPE_ATTRIBUTE_XML(getType()->getAsFunctionType()->getResultType())
ATTRIBUTE_XML(getType()->getAsFunctionType(), "function_type")
TYPE_ATTRIBUTE_XML(getType()->getAs<FunctionType>()->getResultType())
ATTRIBUTE_XML(getType()->getAs<FunctionType>(), "function_type")
ATTRIBUTE_ENUM_OPT_XML(getStorageClass(), "storage_class")
ENUM_XML(FunctionDecl::None, "")
ENUM_XML(FunctionDecl::Extern, "extern")
@ -111,8 +111,8 @@ NODE_XML(CXXMethodDecl, "CXXMethodDecl")
ATTRIBUTE_FILE_LOCATION_XML
ATTRIBUTE_XML(getDeclContext(), "context")
ATTRIBUTE_XML(getNameAsString(), "name")
TYPE_ATTRIBUTE_XML(getType()->getAsFunctionType()->getResultType())
ATTRIBUTE_XML(getType()->getAsFunctionType(), "function_type")
TYPE_ATTRIBUTE_XML(getType()->getAs<FunctionType>()->getResultType())
ATTRIBUTE_XML(getType()->getAs<FunctionType>(), "function_type")
ATTRIBUTE_OPT_XML(isInline(), "inline")
ATTRIBUTE_OPT_XML(isStatic(), "static")
ATTRIBUTE_OPT_XML(isVirtual(), "virtual")

View File

@ -487,7 +487,7 @@ const char *ASTContext::getCommentForDecl(const Decl *D) {
/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
/// scalar floating point type.
const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
const BuiltinType *BT = T->getAsBuiltinType();
const BuiltinType *BT = T->getAs<BuiltinType>();
assert(BT && "Not a floating point type!");
switch (BT->getKind()) {
default: assert(0 && "Not a floating point type!");
@ -782,7 +782,7 @@ unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
unsigned ABIAlign = getTypeAlign(T);
// Double and long long should be naturally aligned if possible.
if (const ComplexType* CT = T->getAsComplexType())
if (const ComplexType* CT = T->getAs<ComplexType>())
T = CT->getElementType().getTypePtr();
if (T->isSpecificBuiltinType(BuiltinType::Double) ||
T->isSpecificBuiltinType(BuiltinType::LongLong))
@ -1120,10 +1120,10 @@ QualType ASTContext::getNoReturnType(QualType T) {
if (!T->isFunctionType())
assert(0 && "can't noreturn qualify non-pointer to function or block type");
if (const FunctionNoProtoType *F = T->getAsFunctionNoProtoType()) {
if (const FunctionNoProtoType *F = T->getAs<FunctionNoProtoType>()) {
return getFunctionNoProtoType(F->getResultType(), true);
}
const FunctionProtoType *F = T->getAsFunctionProtoType();
const FunctionProtoType *F = T->getAs<FunctionProtoType>();
return getFunctionType(F->getResultType(), F->arg_type_begin(),
F->getNumArgs(), F->isVariadic(), F->getTypeQuals(),
F->hasExceptionSpec(), F->hasAnyExceptionSpec(),
@ -1887,7 +1887,7 @@ ASTContext::getTypenameType(NestedNameSpecifier *NNS,
QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
const TemplateSpecializationType *CanonTemplateId
= CanonType->getAsTemplateSpecializationType();
= CanonType->getAs<TemplateSpecializationType>();
assert(CanonTemplateId &&
"Canonical type must also be a template specialization type");
Canon = getTypenameType(CanonNNS, CanonTemplateId);
@ -2454,11 +2454,11 @@ ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const {
/// getFloatingRank - Return a relative rank for floating point types.
/// This routine will assert if passed a built-in type that isn't a float.
static FloatingRank getFloatingRank(QualType T) {
if (const ComplexType *CT = T->getAsComplexType())
if (const ComplexType *CT = T->getAs<ComplexType>())
return getFloatingRank(CT->getElementType());
assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
switch (T->getAsBuiltinType()->getKind()) {
assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
switch (T->getAs<BuiltinType>()->getKind()) {
default: assert(0 && "getFloatingRank(): not a floating type");
case BuiltinType::Float: return FloatRank;
case BuiltinType::Double: return DoubleRank;
@ -2911,7 +2911,7 @@ void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
///
void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
if (isa<TypedefType>(PointeeTy.getTypePtr())) {
if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
if (BT->getKind() == BuiltinType::ULong &&
((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
PointeeTy = UnsignedIntTy;
@ -2949,7 +2949,7 @@ void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
const FieldDecl *FD,
bool OutermostType,
bool EncodingProperty) {
if (const BuiltinType *BT = T->getAsBuiltinType()) {
if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
if (FD && FD->isBitField())
return EncodeBitField(this, S, FD);
char encoding;
@ -2986,7 +2986,7 @@ void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
return;
}
if (const ComplexType *CT = T->getAsComplexType()) {
if (const ComplexType *CT = T->getAs<ComplexType>()) {
S += 'j';
getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
false);
@ -3085,7 +3085,7 @@ void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
return;
}
if (T->getAsFunctionType()) {
if (T->getAs<FunctionType>()) {
S += '?';
return;
}
@ -3141,7 +3141,7 @@ void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
if (T->isObjCInterfaceType()) {
// @encode(class_name)
ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
ObjCInterfaceDecl *OI = T->getAs<ObjCInterfaceType>()->getDecl();
S += '{';
const IdentifierInfo *II = OI->getIdentifier();
S += II->getName();
@ -3160,7 +3160,7 @@ void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
return;
}
if (const ObjCObjectPointerType *OPT = T->getAsObjCObjectPointerType()) {
if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
if (OPT->isObjCIdType()) {
S += '@';
return;
@ -3250,7 +3250,7 @@ void ASTContext::setObjCIdType(QualType T) {
void ASTContext::setObjCSelType(QualType T) {
ObjCSelType = T;
const TypedefType *TT = T->getAsTypedefType();
const TypedefType *TT = T->getAs<TypedefType>();
if (!TT)
return;
TypedefDecl *TD = TT->getDecl();
@ -3462,7 +3462,7 @@ bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
return true;
if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
const ObjCObjectPointerType *rhsOPT = rhs->getAsObjCObjectPointerType();
const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
if (!rhsOPT) return false;
@ -3635,8 +3635,8 @@ bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
// get the "pointed to" types
const ObjCObjectPointerType *LHSOPT = LHS->getAsObjCObjectPointerType();
const ObjCObjectPointerType *RHSOPT = RHS->getAsObjCObjectPointerType();
const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
if (!LHSOPT || !RHSOPT)
return false;
@ -3654,8 +3654,8 @@ bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
}
QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
const FunctionType *lbase = lhs->getAsFunctionType();
const FunctionType *rbase = rhs->getAsFunctionType();
const FunctionType *lbase = lhs->getAs<FunctionType>();
const FunctionType *rbase = rhs->getAs<FunctionType>();
const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
bool allLTypes = true;
@ -3847,11 +3847,11 @@ QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
if (LHSClass != RHSClass) {
// C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
// a signed integer type, or an unsigned integer type.
if (const EnumType* ETy = LHS->getAsEnumType()) {
if (const EnumType* ETy = LHS->getAs<EnumType>()) {
if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
return RHS;
}
if (const EnumType* ETy = RHS->getAsEnumType()) {
if (const EnumType* ETy = RHS->getAs<EnumType>()) {
if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
return LHS;
}
@ -3963,15 +3963,15 @@ QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
return QualType();
case Type::Vector:
// FIXME: The merged type should be an ExtVector!
if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
if (areCompatVectorTypes(LHS->getAs<VectorType>(), RHS->getAs<VectorType>()))
return LHS;
return QualType();
case Type::ObjCInterface: {
// Check if the interfaces are assignment compatible.
// FIXME: This should be type compatibility, e.g. whether
// "LHS x; RHS x;" at global scope is legal.
const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
if (LHSIface && RHSIface &&
canAssignObjCInterfaces(LHSIface, RHSIface))
return LHS;
@ -3979,8 +3979,8 @@ QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
return QualType();
}
case Type::ObjCObjectPointer: {
if (canAssignObjCInterfaces(LHS->getAsObjCObjectPointerType(),
RHS->getAsObjCObjectPointerType()))
if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
RHS->getAs<ObjCObjectPointerType>()))
return LHS;
return QualType();
@ -4040,9 +4040,9 @@ unsigned ASTContext::getIntWidth(QualType T) {
QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
assert(T->isSignedIntegerType() && "Unexpected type");
if (const EnumType* ETy = T->getAsEnumType())
if (const EnumType* ETy = T->getAs<EnumType>())
T = ETy->getDecl()->getIntegerType();
const BuiltinType* BTy = T->getAsBuiltinType();
const BuiltinType* BTy = T->getAs<BuiltinType>();
assert (BTy && "Unexpected signed integer type");
switch (BTy->getKind()) {
case BuiltinType::Char_S:

View File

@ -542,7 +542,7 @@ unsigned FunctionDecl::getBuiltinID() const {
/// based on its FunctionType. This is the length of the PararmInfo array
/// after it has been created.
unsigned FunctionDecl::getNumParams() const {
const FunctionType *FT = getType()->getAsFunctionType();
const FunctionType *FT = getType()->getAs<FunctionType>();
if (isa<FunctionNoProtoType>(FT))
return 0;
return cast<FunctionProtoType>(FT)->getNumArgs();

View File

@ -194,7 +194,7 @@ bool CXXRecordDecl::hasConstCopyAssignment(ASTContext &Context,
continue;
// TODO: Skip templates? Or is this implicitly done due to parameter types?
const FunctionProtoType *FnType =
Method->getType()->getAsFunctionProtoType();
Method->getType()->getAs<FunctionProtoType>();
assert(FnType && "Overloaded operator has no prototype.");
// Don't assert on this; an invalid decl might have been left in the AST.
if (FnType->getNumArgs() != 1 || FnType->isVariadic())
@ -256,7 +256,7 @@ CXXRecordDecl::addedConstructor(ASTContext &Context,
void CXXRecordDecl::addedAssignmentOperator(ASTContext &Context,
CXXMethodDecl *OpDecl) {
// We're interested specifically in copy assignment operators.
const FunctionProtoType *FnType = OpDecl->getType()->getAsFunctionProtoType();
const FunctionProtoType *FnType = OpDecl->getType()->getAs<FunctionProtoType>();
assert(FnType && "Overloaded operator has no proto function type.");
assert(FnType->getNumArgs() == 1 && !FnType->isVariadic());
QualType ArgType = FnType->getArgType(0);
@ -616,7 +616,7 @@ bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
return false;
return (getNumParams() == 0 &&
getType()->getAsFunctionProtoType()->isVariadic()) ||
getType()->getAs<FunctionProtoType>()->isVariadic()) ||
(getNumParams() == 1) ||
(getNumParams() > 1 && getParamDecl(1)->hasDefaultArg());
}

View File

@ -97,9 +97,9 @@ static QualType GetBaseType(QualType T) {
BaseType = PTy->getPointeeType();
else if (const ArrayType* ATy = dyn_cast<ArrayType>(BaseType))
BaseType = ATy->getElementType();
else if (const FunctionType* FTy = BaseType->getAsFunctionType())
else if (const FunctionType* FTy = BaseType->getAs<FunctionType>())
BaseType = FTy->getResultType();
else if (const VectorType *VTy = BaseType->getAsVectorType())
else if (const VectorType *VTy = BaseType->getAs<VectorType>())
BaseType = VTy->getElementType();
else
assert(0 && "Unknown declarator!");
@ -332,7 +332,7 @@ void DeclPrinter::VisitFunctionDecl(FunctionDecl *D) {
SubPolicy.SuppressSpecifiers = false;
std::string Proto = D->getNameAsString();
if (isa<FunctionType>(D->getType().getTypePtr())) {
const FunctionType *AFT = D->getType()->getAsFunctionType();
const FunctionType *AFT = D->getType()->getAs<FunctionType>();
const FunctionProtoType *FT = 0;
if (D->hasWrittenPrototype())

View File

@ -51,7 +51,7 @@ std::string PredefinedExpr::ComputeName(ASTContext &Context, IdentType IT,
std::string Proto = FD->getQualifiedNameAsString(Policy);
const FunctionType *AFT = FD->getType()->getAsFunctionType();
const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
const FunctionProtoType *FT = 0;
if (FD->hasWrittenPrototype())
FT = dyn_cast<FunctionProtoType>(AFT);
@ -335,7 +335,7 @@ QualType CallExpr::getCallReturnType() const {
else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
CalleeType = BPT->getPointeeType();
const FunctionType *FnType = CalleeType->getAsFunctionType();
const FunctionType *FnType = CalleeType->getAs<FunctionType>();
return FnType->getResultType();
}
@ -575,7 +575,7 @@ Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
///
const FunctionType *BlockExpr::getFunctionType() const {
return getType()->getAs<BlockPointerType>()->
getPointeeType()->getAsFunctionType();
getPointeeType()->getAs<FunctionType>();
}
SourceLocation BlockExpr::getCaretLocation() const {
@ -1693,7 +1693,7 @@ bool ExtVectorElementExpr::isArrow() const {
}
unsigned ExtVectorElementExpr::getNumElements() const {
if (const VectorType *VT = getType()->getAsVectorType())
if (const VectorType *VT = getType()->getAs<VectorType>())
return VT->getNumElements();
return 1;
}

View File

@ -487,7 +487,7 @@ static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
}
APValue VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
const VectorType *VTy = E->getType()->getAsVectorType();
const VectorType *VTy = E->getType()->getAs<VectorType>();
QualType EltTy = VTy->getElementType();
unsigned NElts = VTy->getNumElements();
unsigned EltWidth = Info.Ctx.getTypeSize(EltTy);
@ -566,7 +566,7 @@ VectorExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
APValue
VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
const VectorType *VT = E->getType()->getAsVectorType();
const VectorType *VT = E->getType()->getAs<VectorType>();
unsigned NumInits = E->getNumInits();
unsigned NumElements = VT->getNumElements();
@ -599,7 +599,7 @@ VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
APValue
VectorExprEvaluator::GetZeroVector(QualType T) {
const VectorType *VT = T->getAsVectorType();
const VectorType *VT = T->getAs<VectorType>();
QualType EltTy = VT->getElementType();
APValue ZeroElement;
if (EltTy->isIntegerType())
@ -1575,7 +1575,7 @@ public:
APValue VisitCastExpr(CastExpr *E) {
Expr* SubExpr = E->getSubExpr();
QualType EltType = E->getType()->getAsComplexType()->getElementType();
QualType EltType = E->getType()->getAs<ComplexType>()->getElementType();
QualType SubType = SubExpr->getType();
if (SubType->isRealFloatingType()) {
@ -1612,7 +1612,7 @@ public:
Zero = 0;
return APValue(Result, Zero);
}
} else if (const ComplexType *CT = SubType->getAsComplexType()) {
} else if (const ComplexType *CT = SubType->getAs<ComplexType>()) {
APValue Src;
if (!EvaluateComplex(SubExpr, Src, Info))

View File

@ -595,7 +595,7 @@ void StmtPrinter::VisitIntegerLiteral(IntegerLiteral *Node) {
OS << Node->getValue().toString(10, isSigned);
// Emit suffixes. Integer literals are always a builtin integer type.
switch (Node->getType()->getAsBuiltinType()->getKind()) {
switch (Node->getType()->getAs<BuiltinType>()->getKind()) {
default: assert(0 && "Unexpected type for integer literal!");
case BuiltinType::Int: break; // no suffix.
case BuiltinType::UInt: OS << 'U'; break;

View File

@ -159,7 +159,7 @@ QualType Type::getDesugaredType(bool ForDisplay) const {
return QualType(this, 0);
QualType Canon = Spec->getCanonicalTypeInternal();
if (Canon->getAsTemplateSpecializationType())
if (Canon->getAs<TemplateSpecializationType>())
return QualType(this, 0);
return Canon->getDesugaredType();
}
@ -276,54 +276,10 @@ const ComplexType *Type::getAsComplexIntegerType() const {
return cast<ComplexType>(getDesugaredType());
}
const BuiltinType *Type::getAsBuiltinType() const {
// If this is directly a builtin type, return it.
if (const BuiltinType *BTy = dyn_cast<BuiltinType>(this))
return BTy;
// If the canonical form of this type isn't a builtin type, reject it.
if (!isa<BuiltinType>(CanonicalType)) {
// Look through type qualifiers (e.g. ExtQualType's).
if (isa<BuiltinType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsBuiltinType();
return 0;
}
// If this is a typedef for a builtin type, strip the typedef off without
// losing all typedef information.
return cast<BuiltinType>(getDesugaredType());
}
const FunctionType *Type::getAsFunctionType() const {
// If this is directly a function type, return it.
if (const FunctionType *FTy = dyn_cast<FunctionType>(this))
return FTy;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<FunctionType>(CanonicalType)) {
// Look through type qualifiers
if (isa<FunctionType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsFunctionType();
return 0;
}
// If this is a typedef for a function type, strip the typedef off without
// losing all typedef information.
return cast<FunctionType>(getDesugaredType());
}
const FunctionNoProtoType *Type::getAsFunctionNoProtoType() const {
return dyn_cast_or_null<FunctionNoProtoType>(getAsFunctionType());
}
const FunctionProtoType *Type::getAsFunctionProtoType() const {
return dyn_cast_or_null<FunctionProtoType>(getAsFunctionType());
}
QualType Type::getPointeeType() const {
if (const PointerType *PT = getAs<PointerType>())
return PT->getPointeeType();
if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
return OPT->getPointeeType();
if (const BlockPointerType *BPT = getAs<BlockPointerType>())
return BPT->getPointeeType();
@ -357,7 +313,7 @@ bool Type::isVariablyModifiedType() const {
// This one isn't completely obvious, but it follows from the
// definition in C99 6.7.5p3. Because of this rule, it's
// illegal to declare a function returning a variably modified type.
if (const FunctionType *FT = getAsFunctionType())
if (const FunctionType *FT = getAs<FunctionType>())
return FT->getResultType()->isVariablyModifiedType();
return false;
@ -408,79 +364,11 @@ const RecordType *Type::getAsUnionType() const {
return 0;
}
const EnumType *Type::getAsEnumType() const {
// Check the canonicalized unqualified type directly; the more complex
// version is unnecessary because there isn't any typedef information
// to preserve.
return dyn_cast<EnumType>(CanonicalType.getUnqualifiedType());
}
const ComplexType *Type::getAsComplexType() const {
// Are we directly a complex type?
if (const ComplexType *CTy = dyn_cast<ComplexType>(this))
return CTy;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<ComplexType>(CanonicalType)) {
// Look through type qualifiers
if (isa<ComplexType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsComplexType();
return 0;
}
// If this is a typedef for a complex type, strip the typedef off without
// losing all typedef information.
return cast<ComplexType>(getDesugaredType());
}
const VectorType *Type::getAsVectorType() const {
// Are we directly a vector type?
if (const VectorType *VTy = dyn_cast<VectorType>(this))
return VTy;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<VectorType>(CanonicalType)) {
// Look through type qualifiers
if (isa<VectorType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsVectorType();
return 0;
}
// If this is a typedef for a vector type, strip the typedef off without
// losing all typedef information.
return cast<VectorType>(getDesugaredType());
}
const ExtVectorType *Type::getAsExtVectorType() const {
// Are we directly an OpenCU vector type?
if (const ExtVectorType *VTy = dyn_cast<ExtVectorType>(this))
return VTy;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<ExtVectorType>(CanonicalType)) {
// Look through type qualifiers
if (isa<ExtVectorType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsExtVectorType();
return 0;
}
// If this is a typedef for an extended vector type, strip the typedef off
// without losing all typedef information.
return cast<ExtVectorType>(getDesugaredType());
}
const ObjCInterfaceType *Type::getAsObjCInterfaceType() const {
// There is no sugar for ObjCInterfaceType's, just return the canonical
// type pointer if it is the right class. There is no typedef information to
// return and these cannot be Address-space qualified.
return dyn_cast<ObjCInterfaceType>(CanonicalType.getUnqualifiedType());
}
const ObjCInterfaceType *Type::getAsObjCQualifiedInterfaceType() const {
// There is no sugar for ObjCInterfaceType's, just return the canonical
// type pointer if it is the right class. There is no typedef information to
// return and these cannot be Address-space qualified.
if (const ObjCInterfaceType *OIT = getAsObjCInterfaceType())
if (const ObjCInterfaceType *OIT = getAs<ObjCInterfaceType>())
if (OIT->getNumProtocols())
return OIT;
return 0;
@ -490,16 +378,10 @@ bool Type::isObjCQualifiedInterfaceType() const {
return getAsObjCQualifiedInterfaceType() != 0;
}
const ObjCObjectPointerType *Type::getAsObjCObjectPointerType() const {
// There is no sugar for ObjCObjectPointerType's, just return the
// canonical type pointer if it is the right class.
return dyn_cast<ObjCObjectPointerType>(CanonicalType.getUnqualifiedType());
}
const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
// There is no sugar for ObjCQualifiedIdType's, just return the canonical
// type pointer if it is the right class.
if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType()) {
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
if (OPT->isObjCQualifiedIdType())
return OPT;
}
@ -507,20 +389,13 @@ const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
}
const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType()) {
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
if (OPT->getInterfaceType())
return OPT;
}
return 0;
}
const TemplateTypeParmType *Type::getAsTemplateTypeParmType() const {
// There is no sugar for template type parameters, so just return
// the canonical type pointer if it is the right class.
// FIXME: can these be address-space qualified?
return dyn_cast<TemplateTypeParmType>(CanonicalType);
}
const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
if (const PointerType *PT = getAs<PointerType>())
if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
@ -528,13 +403,6 @@ const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
return 0;
}
const TemplateSpecializationType *
Type::getAsTemplateSpecializationType() const {
// There is no sugar for class template specialization types, so
// just return the canonical type pointer if it is the right class.
return this->getAs<TemplateSpecializationType>();
}
bool Type::isIntegerType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
@ -826,7 +694,7 @@ bool Type::isPODType() const {
}
bool Type::isPromotableIntegerType() const {
if (const BuiltinType *BT = getAsBuiltinType())
if (const BuiltinType *BT = getAs<BuiltinType>())
switch (BT->getKind()) {
case BuiltinType::Bool:
case BuiltinType::Char_S:
@ -843,7 +711,7 @@ bool Type::isPromotableIntegerType() const {
}
bool Type::isNullPtrType() const {
if (const BuiltinType *BT = getAsBuiltinType())
if (const BuiltinType *BT = getAs<BuiltinType>())
return BT->getKind() == BuiltinType::NullPtr;
return false;
}

View File

@ -38,7 +38,7 @@ static const ObjCInterfaceType* GetReceiverType(const ObjCMessageExpr* ME) {
return NULL;
if (const ObjCObjectPointerType *PT =
Receiver->getType()->getAsObjCObjectPointerType())
Receiver->getType()->getAs<ObjCObjectPointerType>())
return PT->getInterfaceType();
return NULL;

View File

@ -553,7 +553,7 @@ public:
const ObjCInterfaceDecl* getReceiverDecl(Expr* E) {
if (const ObjCObjectPointerType* PT =
E->getType()->getAsObjCObjectPointerType())
E->getType()->getAs<ObjCObjectPointerType>())
return PT->getInterfaceDecl();
return NULL;
@ -886,7 +886,7 @@ bool RetainSummaryManager::isTrackedObjCObjectType(QualType Ty) {
if (!Ty->isObjCObjectPointerType())
return false;
const ObjCObjectPointerType *PT = Ty->getAsObjCObjectPointerType();
const ObjCObjectPointerType *PT = Ty->getAs<ObjCObjectPointerType>();
// Can be true for objects with the 'NSObject' attribute.
if (!PT)
@ -953,9 +953,9 @@ RetainSummary* RetainSummaryManager::getSummary(FunctionDecl* FD) {
break;
}
// [PR 3337] Use 'getAsFunctionType' to strip away any typedefs on the
// [PR 3337] Use 'getAs<FunctionType>' to strip away any typedefs on the
// function's type.
const FunctionType* FT = FD->getType()->getAsFunctionType();
const FunctionType* FT = FD->getType()->getAs<FunctionType>();
const char* FName = FD->getIdentifier()->getName();
// Strip away preceding '_'. Doing this here will effect all the checks
@ -2739,7 +2739,7 @@ static QualType GetReturnType(const Expr* RetE, ASTContext& Ctx) {
// If RetE is a message expression, return its types if it is something
/// more specific than id.
if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(RetE))
if (const ObjCObjectPointerType *PT = RetTy->getAsObjCObjectPointerType())
if (const ObjCObjectPointerType *PT = RetTy->getAs<ObjCObjectPointerType>())
if (PT->isObjCQualifiedIdType() || PT->isObjCIdType() ||
PT->isObjCClassType()) {
// At this point we know the return type of the message expression is
@ -3012,7 +3012,7 @@ void CFRefCount::EvalObjCMessageExpr(ExplodedNodeSet& Dst,
if (Sym) {
if (const RefVal* T = St->get<RefBindings>(Sym)) {
if (const ObjCObjectPointerType* PT =
T->getType()->getAsObjCObjectPointerType())
T->getType()->getAs<ObjCObjectPointerType>())
ID = PT->getInterfaceDecl();
}
}
@ -3021,7 +3021,7 @@ void CFRefCount::EvalObjCMessageExpr(ExplodedNodeSet& Dst,
// that is called.
if (!ID) {
if (const ObjCObjectPointerType *PT =
Receiver->getType()->getAsObjCObjectPointerType())
Receiver->getType()->getAs<ObjCObjectPointerType>())
ID = PT->getInterfaceDecl();
}

View File

@ -166,7 +166,7 @@ bool NSErrorCheck::CheckNSErrorArgument(QualType ArgTy) {
return false;
const ObjCObjectPointerType* PT =
PPT->getPointeeType()->getAsObjCObjectPointerType();
PPT->getPointeeType()->getAs<ObjCObjectPointerType>();
if (!PT)
return false;
@ -185,7 +185,7 @@ bool NSErrorCheck::CheckCFErrorArgument(QualType ArgTy) {
const PointerType* PPT = ArgTy->getAs<PointerType>();
if (!PPT) return false;
const TypedefType* TT = PPT->getPointeeType()->getAsTypedefType();
const TypedefType* TT = PPT->getPointeeType()->getAs<TypedefType>();
if (!TT) return false;
return TT->getDecl()->getIdentifier() == II;

View File

@ -1590,7 +1590,7 @@ void GRExprEngine::VisitCall(CallExpr* CE, ExplodedNode* Pred,
const FunctionProtoType *Proto = NULL;
QualType FnType = CE->getCallee()->IgnoreParens()->getType();
if (const PointerType *FnTypePtr = FnType->getAs<PointerType>())
Proto = FnTypePtr->getPointeeType()->getAsFunctionProtoType();
Proto = FnTypePtr->getPointeeType()->getAs<FunctionProtoType>();
VisitCallRec(CE, Pred, AI, AE, Dst, Proto, /*ParamIdx=*/0);
}

View File

@ -756,7 +756,7 @@ SVal RegionStoreManager::EvalBinOp(const GRState *state,
if (const PointerType *PT = T->getAs<PointerType>())
EleTy = PT->getPointeeType();
else
EleTy = T->getAsObjCObjectPointerType()->getPointeeType();
EleTy = T->getAs<ObjCObjectPointerType>()->getPointeeType();
SVal ZeroIdx = ValMgr.makeZeroArrayIndex();
ER = MRMgr.getElementRegion(EleTy, ZeroIdx, SR, getContext());

View File

@ -417,13 +417,13 @@ RValue CodeGenFunction::EmitBlockCallExpr(const CallExpr* E) {
QualType FnType = BPT->getPointeeType();
// And the rest of the arguments.
EmitCallArgs(Args, FnType->getAsFunctionProtoType(),
EmitCallArgs(Args, FnType->getAs<FunctionProtoType>(),
E->arg_begin(), E->arg_end());
// Load the function.
llvm::Value *Func = Builder.CreateLoad(FuncPtr, false, "tmp");
QualType ResultType = FnType->getAsFunctionType()->getResultType();
QualType ResultType = FnType->getAs<FunctionType>()->getResultType();
const CGFunctionInfo &FnInfo =
CGM.getTypes().getFunctionInfo(ResultType, Args);

View File

@ -183,7 +183,7 @@ RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
if (Destructor->isTrivial())
return RValue::get(0);
const FunctionProtoType *FPT = MD->getType()->getAsFunctionProtoType();
const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
CallArgList Args;
@ -194,7 +194,7 @@ RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
// And the rest of the call args
EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
QualType ResultType = MD->getType()->getAsFunctionType()->getResultType();
QualType ResultType = MD->getType()->getAs<FunctionType>()->getResultType();
return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args),
Callee, Args, MD);
}
@ -203,7 +203,7 @@ RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE) {
const MemberExpr *ME = cast<MemberExpr>(CE->getCallee());
const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
const FunctionProtoType *FPT = MD->getType()->getAsFunctionProtoType();
const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
const llvm::Type *Ty =
CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(MD),
@ -252,7 +252,7 @@ CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
}
}
const FunctionProtoType *FPT = MD->getType()->getAsFunctionProtoType();
const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
const llvm::Type *Ty =
CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(MD),
FPT->isVariadic());
@ -461,7 +461,7 @@ llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
QualType AllocType = E->getAllocatedType();
FunctionDecl *NewFD = E->getOperatorNew();
const FunctionProtoType *NewFTy = NewFD->getType()->getAsFunctionProtoType();
const FunctionProtoType *NewFTy = NewFD->getType()->getAs<FunctionProtoType>();
CallArgList NewArgs;
@ -623,7 +623,7 @@ void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
// Call delete.
FunctionDecl *DeleteFD = E->getOperatorDelete();
const FunctionProtoType *DeleteFTy =
DeleteFD->getType()->getAsFunctionProtoType();
DeleteFD->getType()->getAs<FunctionProtoType>();
CallArgList DeleteArgs;
@ -872,9 +872,9 @@ public:
// FIXME: begin_overridden_methods might be too lax, covariance */
if (submethods[i] != om)
continue;
QualType nc_oret = OMD->getType()->getAsFunctionType()->getResultType();
QualType nc_oret = OMD->getType()->getAs<FunctionType>()->getResultType();
CanQualType oret = CGM.getContext().getCanonicalType(nc_oret);
QualType nc_ret = MD->getType()->getAsFunctionType()->getResultType();
QualType nc_ret = MD->getType()->getAs<FunctionType>()->getResultType();
CanQualType ret = CGM.getContext().getCanonicalType(nc_ret);
CallOffset ReturnOffset = std::make_pair(0, 0);
if (oret != ret) {
@ -1262,7 +1262,7 @@ llvm::Constant *CodeGenFunction::GenerateThunk(llvm::Function *Fn,
const CXXMethodDecl *MD,
bool Extern, int64_t nv,
int64_t v) {
QualType R = MD->getType()->getAsFunctionType()->getResultType();
QualType R = MD->getType()->getAs<FunctionType>()->getResultType();
FunctionArgList Args;
ImplicitParamDecl *ThisDecl =
@ -1297,7 +1297,7 @@ llvm::Constant *CodeGenFunction::GenerateCovariantThunk(llvm::Function *Fn,
int64_t v_t,
int64_t nv_r,
int64_t v_r) {
QualType R = MD->getType()->getAsFunctionType()->getResultType();
QualType R = MD->getType()->getAs<FunctionType>()->getResultType();
FunctionArgList Args;
ImplicitParamDecl *ThisDecl =
@ -1335,7 +1335,7 @@ llvm::Constant *CodeGenModule::BuildThunk(const CXXMethodDecl *MD, bool Extern,
if (!Extern)
linktype = llvm::GlobalValue::InternalLinkage;
llvm::Type *Ptr8Ty=llvm::PointerType::get(llvm::Type::getInt8Ty(VMContext),0);
const FunctionProtoType *FPT = MD->getType()->getAsFunctionProtoType();
const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
const llvm::FunctionType *FTy =
getTypes().GetFunctionType(getTypes().getFunctionInfo(MD),
FPT->isVariadic());
@ -1360,7 +1360,7 @@ llvm::Constant *CodeGenModule::BuildCovariantThunk(const CXXMethodDecl *MD,
if (!Extern)
linktype = llvm::GlobalValue::InternalLinkage;
llvm::Type *Ptr8Ty=llvm::PointerType::get(llvm::Type::getInt8Ty(VMContext),0);
const FunctionProtoType *FPT = MD->getType()->getAsFunctionProtoType();
const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
const llvm::FunctionType *FTy =
getTypes().GetFunctionType(getTypes().getFunctionInfo(MD),
FPT->isVariadic());
@ -1454,7 +1454,7 @@ void CodeGenFunction::EmitClassAggrMemberwiseCopy(llvm::Value *Dest,
CallArgs.push_back(std::make_pair(RValue::get(Src),
BaseCopyCtor->getParamDecl(0)->getType()));
QualType ResultType =
BaseCopyCtor->getType()->getAsFunctionType()->getResultType();
BaseCopyCtor->getType()->getAs<FunctionType>()->getResultType();
EmitCall(CGM.getTypes().getFunctionInfo(ResultType, CallArgs),
Callee, CallArgs, BaseCopyCtor);
}
@ -1524,7 +1524,7 @@ void CodeGenFunction::EmitClassAggrCopyAssignment(llvm::Value *Dest,
MD);
assert(hasCopyAssign && "EmitClassAggrCopyAssignment - No user assign");
(void)hasCopyAssign;
const FunctionProtoType *FPT = MD->getType()->getAsFunctionProtoType();
const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
const llvm::Type *LTy =
CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(MD),
FPT->isVariadic());
@ -1538,7 +1538,7 @@ void CodeGenFunction::EmitClassAggrCopyAssignment(llvm::Value *Dest,
// Push the Src ptr.
CallArgs.push_back(std::make_pair(RValue::get(Src),
MD->getParamDecl(0)->getType()));
QualType ResultType = MD->getType()->getAsFunctionType()->getResultType();
QualType ResultType = MD->getType()->getAs<FunctionType>()->getResultType();
EmitCall(CGM.getTypes().getFunctionInfo(ResultType, CallArgs),
Callee, CallArgs, MD);
}
@ -1588,7 +1588,7 @@ void CodeGenFunction::EmitClassMemberwiseCopy(
CallArgs.push_back(std::make_pair(RValue::get(Src),
BaseCopyCtor->getParamDecl(0)->getType()));
QualType ResultType =
BaseCopyCtor->getType()->getAsFunctionType()->getResultType();
BaseCopyCtor->getType()->getAs<FunctionType>()->getResultType();
EmitCall(CGM.getTypes().getFunctionInfo(ResultType, CallArgs),
Callee, CallArgs, BaseCopyCtor);
}
@ -1620,7 +1620,7 @@ void CodeGenFunction::EmitClassCopyAssignment(
assert(ConstCopyAssignOp && "EmitClassCopyAssignment - missing copy assign");
(void)ConstCopyAssignOp;
const FunctionProtoType *FPT = MD->getType()->getAsFunctionProtoType();
const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
const llvm::Type *LTy =
CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(MD),
FPT->isVariadic());
@ -1635,7 +1635,7 @@ void CodeGenFunction::EmitClassCopyAssignment(
CallArgs.push_back(std::make_pair(RValue::get(Src),
MD->getParamDecl(0)->getType()));
QualType ResultType =
MD->getType()->getAsFunctionType()->getResultType();
MD->getType()->getAs<FunctionType>()->getResultType();
EmitCall(CGM.getTypes().getFunctionInfo(ResultType, CallArgs),
Callee, CallArgs, MD);
}

View File

@ -69,7 +69,7 @@ const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) {
if (MD->isInstance())
ArgTys.push_back(MD->getThisType(Context));
const FunctionProtoType *FTP = MD->getType()->getAsFunctionProtoType();
const FunctionProtoType *FTP = MD->getType()->getAs<FunctionProtoType>();
for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
ArgTys.push_back(FTP->getArgType(i));
return getFunctionInfo(FTP->getResultType(), ArgTys,
@ -82,7 +82,7 @@ const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) {
return getFunctionInfo(MD);
unsigned CallingConvention = getCallingConventionForDecl(FD);
const FunctionType *FTy = FD->getType()->getAsFunctionType();
const FunctionType *FTy = FD->getType()->getAs<FunctionType>();
if (const FunctionNoProtoType *FNTP = dyn_cast<FunctionNoProtoType>(FTy))
return getFunctionInfo(FNTP->getResultType(),
llvm::SmallVector<QualType, 16>(),

View File

@ -143,7 +143,7 @@ unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
if (Ty->isVoidType()) {
return RValue::get(0);
} else if (const ComplexType *CTy = Ty->getAsComplexType()) {
} else if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
const llvm::Type *EltTy = ConvertType(CTy->getElementType());
llvm::Value *U = llvm::UndefValue::get(EltTy);
return RValue::getComplex(std::make_pair(U, U));
@ -420,7 +420,7 @@ RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV,
// If the result of the expression is a non-vector type, we must be extracting
// a single element. Just codegen as an extractelement.
const VectorType *ExprVT = ExprType->getAsVectorType();
const VectorType *ExprVT = ExprType->getAs<VectorType>();
if (!ExprVT) {
unsigned InIdx = getAccessedFieldNo(0, Elts);
llvm::Value *Elt = llvm::ConstantInt::get(
@ -619,7 +619,7 @@ void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
llvm::Value *SrcVal = Src.getScalarVal();
if (const VectorType *VTy = Ty->getAsVectorType()) {
if (const VectorType *VTy = Ty->getAs<VectorType>()) {
unsigned NumSrcElts = VTy->getNumElements();
unsigned NumDstElts =
cast<llvm::VectorType>(Vec->getType())->getNumElements();
@ -784,7 +784,7 @@ LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
llvm::Value* V = CGM.GetAddrOfFunction(FD);
if (!FD->hasPrototype()) {
if (const FunctionProtoType *Proto =
FD->getType()->getAsFunctionProtoType()) {
FD->getType()->getAs<FunctionProtoType>()) {
// Ugly case: for a K&R-style definition, the type of the definition
// isn't the same as the type of a use. Correct for this with a
// bitcast.
@ -1470,10 +1470,10 @@ RValue CodeGenFunction::EmitCall(llvm::Value *Callee, QualType CalleeType,
"Call must have function pointer type!");
QualType FnType = CalleeType->getAs<PointerType>()->getPointeeType();
QualType ResultType = FnType->getAsFunctionType()->getResultType();
QualType ResultType = FnType->getAs<FunctionType>()->getResultType();
CallArgList Args;
EmitCallArgs(Args, FnType->getAsFunctionProtoType(), ArgBeg, ArgEnd);
EmitCallArgs(Args, FnType->getAs<FunctionProtoType>(), ArgBeg, ArgEnd);
// FIXME: We should not need to do this, it should be part of the function
// type.

View File

@ -181,13 +181,13 @@ public:
}
ComplexPairTy VisitCXXZeroInitValueExpr(CXXZeroInitValueExpr *E) {
assert(E->getType()->isAnyComplexType() && "Expected complex type!");
QualType Elem = E->getType()->getAsComplexType()->getElementType();
QualType Elem = E->getType()->getAs<ComplexType>()->getElementType();
llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
return ComplexPairTy(Null, Null);
}
ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
assert(E->getType()->isAnyComplexType() && "Expected complex type!");
QualType Elem = E->getType()->getAsComplexType()->getElementType();
QualType Elem = E->getType()->getAs<ComplexType>()->getElementType();
llvm::Constant *Null =
llvm::Constant::getNullValue(CGF.ConvertType(Elem));
return ComplexPairTy(Null, Null);
@ -313,7 +313,7 @@ void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, llvm::Value *Ptr,
ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
CGF.ErrorUnsupported(E, "complex expression");
const llvm::Type *EltTy =
CGF.ConvertType(E->getType()->getAsComplexType()->getElementType());
CGF.ConvertType(E->getType()->getAs<ComplexType>()->getElementType());
llvm::Value *U = llvm::UndefValue::get(EltTy);
return ComplexPairTy(U, U);
}
@ -342,8 +342,8 @@ ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
QualType SrcType,
QualType DestType) {
// Get the src/dest element type.
SrcType = SrcType->getAsComplexType()->getElementType();
DestType = DestType->getAsComplexType()->getElementType();
SrcType = SrcType->getAs<ComplexType>()->getElementType();
DestType = DestType->getAs<ComplexType>()->getElementType();
// C99 6.3.1.6: When a value of complex type is converted to another
// complex type, both the real and imaginary parts follow the conversion
@ -365,7 +365,7 @@ ComplexPairTy ComplexExprEmitter::EmitCast(Expr *Op, QualType DestTy) {
llvm::Value *Elt = CGF.EmitScalarExpr(Op);
// Convert the input element to the element type of the complex.
DestTy = DestTy->getAsComplexType()->getElementType();
DestTy = DestTy->getAs<ComplexType>()->getElementType();
Elt = CGF.EmitScalarConversion(Elt, Op->getType(), DestTy);
// Return (realval, 0).
@ -386,7 +386,7 @@ ComplexPairTy ComplexExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
// Add the inc/dec to the real part.
NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
} else {
QualType ElemTy = E->getType()->getAsComplexType()->getElementType();
QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
llvm::APFloat FVal(CGF.getContext().getFloatTypeSemantics(ElemTy), 1);
if (!isInc)
FVal.changeSign();
@ -526,7 +526,7 @@ ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi, "tmp"); // a*d
llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8, "tmp"); // bc-ad
if (Op.Ty->getAsComplexType()->getElementType()->isUnsignedIntegerType()) {
if (Op.Ty->getAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
DSTr = Builder.CreateUDiv(Tmp3, Tmp6, "tmp");
DSTi = Builder.CreateUDiv(Tmp9, Tmp6, "tmp");
} else {
@ -701,7 +701,7 @@ ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
return Visit(E->getInit(0));
// Empty init list intializes to null
QualType Ty = E->getType()->getAsComplexType()->getElementType();
QualType Ty = E->getType()->getAs<ComplexType>()->getElementType();
const llvm::Type* LTy = CGF.ConvertType(Ty);
llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
return ComplexPairTy(zeroConstant, zeroConstant);
@ -714,7 +714,7 @@ ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
if (!ArgPtr) {
CGF.ErrorUnsupported(E, "complex va_arg expression");
const llvm::Type *EltTy =
CGF.ConvertType(E->getType()->getAsComplexType()->getElementType());
CGF.ConvertType(E->getType()->getAs<ComplexType>()->getElementType());
llvm::Value *U = llvm::UndefValue::get(EltTy);
return ComplexPairTy(U, U);
}

View File

@ -494,7 +494,7 @@ Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
// A scalar can be splatted to an extended vector of the same element type
if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
// Cast the scalar to element type
QualType EltTy = DstType->getAsExtVectorType()->getElementType();
QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
// Insert the element in element zero of an undef vector
@ -553,7 +553,7 @@ Value *ScalarExprEmitter::
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
QualType SrcTy, QualType DstTy) {
// Get the source element type.
SrcTy = SrcTy->getAsComplexType()->getElementType();
SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
// Handle conversions to bool first, they are special: comparisons against 0.
if (DstTy->isBooleanType()) {
@ -1118,14 +1118,14 @@ Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
Expr *IdxExp;
const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
const ObjCObjectPointerType *OPT =
Ops.E->getLHS()->getType()->getAsObjCObjectPointerType();
Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>();
if (PT || OPT) {
Ptr = Ops.LHS;
Idx = Ops.RHS;
IdxExp = Ops.E->getRHS();
} else { // int + pointer
PT = Ops.E->getRHS()->getType()->getAs<PointerType>();
OPT = Ops.E->getRHS()->getType()->getAsObjCObjectPointerType();
OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>();
assert((PT || OPT) && "Invalid add expr");
Ptr = Ops.RHS;
Idx = Ops.LHS;
@ -1320,7 +1320,7 @@ Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
QualType CETy = LHSTy->getAsComplexType()->getElementType();
QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
Value *ResultR, *ResultI;
if (CETy->isRealFloatingType()) {

View File

@ -1688,10 +1688,10 @@ void CGObjCGNU::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
// All other types should be Objective-C interface pointer types.
const ObjCObjectPointerType *OPT =
CatchDecl->getType()->getAsObjCObjectPointerType();
CatchDecl->getType()->getAs<ObjCObjectPointerType>();
assert(OPT && "Invalid @catch type.");
const ObjCInterfaceType *IT =
OPT->getPointeeType()->getAsObjCInterfaceType();
OPT->getPointeeType()->getAs<ObjCInterfaceType>();
assert(IT && "Invalid @catch type.");
llvm::Value *EHType =
MakeConstantString(IT->getDecl()->getNameAsString());
@ -1927,7 +1927,7 @@ LValue CGObjCGNU::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF,
llvm::Value *BaseValue,
const ObjCIvarDecl *Ivar,
unsigned CVRQualifiers) {
const ObjCInterfaceDecl *ID = ObjectTy->getAsObjCInterfaceType()->getDecl();
const ObjCInterfaceDecl *ID = ObjectTy->getAs<ObjCInterfaceType>()->getDecl();
return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
EmitIvarOffset(CGF, ID, Ivar));
}

View File

@ -1539,7 +1539,7 @@ CGObjCCommonMac::EmitLegacyMessageSend(CodeGen::CodeGenFunction &CGF,
: ObjCTypes.getSendStretFn(IsSuper);
} else if (ResultType->isFloatingType()) {
if (ObjCABI == 2) {
if (const BuiltinType *BT = ResultType->getAsBuiltinType()) {
if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
BuiltinType::Kind k = BT->getKind();
Fn = (k == BuiltinType::LongDouble) ? ObjCTypes.getSendFpretFn2(IsSuper)
: ObjCTypes.getSendFn2(IsSuper);
@ -2546,7 +2546,7 @@ void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
if (!CatchParam) {
AllMatched = true;
} else {
OPT = CatchParam->getType()->getAsObjCObjectPointerType();
OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>();
// catch(id e) always matches.
// FIXME: For the time being we also match id<X>; this should
@ -2569,7 +2569,7 @@ void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
assert(OPT && "Unexpected non-object pointer type in @catch");
QualType T = OPT->getPointeeType();
const ObjCInterfaceType *ObjCType = T->getAsObjCInterfaceType();
const ObjCInterfaceType *ObjCType = T->getAs<ObjCInterfaceType>();
assert(ObjCType && "Catch parameter must have Objective-C type!");
// Check if the @catch block matches the exception object.
@ -2803,7 +2803,7 @@ LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF,
llvm::Value *BaseValue,
const ObjCIvarDecl *Ivar,
unsigned CVRQualifiers) {
const ObjCInterfaceDecl *ID = ObjectTy->getAsObjCInterfaceType()->getDecl();
const ObjCInterfaceDecl *ID = ObjectTy->getAs<ObjCInterfaceType>()->getDecl();
return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
EmitIvarOffset(CGF, ID, Ivar));
}
@ -4968,7 +4968,7 @@ LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar(
llvm::Value *BaseValue,
const ObjCIvarDecl *Ivar,
unsigned CVRQualifiers) {
const ObjCInterfaceDecl *ID = ObjectTy->getAsObjCInterfaceType()->getDecl();
const ObjCInterfaceDecl *ID = ObjectTy->getAs<ObjCInterfaceType>()->getDecl();
return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
EmitIvarOffset(CGF, ID, Ivar));
}
@ -5462,7 +5462,7 @@ CGObjCNonFragileABIMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
} else {
// All other types should be Objective-C interface pointer types.
const ObjCObjectPointerType *PT =
CatchDecl->getType()->getAsObjCObjectPointerType();
CatchDecl->getType()->getAs<ObjCObjectPointerType>();
assert(PT && "Invalid @catch type.");
const ObjCInterfaceType *IT = PT->getInterfaceType();
assert(IT && "Invalid @catch type.");

View File

@ -224,7 +224,7 @@ void CodeGenFunction::GenerateCode(GlobalDecl GD,
}
if (FD->getNumParams()) {
const FunctionProtoType* FProto = FD->getType()->getAsFunctionProtoType();
const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>();
assert(FProto && "Function def must have prototype!");
for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)

View File

@ -1099,7 +1099,7 @@ void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
} else {

View File

@ -241,7 +241,7 @@ void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
FD = PrimaryTemplate->getTemplatedDecl();
}
mangleBareFunctionType(FD->getType()->getAsFunctionType(), MangleReturnType);
mangleBareFunctionType(FD->getType()->getAs<FunctionType>(), MangleReturnType);
}
static bool isStdNamespace(const DeclContext *DC) {

View File

@ -159,7 +159,7 @@ static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
}
static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
if (!Ty->getAsBuiltinType() && !Ty->isPointerType())
if (!Ty->getAs<BuiltinType>() && !Ty->isPointerType())
return false;
uint64_t Size = Context.getTypeSize(Ty);
@ -292,7 +292,7 @@ bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
}
// If this is a builtin, pointer, or complex type, it is ok.
if (Ty->getAsBuiltinType() || Ty->isPointerType() || Ty->isAnyComplexType())
if (Ty->getAs<BuiltinType>() || Ty->isPointerType() || Ty->isAnyComplexType())
return true;
// Arrays are treated like records.
@ -326,7 +326,7 @@ ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
llvm::LLVMContext &VMContext) const {
if (RetTy->isVoidType()) {
return ABIArgInfo::getIgnore();
} else if (const VectorType *VT = RetTy->getAsVectorType()) {
} else if (const VectorType *VT = RetTy->getAs<VectorType>()) {
// On Darwin, some vectors are returned in registers.
if (IsDarwinVectorABI) {
uint64_t Size = Context.getTypeSize(RetTy);
@ -360,7 +360,7 @@ ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
// Classify "single element" structs as their element type.
if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) {
if (const BuiltinType *BT = SeltTy->getAsBuiltinType()) {
if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
if (BT->isIntegerType()) {
// We need to use the size of the structure, padding
// bit-fields can adjust that to be larger than the single
@ -618,7 +618,7 @@ void X86_64ABIInfo::classify(QualType Ty,
Class &Current = OffsetBase < 64 ? Lo : Hi;
Current = Memory;
if (const BuiltinType *BT = Ty->getAsBuiltinType()) {
if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
BuiltinType::Kind k = BT->getKind();
if (k == BuiltinType::Void) {
@ -636,12 +636,12 @@ void X86_64ABIInfo::classify(QualType Ty,
}
// FIXME: _Decimal32 and _Decimal64 are SSE.
// FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
} else if (const EnumType *ET = Ty->getAsEnumType()) {
} else if (const EnumType *ET = Ty->getAs<EnumType>()) {
// Classify the underlying integer type.
classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
} else if (Ty->hasPointerRepresentation()) {
Current = Integer;
} else if (const VectorType *VT = Ty->getAsVectorType()) {
} else if (const VectorType *VT = Ty->getAs<VectorType>()) {
uint64_t Size = Context.getTypeSize(VT);
if (Size == 32) {
// gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
@ -673,7 +673,7 @@ void X86_64ABIInfo::classify(QualType Ty,
Lo = SSE;
Hi = SSEUp;
}
} else if (const ComplexType *CT = Ty->getAsComplexType()) {
} else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
QualType ET = Context.getCanonicalType(CT->getElementType());
uint64_t Size = Context.getTypeSize(Ty);
@ -1468,7 +1468,7 @@ static bool isIntegerLikeType(QualType Ty,
return false;
// If this is a builtin or pointer type then it is ok.
if (Ty->getAsBuiltinType() || Ty->isPointerType())
if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
return true;
// Complex types "should" be ok by the definition above, but they are not.
@ -1651,7 +1651,7 @@ class SystemZABIInfo : public ABIInfo {
bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
// SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
if (const BuiltinType *BT = Ty->getAsBuiltinType())
if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
switch (BT->getKind()) {
case BuiltinType::Bool:
case BuiltinType::Char_S:

View File

@ -161,7 +161,7 @@ void DocumentXML::finalize() {
if (const TagDecl *TD = dyn_cast<TagDecl>(i->first))
addAttribute("type", getPrefixedId(BasicTypes[TD->getTypeForDecl()], ID_NORMAL));
else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(i->first))
addAttribute("type", getPrefixedId(BasicTypes[FD->getType()->getAsFunctionType()], ID_NORMAL));
addAttribute("type", getPrefixedId(BasicTypes[FD->getType()->getAs<FunctionType>()], ID_NORMAL));
if (const DeclContext* parent = i->first->getParent())
addAttribute("context", parent);

View File

@ -1536,7 +1536,7 @@ void PCHReader::InitializeContext(ASTContext &Ctx) {
if (unsigned File = SpecialTypes[pch::SPECIAL_TYPE_FILE]) {
QualType FileType = GetType(File);
assert(!FileType.isNull() && "FILE type is NULL");
if (const TypedefType *Typedef = FileType->getAsTypedefType())
if (const TypedefType *Typedef = FileType->getAs<TypedefType>())
Context->setFILEDecl(Typedef->getDecl());
else {
const TagType *Tag = FileType->getAs<TagType>();
@ -1547,7 +1547,7 @@ void PCHReader::InitializeContext(ASTContext &Ctx) {
if (unsigned Jmp_buf = SpecialTypes[pch::SPECIAL_TYPE_jmp_buf]) {
QualType Jmp_bufType = GetType(Jmp_buf);
assert(!Jmp_bufType.isNull() && "jmp_bug type is NULL");
if (const TypedefType *Typedef = Jmp_bufType->getAsTypedefType())
if (const TypedefType *Typedef = Jmp_bufType->getAs<TypedefType>())
Context->setjmp_bufDecl(Typedef->getDecl());
else {
const TagType *Tag = Jmp_bufType->getAs<TagType>();
@ -1558,7 +1558,7 @@ void PCHReader::InitializeContext(ASTContext &Ctx) {
if (unsigned Sigjmp_buf = SpecialTypes[pch::SPECIAL_TYPE_sigjmp_buf]) {
QualType Sigjmp_bufType = GetType(Sigjmp_buf);
assert(!Sigjmp_bufType.isNull() && "sigjmp_buf type is NULL");
if (const TypedefType *Typedef = Sigjmp_bufType->getAsTypedefType())
if (const TypedefType *Typedef = Sigjmp_bufType->getAs<TypedefType>())
Context->setsigjmp_bufDecl(Typedef->getDecl());
else {
const TagType *Tag = Sigjmp_bufType->getAs<TagType>();

View File

@ -694,7 +694,7 @@ std::string RewriteBlocks::SynthesizeBlockCall(CallExpr *Exp) {
assert(1 && "RewriteBlockClass: Bad type");
}
assert(CPT && "RewriteBlockClass: Bad type");
const FunctionType *FT = CPT->getPointeeType()->getAsFunctionType();
const FunctionType *FT = CPT->getPointeeType()->getAs<FunctionType>();
assert(FT && "RewriteBlockClass: Bad type");
const FunctionProtoType *FTP = dyn_cast<FunctionProtoType>(FT);
// FTP will be null for closures that don't take arguments.
@ -814,11 +814,11 @@ bool RewriteBlocks::PointerTypeTakesAnyBlockArguments(QualType QT) {
const FunctionProtoType *FTP;
const PointerType *PT = QT->getAs<PointerType>();
if (PT) {
FTP = PT->getPointeeType()->getAsFunctionProtoType();
FTP = PT->getPointeeType()->getAs<FunctionProtoType>();
} else {
const BlockPointerType *BPT = QT->getAs<BlockPointerType>();
assert(BPT && "BlockPointerTypeTakeAnyBlockArguments(): not a block pointer type");
FTP = BPT->getPointeeType()->getAsFunctionProtoType();
FTP = BPT->getPointeeType()->getAs<FunctionProtoType>();
}
if (FTP) {
for (FunctionProtoType::arg_type_iterator I = FTP->arg_type_begin(),

View File

@ -868,7 +868,7 @@ void RewriteObjC::RewriteObjCMethodDecl(ObjCMethodDecl *OMD,
PointeeTy = PT->getPointeeType();
else if (const BlockPointerType *BPT = retType->getAs<BlockPointerType>())
PointeeTy = BPT->getPointeeType();
if ((FPRetType = PointeeTy->getAsFunctionType())) {
if ((FPRetType = PointeeTy->getAs<FunctionType>())) {
ResultStr += FPRetType->getResultType().getAsString();
ResultStr += "(*";
}
@ -1790,7 +1790,7 @@ CallExpr *RewriteObjC::SynthesizeCallToFunctionDecl(
DRE,
/*isLvalue=*/false);
const FunctionType *FT = msgSendType->getAsFunctionType();
const FunctionType *FT = msgSendType->getAs<FunctionType>();
return new (Context) CallExpr(*Context, ICE, args, nargs, FT->getResultType(),
SourceLocation());
@ -1871,7 +1871,7 @@ void RewriteObjC::RewriteObjCQualifiedInterfaceTypes(Decl *Dcl) {
Loc = FD->getLocation();
// Check for ObjC 'id' and class types that have been adorned with protocol
// information (id<p>, C<p>*). The protocol references need to be rewritten!
const FunctionType *funcType = FD->getType()->getAsFunctionType();
const FunctionType *funcType = FD->getType()->getAs<FunctionType>();
assert(funcType && "missing function type");
proto = dyn_cast<FunctionProtoType>(funcType);
if (!proto)
@ -2164,7 +2164,7 @@ ObjCInterfaceDecl *RewriteObjC::isSuperReceiver(Expr *recExpr) {
if (ObjCSuperExpr *Super = dyn_cast<ObjCSuperExpr>(recExpr)) {
const ObjCObjectPointerType *OPT =
Super->getType()->getAsObjCObjectPointerType();
Super->getType()->getAs<ObjCObjectPointerType>();
assert(OPT);
const ObjCInterfaceType *IT = OPT->getInterfaceType();
return IT->getDecl();
@ -2535,7 +2535,7 @@ Stmt *RewriteObjC::SynthMessageExpr(ObjCMessageExpr *Exp) {
// Don't forget the parens to enforce the proper binding.
ParenExpr *PE = new (Context) ParenExpr(SourceLocation(), SourceLocation(), cast);
const FunctionType *FT = msgSendType->getAsFunctionType();
const FunctionType *FT = msgSendType->getAs<FunctionType>();
CallExpr *CE = new (Context) CallExpr(*Context, PE, &MsgExprs[0],
MsgExprs.size(),
FT->getResultType(), SourceLocation());
@ -2565,7 +2565,7 @@ Stmt *RewriteObjC::SynthMessageExpr(ObjCMessageExpr *Exp) {
// Don't forget the parens to enforce the proper binding.
PE = new (Context) ParenExpr(SourceLocation(), SourceLocation(), cast);
FT = msgSendType->getAsFunctionType();
FT = msgSendType->getAs<FunctionType>();
CallExpr *STCE = new (Context) CallExpr(*Context, PE, &MsgExprs[0],
MsgExprs.size(),
FT->getResultType(), SourceLocation());
@ -3920,7 +3920,7 @@ Stmt *RewriteObjC::SynthesizeBlockCall(CallExpr *Exp) {
assert(1 && "RewriteBlockClass: Bad type");
}
assert(CPT && "RewriteBlockClass: Bad type");
const FunctionType *FT = CPT->getPointeeType()->getAsFunctionType();
const FunctionType *FT = CPT->getPointeeType()->getAs<FunctionType>();
assert(FT && "RewriteBlockClass: Bad type");
const FunctionProtoType *FTP = dyn_cast<FunctionProtoType>(FT);
// FTP will be null for closures that don't take arguments.
@ -4087,11 +4087,11 @@ bool RewriteObjC::PointerTypeTakesAnyBlockArguments(QualType QT) {
const FunctionProtoType *FTP;
const PointerType *PT = QT->getAs<PointerType>();
if (PT) {
FTP = PT->getPointeeType()->getAsFunctionProtoType();
FTP = PT->getPointeeType()->getAs<FunctionProtoType>();
} else {
const BlockPointerType *BPT = QT->getAs<BlockPointerType>();
assert(BPT && "BlockPointerTypeTakeAnyBlockArguments(): not a block pointer type");
FTP = BPT->getPointeeType()->getAsFunctionProtoType();
FTP = BPT->getPointeeType()->getAs<FunctionProtoType>();
}
if (FTP) {
for (FunctionProtoType::arg_type_iterator I = FTP->arg_type_begin(),

View File

@ -199,7 +199,7 @@ bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
bool HasVAListArg = Format->getFirstArg() == 0;
if (!HasVAListArg) {
if (const FunctionProtoType *Proto
= FDecl->getType()->getAsFunctionProtoType())
= FDecl->getType()->getAs<FunctionProtoType>())
HasVAListArg = !Proto->isVariadic();
}
CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
@ -234,7 +234,7 @@ bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
bool HasVAListArg = Format->getFirstArg() == 0;
if (!HasVAListArg) {
const FunctionType *FT =
Ty->getAs<BlockPointerType>()->getPointeeType()->getAsFunctionType();
Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
HasVAListArg = !Proto->isVariadic();
}
@ -372,7 +372,7 @@ bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
TUScope, false, DRE->getLocStart()));
const FunctionProtoType *BuiltinFT =
NewBuiltinDecl->getType()->getAsFunctionProtoType();
NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
// If the first type needs to be converted (e.g. void** -> int*), do it now.
@ -633,7 +633,7 @@ Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
return ExprError();
}
numElements = FAType->getAsVectorType()->getNumElements();
numElements = FAType->getAs<VectorType>()->getNumElements();
if (TheCall->getNumArgs() != numElements+2) {
if (TheCall->getNumArgs() < numElements+2)
return ExprError(Diag(TheCall->getLocEnd(),
@ -694,7 +694,7 @@ bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
QualType RWType = Arg->getType();
const BuiltinType *BT = RWType->getAsBuiltinType();
const BuiltinType *BT = RWType->getAs<BuiltinType>();
llvm::APSInt Result;
if (!BT || BT->getKind() != BuiltinType::Int)
return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
@ -733,7 +733,7 @@ bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
return false;
QualType ArgType = Arg->getType();
const BuiltinType *BT = ArgType->getAsBuiltinType();
const BuiltinType *BT = ArgType->getAs<BuiltinType>();
llvm::APSInt Result(32);
if (!BT || BT->getKind() != BuiltinType::Int)
return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
@ -1092,7 +1092,7 @@ void Sema::CheckPrintfString(const StringLiteral *FExpr,
// Perform type checking on width/precision specifier.
const Expr *E = TheCall->getArg(format_idx+numConversions);
if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
if (const BuiltinType *BT = E->getType()->getAs<BuiltinType>())
if (BT->getKind() == BuiltinType::Int)
break;

View File

@ -766,8 +766,8 @@ bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
// duplicate function decls like "void f(int); void f(enum X);" properly.
if (!getLangOptions().CPlusPlus &&
Context.typesAreCompatible(OldQType, NewQType)) {
const FunctionType *OldFuncType = OldQType->getAsFunctionType();
const FunctionType *NewFuncType = NewQType->getAsFunctionType();
const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
const FunctionProtoType *OldProto = 0;
if (isa<FunctionNoProtoType>(NewFuncType) &&
(OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
@ -816,14 +816,14 @@ bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
// C99 6.9.1p8.
if (!getLangOptions().CPlusPlus &&
Old->hasPrototype() && !New->hasPrototype() &&
New->getType()->getAsFunctionProtoType() &&
New->getType()->getAs<FunctionProtoType>() &&
Old->getNumParams() == New->getNumParams()) {
llvm::SmallVector<QualType, 16> ArgTypes;
llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
const FunctionProtoType *OldProto
= Old->getType()->getAsFunctionProtoType();
= Old->getType()->getAs<FunctionProtoType>();
const FunctionProtoType *NewProto
= New->getType()->getAsFunctionProtoType();
= New->getType()->getAs<FunctionProtoType>();
// Determine whether this is the GNU C extension.
QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
@ -1195,7 +1195,7 @@ void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
return;
bool ReturnsVoid = false;
bool HasNoReturn = false;
if (const FunctionType *FT = BlockTy->getPointeeType()->getAsFunctionType()) {
if (const FunctionType *FT = BlockTy->getPointeeType()->getAs<FunctionType>()) {
if (FT->getResultType()->isVoidType())
ReturnsVoid = true;
if (FT->getNoReturnAttr())
@ -2389,16 +2389,16 @@ Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
// the class has been completely parsed.
if (!DC->isRecord() &&
RequireNonAbstractType(D.getIdentifierLoc(),
R->getAsFunctionType()->getResultType(),
R->getAs<FunctionType>()->getResultType(),
diag::err_abstract_type_in_decl,
AbstractReturnType))
D.setInvalidType();
// Do not allow returning a objc interface by-value.
if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
Diag(D.getIdentifierLoc(),
diag::err_object_cannot_be_passed_returned_by_value) << 0
<< R->getAsFunctionType()->getResultType();
<< R->getAs<FunctionType>()->getResultType();
D.setInvalidType();
}
@ -2641,7 +2641,7 @@ Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
}
}
} else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
} else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
// When we're declaring a function with a typedef, typeof, etc as in the
// following example, we'll need to synthesize (unnamed)
// parameters for use in the declaration.
@ -2824,14 +2824,14 @@ void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
// Functions marked "overloadable" must have a prototype (that
// we can't get through declaration merging).
if (!NewFD->getType()->getAsFunctionProtoType()) {
if (!NewFD->getType()->getAs<FunctionProtoType>()) {
Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
<< NewFD;
Redeclaration = true;
// Turn this into a variadic function with no parameters.
QualType R = Context.getFunctionType(
NewFD->getType()->getAsFunctionType()->getResultType(),
NewFD->getType()->getAs<FunctionType>()->getResultType(),
0, 0, true, 0);
NewFD->setType(R);
return NewFD->setInvalidDecl();
@ -2927,7 +2927,7 @@ void Sema::CheckMain(FunctionDecl* FD) {
QualType T = FD->getType();
assert(T->isFunctionType() && "function decl is not of function type");
const FunctionType* FT = T->getAsFunctionType();
const FunctionType* FT = T->getAs<FunctionType>();
if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
// TODO: add a replacement fixit to turn the return type into 'int'.

View File

@ -41,7 +41,7 @@ static const FunctionType *getFunctionType(const Decl *d,
else if (blocksToo && Ty->isBlockPointerType())
Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
return Ty->getAsFunctionType();
return Ty->getAs<FunctionType>();
}
// FIXME: We should provide an abstraction around a method or function
@ -124,11 +124,11 @@ static bool isFunctionOrMethodVariadic(const Decl *d) {
}
static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
const ObjCObjectPointerType *PT = T->getAsObjCObjectPointerType();
const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
if (!PT)
return false;
const ObjCInterfaceType *ClsT =PT->getPointeeType()->getAsObjCInterfaceType();
const ObjCInterfaceType *ClsT =PT->getPointeeType()->getAs<ObjCInterfaceType>();
if (!ClsT)
return false;
@ -750,7 +750,7 @@ static void HandleSentinelAttr(Decl *d, const AttributeList &Attr, Sema &S) {
}
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(d)) {
const FunctionType *FT = FD->getType()->getAsFunctionType();
const FunctionType *FT = FD->getType()->getAs<FunctionType>();
assert(FT && "FunctionDecl has non-function type?");
if (isa<FunctionNoProtoType>(FT)) {
@ -775,7 +775,7 @@ static void HandleSentinelAttr(Decl *d, const AttributeList &Attr, Sema &S) {
QualType Ty = V->getType();
if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
const FunctionType *FT = Ty->isFunctionPointerType() ? getFunctionType(d)
: Ty->getAs<BlockPointerType>()->getPointeeType()->getAsFunctionType();
: Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
if (!cast<FunctionProtoType>(FT)->isVariadic()) {
int m = Ty->isFunctionPointerType() ? 0 : 1;
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
@ -1549,7 +1549,7 @@ static void HandleModeAttr(Decl *D, const AttributeList &Attr, Sema &S) {
return;
}
if (!OldTy->getAsBuiltinType() && !OldTy->isComplexType())
if (!OldTy->getAs<BuiltinType>() && !OldTy->isComplexType())
S.Diag(Attr.getLoc(), diag::err_mode_not_primitive);
else if (IntegerMode) {
if (!OldTy->isIntegralType())
@ -1746,7 +1746,7 @@ static void HandleNSReturnsRetainedAttr(Decl *d, const AttributeList &Attr,
}
if (!(S.Context.isObjCNSObjectType(RetTy) || RetTy->getAs<PointerType>()
|| RetTy->getAsObjCObjectPointerType())) {
|| RetTy->getAs<ObjCObjectPointerType>())) {
SourceLocation L = Attr.getLoc();
S.Diag(d->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
<< SourceRange(L, L) << Attr.getName();

View File

@ -325,8 +325,8 @@ bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
}
if (CheckEquivalentExceptionSpec(
Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
New->getType()->getAsFunctionProtoType(), New->getLocation())) {
Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
New->getType()->getAs<FunctionProtoType>(), New->getLocation())) {
Invalid = true;
}
@ -1632,7 +1632,7 @@ namespace {
}
// Check the return type.
QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
bool Invalid =
SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
diag::err_abstract_type_in_decl,
@ -2062,7 +2062,7 @@ QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
// return type, since constructors don't have return types. We
// *always* have to do this, because GetTypeForDeclarator will
// put in a result type of "int" when none was specified.
const FunctionProtoType *Proto = R->getAsFunctionProtoType();
const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
Proto->getNumArgs(),
Proto->isVariadic(), 0);
@ -2229,7 +2229,7 @@ void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
}
// Make sure we don't have any parameters.
if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
// Delete the parameters.
@ -2238,7 +2238,7 @@ void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
}
// Make sure the conversion function isn't variadic.
if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
D.setInvalidType();
}
@ -2261,7 +2261,7 @@ void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
// of the errors above fired) and with the conversion type as the
// return type.
R = Context.getFunctionType(ConvType, 0, 0, false,
R->getAsFunctionProtoType()->getTypeQuals());
R->getAs<FunctionProtoType>()->getTypeQuals());
// C++0x explicit conversion operators.
if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
@ -3799,7 +3799,7 @@ bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
// Overloaded operators other than operator() cannot be variadic.
if (Op != OO_Call &&
FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
<< FnDecl->getDeclName();
}
@ -3824,7 +3824,7 @@ bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
bool ParamIsInt = false;
if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
ParamIsInt = BT->getKind() == BuiltinType::Int;
if (!ParamIsInt)
@ -4382,8 +4382,8 @@ void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
const CXXMethodDecl *Old) {
QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
QualType CNewTy = Context.getCanonicalType(NewTy);
QualType COldTy = Context.getCanonicalType(OldTy);
@ -4465,9 +4465,9 @@ bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
const CXXMethodDecl *Old) {
return CheckExceptionSpecSubset(diag::err_override_exception_spec,
diag::note_overridden_virtual_function,
Old->getType()->getAsFunctionProtoType(),
Old->getType()->getAs<FunctionProtoType>(),
Old->getLocation(),
New->getType()->getAsFunctionProtoType(),
New->getType()->getAs<FunctionProtoType>(),
New->getLocation());
}

View File

@ -143,7 +143,7 @@ ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(PrevDecl)) {
QualType T = TDecl->getUnderlyingType();
if (T->isObjCInterfaceType()) {
if (NamedDecl *IDecl = T->getAsObjCInterfaceType()->getDecl())
if (NamedDecl *IDecl = T->getAs<ObjCInterfaceType>()->getDecl())
SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
}
}
@ -209,7 +209,7 @@ Sema::DeclPtrTy Sema::ActOnCompatiblityAlias(SourceLocation AtLoc,
if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(CDeclU)) {
QualType T = TDecl->getUnderlyingType();
if (T->isObjCInterfaceType()) {
if (NamedDecl *IDecl = T->getAsObjCInterfaceType()->getDecl()) {
if (NamedDecl *IDecl = T->getAs<ObjCInterfaceType>()->getDecl()) {
ClassName = IDecl->getIdentifier();
CDeclU = LookupName(TUScope, ClassName, LookupOrdinaryName);
}
@ -1939,7 +1939,7 @@ Sema::DeclPtrTy Sema::ActOnProperty(Scope *S, SourceLocation AtLoc,
if (T->isObjCObjectPointerType()) {
QualType InterfaceTy = T->getPointeeType();
if (const ObjCInterfaceType *OIT =
InterfaceTy->getAsObjCInterfaceType()) {
InterfaceTy->getAs<ObjCInterfaceType>()) {
ObjCInterfaceDecl *IDecl = OIT->getDecl();
if (IDecl)
if (ObjCProtocolDecl* PNSCopying =

View File

@ -132,8 +132,8 @@ void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
QualType Ty = V->getType();
if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
const FunctionType *FT = Ty->isFunctionPointerType()
? Ty->getAs<PointerType>()->getPointeeType()->getAsFunctionType()
: Ty->getAs<BlockPointerType>()->getPointeeType()->getAsFunctionType();
? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
: Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
unsigned NumArgsInProto = Proto->getNumArgs();
unsigned k;
@ -261,7 +261,7 @@ void Sema::DefaultArgumentPromotion(Expr *&Expr) {
assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
// If this is a 'float' (CVR qualified or typedef) promote to double.
if (const BuiltinType *BT = Ty->getAsBuiltinType())
if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
if (BT->getKind() == BuiltinType::Float)
return ImpCastExprToType(Expr, Context.DoubleTy);
@ -842,7 +842,7 @@ Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
QualType T = Func->getType();
QualType NoProtoType = T;
if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
return BuildDeclRefExpr(Func, NoProtoType, Loc, false, false, SS);
}
@ -1483,7 +1483,7 @@ QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
return Context.DependentTy;
// These operators return the element type of a complex type.
if (const ComplexType *CT = V->getType()->getAsComplexType())
if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
return CT->getElementType();
// Otherwise they pass through real integer and floating point types here.
@ -1562,7 +1562,7 @@ Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
// Determine the result type
QualType ResultTy
= FnDecl->getType()->getAsFunctionType()->getResultType();
= FnDecl->getType()->getAs<FunctionType>()->getResultType();
ResultTy = ResultTy.getNonReferenceType();
// Build the actual expression node.
@ -1678,7 +1678,7 @@ Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
// Determine the result type
QualType ResultTy
= FnDecl->getType()->getAsFunctionType()->getResultType();
= FnDecl->getType()->getAs<FunctionType>()->getResultType();
ResultTy = ResultTy.getNonReferenceType();
// Build the actual expression node.
@ -1759,17 +1759,17 @@ Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
IndexExpr = LHSExp;
ResultType = PTy->getPointeeType();
} else if (const ObjCObjectPointerType *PTy =
LHSTy->getAsObjCObjectPointerType()) {
LHSTy->getAs<ObjCObjectPointerType>()) {
BaseExpr = LHSExp;
IndexExpr = RHSExp;
ResultType = PTy->getPointeeType();
} else if (const ObjCObjectPointerType *PTy =
RHSTy->getAsObjCObjectPointerType()) {
RHSTy->getAs<ObjCObjectPointerType>()) {
// Handle the uncommon case of "123[Ptr]".
BaseExpr = RHSExp;
IndexExpr = LHSExp;
ResultType = PTy->getPointeeType();
} else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
} else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
BaseExpr = LHSExp; // vectors: V[123]
IndexExpr = RHSExp;
@ -1847,7 +1847,7 @@ QualType Sema::
CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
const IdentifierInfo *CompName,
SourceLocation CompLoc) {
const ExtVectorType *vecType = baseType->getAsExtVectorType();
const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
// The vector accessor can't exceed the number of elements.
const char *compStr = CompName->getName();
@ -2355,9 +2355,9 @@ Sema::BuildMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
// (*Obj).ivar.
if ((OpKind == tok::arrow && BaseType->isObjCObjectPointerType()) ||
(OpKind == tok::period && BaseType->isObjCInterfaceType())) {
const ObjCObjectPointerType *OPT = BaseType->getAsObjCObjectPointerType();
const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
const ObjCInterfaceType *IFaceT =
OPT ? OPT->getInterfaceType() : BaseType->getAsObjCInterfaceType();
OPT ? OPT->getInterfaceType() : BaseType->getAs<ObjCInterfaceType>();
if (IFaceT) {
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
@ -2419,7 +2419,7 @@ Sema::BuildMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
// Handle properties on 'id' and qualified "id".
if (OpKind == tok::period && (BaseType->isObjCIdType() ||
BaseType->isObjCQualifiedIdType())) {
const ObjCObjectPointerType *QIdTy = BaseType->getAsObjCObjectPointerType();
const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
// Check protocols on qualified interfaces.
@ -2936,10 +2936,10 @@ Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
if (PT == 0)
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
<< Fn->getType() << Fn->getSourceRange());
FuncT = PT->getPointeeType()->getAsFunctionType();
FuncT = PT->getPointeeType()->getAs<FunctionType>();
} else { // This is a block call.
FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
getAsFunctionType();
getAs<FunctionType>();
}
if (FuncT == 0)
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
@ -2969,7 +2969,7 @@ Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
const FunctionDecl *Def = 0;
if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
const FunctionProtoType *Proto =
Def->getType()->getAsFunctionProtoType();
Def->getType()->getAs<FunctionProtoType>();
if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
<< (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
@ -3422,8 +3422,8 @@ QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
// Two identical object pointer types are always compatible.
return LHSTy;
}
const ObjCObjectPointerType *LHSOPT = LHSTy->getAsObjCObjectPointerType();
const ObjCObjectPointerType *RHSOPT = RHSTy->getAsObjCObjectPointerType();
const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
QualType compositeType = LHSTy;
// If both operands are interfaces and either operand can be
@ -3470,7 +3470,7 @@ QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
// Check Objective-C object pointer types and 'void *'
if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
QualType rhptee = RHSTy->getAsObjCObjectPointerType()->getPointeeType();
QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
QualType destPointee = lhptee.getQualifiedType(rhptee.getCVRQualifiers());
QualType destType = Context.getPointerType(destPointee);
ImpCastExprToType(LHS, destType); // add qualifiers if necessary
@ -3478,7 +3478,7 @@ QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
return destType;
}
if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
QualType lhptee = LHSTy->getAsObjCObjectPointerType()->getPointeeType();
QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
QualType destPointee = rhptee.getQualifiedType(lhptee.getCVRQualifiers());
QualType destType = Context.getPointerType(destPointee);
@ -4021,8 +4021,8 @@ inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
// type. It would be nice if we only had one vector type someday.
if (getLangOptions().LaxVectorConversions) {
// FIXME: Should we warn here?
if (const VectorType *LV = lhsType->getAsVectorType()) {
if (const VectorType *RV = rhsType->getAsVectorType())
if (const VectorType *LV = lhsType->getAs<VectorType>()) {
if (const VectorType *RV = rhsType->getAs<VectorType>())
if (LV->getElementType() == RV->getElementType() &&
LV->getNumElements() == RV->getNumElements()) {
return lhsType->isExtVectorType() ? lhsType : rhsType;
@ -4040,7 +4040,7 @@ inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
}
// Handle the case of an ext vector and scalar.
if (const ExtVectorType *LV = lhsType->getAsExtVectorType()) {
if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
QualType EltTy = LV->getElementType();
if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
@ -4695,7 +4695,7 @@ QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
if (lType->isIntegerType())
return lType;
const VectorType *VTy = lType->getAsVectorType();
const VectorType *VTy = lType->getAs<VectorType>();
unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
if (TypeSize == Context.getTypeSize(Context.IntTy))
return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
@ -5132,7 +5132,7 @@ QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
if (const PointerType *PT = Ty->getAs<PointerType>())
return PT->getPointeeType();
if (const ObjCObjectPointerType *OPT = Ty->getAsObjCObjectPointerType())
if (const ObjCObjectPointerType *OPT = Ty->getAs<ObjCObjectPointerType>())
return OPT->getPointeeType();
Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
@ -5735,7 +5735,7 @@ void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
diag::warn_attribute_sentinel_not_variadic) << 1;
// FIXME: remove the attribute.
}
QualType RetTy = T.getTypePtr()->getAsFunctionType()->getResultType();
QualType RetTy = T.getTypePtr()->getAs<FunctionType>()->getResultType();
// Do not allow returning a objc interface by-value.
if (RetTy->isObjCInterfaceType()) {
@ -5787,7 +5787,7 @@ void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
// Analyze the return type.
QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
QualType RetTy = T->getAsFunctionType()->getResultType();
QualType RetTy = T->getAs<FunctionType>()->getResultType();
// Do not allow returning a objc interface by-value.
if (RetTy->isObjCInterfaceType()) {

View File

@ -966,7 +966,7 @@ Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From))
if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
if (const BuiltinType *ToPointeeType
= ToPtrType->getPointeeType()->getAsBuiltinType()) {
= ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
// This conversion is considered only when there is an
// explicit appropriate pointer target type (C++ 4.2p2).
if (ToPtrType->getPointeeType().getCVRQualifiers() == 0 &&
@ -1856,7 +1856,7 @@ Sema::OwningExprResult Sema::MaybeBindToTemporary(Expr *E) {
if (const PointerType *PT = Ty->getAs<PointerType>())
Ty = PT->getPointeeType();
const FunctionType *FTy = Ty->getAsFunctionType();
const FunctionType *FTy = Ty->getAs<FunctionType>();
if (FTy->getResultType()->isReferenceType())
return Owned(E);
}

View File

@ -415,7 +415,7 @@ Sema::ExprResult Sema::ActOnClassMessage(
NamedDecl *IDecl = LookupName(TUScope, receiverName, LookupOrdinaryName);
if (TypedefDecl *OCTD = dyn_cast_or_null<TypedefDecl>(IDecl)) {
const ObjCInterfaceType *OCIT;
OCIT = OCTD->getUnderlyingType()->getAsObjCInterfaceType();
OCIT = OCTD->getUnderlyingType()->getAs<ObjCInterfaceType>();
if (!OCIT) {
Diag(receiverLoc, diag::err_invalid_receiver_to_message);
return true;

View File

@ -421,7 +421,7 @@ void InitListChecker::FillInValueInitializations(InitListExpr *ILE) {
ElementType = AType->getElementType();
if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
NumElements = CAType->getSize().getZExtValue();
} else if (const VectorType *VType = ILE->getType()->getAsVectorType()) {
} else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
ElementType = VType->getElementType();
NumElements = VType->getNumElements();
} else
@ -499,7 +499,7 @@ void InitListChecker::CheckImplicitInitList(InitListExpr *ParentIList,
else if (T->isStructureType() || T->isUnionType())
maxElements = numStructUnionElements(T);
else if (T->isVectorType())
maxElements = T->getAsVectorType()->getNumElements();
maxElements = T->getAs<VectorType>()->getNumElements();
else
assert(0 && "CheckImplicitInitList(): Illegal type");
@ -835,7 +835,7 @@ void InitListChecker::CheckVectorType(InitListExpr *IList, QualType DeclType,
InitListExpr *StructuredList,
unsigned &StructuredIndex) {
if (Index < IList->getNumInits()) {
const VectorType *VT = DeclType->getAsVectorType();
const VectorType *VT = DeclType->getAs<VectorType>();
unsigned maxElements = VT->getNumElements();
unsigned numEltsInit = 0;
QualType elementType = VT->getElementType();
@ -860,7 +860,7 @@ void InitListChecker::CheckVectorType(InitListExpr *IList, QualType DeclType,
StructuredList, StructuredIndex);
++numEltsInit;
} else {
const VectorType *IVT = IType->getAsVectorType();
const VectorType *IVT = IType->getAs<VectorType>();
unsigned numIElts = IVT->getNumElements();
QualType VecType = SemaRef.Context.getExtVectorType(elementType,
numIElts);
@ -1625,7 +1625,7 @@ InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
if (NumInits && NumElements > NumInits)
NumElements = 0;
}
} else if (const VectorType *VType = CurrentObjectType->getAsVectorType())
} else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
NumElements = VType->getNumElements();
else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
RecordDecl *RDecl = RType->getDecl();

View File

@ -1444,7 +1444,7 @@ addAssociatedClassesAndNamespaces(QualType T,
// -- If T is a fundamental type, its associated sets of
// namespaces and classes are both empty.
if (T->getAsBuiltinType())
if (T->getAs<BuiltinType>())
return;
// -- If T is a class type (including unions), its associated
@ -1465,7 +1465,7 @@ addAssociatedClassesAndNamespaces(QualType T,
// the namespace in which it is defined. If it is class
// member, its associated class is the members class; else
// it has no associated class.
if (const EnumType *EnumT = T->getAsEnumType()) {
if (const EnumType *EnumT = T->getAs<EnumType>()) {
EnumDecl *Enum = EnumT->getDecl();
DeclContext *Ctx = Enum->getDeclContext();
@ -1483,13 +1483,13 @@ addAssociatedClassesAndNamespaces(QualType T,
// -- If T is a function type, its associated namespaces and
// classes are those associated with the function parameter
// types and those associated with the return type.
if (const FunctionType *FunctionType = T->getAsFunctionType()) {
if (const FunctionType *FnType = T->getAs<FunctionType>()) {
// Return type
addAssociatedClassesAndNamespaces(FunctionType->getResultType(),
addAssociatedClassesAndNamespaces(FnType->getResultType(),
Context,
AssociatedNamespaces, AssociatedClasses);
const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FunctionType);
const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
if (!Proto)
return;
@ -1629,7 +1629,7 @@ IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
return true;
const FunctionProtoType *Proto = Fn->getType()->getAsFunctionProtoType();
const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
if (Proto->getNumArgs() < 1)
return false;

View File

@ -686,7 +686,7 @@ Sema::IsStandardConversion(Expr* From, QualType ToType,
/// ToType is an integral promotion (C++ 4.5). If so, returns true and
/// sets PromotedType to the promoted type.
bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
const BuiltinType *To = ToType->getAsBuiltinType();
const BuiltinType *To = ToType->getAs<BuiltinType>();
// All integers are built-in.
if (!To) {
return false;
@ -720,7 +720,7 @@ bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
// unsigned.
bool FromIsSigned;
uint64_t FromSize = Context.getTypeSize(FromType);
if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
FromIsSigned = UnderlyingType->isSignedIntegerType();
} else {
@ -798,8 +798,8 @@ bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
/// An rvalue of type float can be converted to an rvalue of type
/// double. (C++ 4.6p1).
if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
if (FromBuiltin->getKind() == BuiltinType::Float &&
ToBuiltin->getKind() == BuiltinType::Double)
return true;
@ -823,11 +823,11 @@ bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
/// where the conversion between the underlying real types is a
/// floating-point or integral promotion.
bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
const ComplexType *FromComplex = FromType->getAsComplexType();
const ComplexType *FromComplex = FromType->getAs<ComplexType>();
if (!FromComplex)
return false;
const ComplexType *ToComplex = ToType->getAsComplexType();
const ComplexType *ToComplex = ToType->getAs<ComplexType>();
if (!ToComplex)
return false;
@ -1003,9 +1003,9 @@ bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
return false;
// First, we handle all conversions on ObjC object pointer types.
const ObjCObjectPointerType* ToObjCPtr = ToType->getAsObjCObjectPointerType();
const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
const ObjCObjectPointerType *FromObjCPtr =
FromType->getAsObjCObjectPointerType();
FromType->getAs<ObjCObjectPointerType>();
if (ToObjCPtr && FromObjCPtr) {
// Objective C++: We're able to convert between "id" or "Class" and a
@ -1070,9 +1070,9 @@ bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
// pointer conversions. If so, we permit the conversion (but
// complain about it).
const FunctionProtoType *FromFunctionType
= FromPointeeType->getAsFunctionProtoType();
= FromPointeeType->getAs<FunctionProtoType>();
const FunctionProtoType *ToFunctionType
= ToPointeeType->getAsFunctionProtoType();
= ToPointeeType->getAs<FunctionProtoType>();
if (FromFunctionType && ToFunctionType) {
// If the function types are exactly the same, this isn't an
// Objective-C pointer conversion.
@ -1160,9 +1160,9 @@ bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
}
}
if (const ObjCObjectPointerType *FromPtrType =
FromType->getAsObjCObjectPointerType())
FromType->getAs<ObjCObjectPointerType>())
if (const ObjCObjectPointerType *ToPtrType =
ToType->getAsObjCObjectPointerType()) {
ToType->getAs<ObjCObjectPointerType>()) {
// Objective-C++ conversions are always okay.
// FIXME: We should have a different class of conversions for the
// Objective-C++ implicit conversions.
@ -1644,8 +1644,8 @@ Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
// Objective-C++: If one interface is more specific than the
// other, it is the better one.
const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
if (FromIface1 && FromIface1) {
if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
return ImplicitConversionSequence::Better;
@ -1832,10 +1832,10 @@ Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
QualType ToPointee2
= ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
// -- conversion of C* to B* is better than conversion of C* to A*,
if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
@ -2129,7 +2129,7 @@ Sema::AddOverloadCandidate(FunctionDecl *Function,
bool SuppressUserConversions,
bool ForceRValue) {
const FunctionProtoType* Proto
= dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
= dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
assert(Proto && "Functions without a prototype cannot be overloaded");
assert(!isa<CXXConversionDecl>(Function) &&
"Use AddConversionCandidate for conversion functions");
@ -2247,7 +2247,7 @@ Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions, bool ForceRValue) {
const FunctionProtoType* Proto
= dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
= dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
assert(Proto && "Methods without a prototype cannot be overloaded");
assert(!isa<CXXConversionDecl>(Method) &&
"Use AddConversionCandidate for conversion functions");
@ -3865,7 +3865,7 @@ Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
isPointer = true;
}
// Desugar down to a function type.
FnType = QualType(FnType->getAsFunctionType(), 0);
FnType = QualType(FnType->getAs<FunctionType>(), 0);
// Reconstruct the pointer/reference as appropriate.
if (isPointer) FnType = Context.getPointerType(FnType);
if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
@ -4318,7 +4318,7 @@ Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
// Determine the result type
QualType ResultTy
= FnDecl->getType()->getAsFunctionType()->getResultType();
= FnDecl->getType()->getAs<FunctionType>()->getResultType();
ResultTy = ResultTy.getNonReferenceType();
// Build the actual expression node.
@ -4476,7 +4476,7 @@ Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
// Determine the result type
QualType ResultTy
= FnDecl->getType()->getAsFunctionType()->getResultType();
= FnDecl->getType()->getAs<FunctionType>()->getResultType();
ResultTy = ResultTy.getNonReferenceType();
// Build the actual expression node.
@ -4714,7 +4714,7 @@ Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
ConvType = ConvPtrType->getPointeeType();
if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
}
}
@ -4783,7 +4783,7 @@ Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
// that calls this method, using Object for the implicit object
// parameter and passing along the remaining arguments.
CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
unsigned NumArgsInProto = Proto->getNumArgs();
unsigned NumArgsToCheck = NumArgs;

View File

@ -1625,7 +1625,7 @@ bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
//
// FIXME: Perform the recursive and no-linkage type checks.
const TagType *Tag = 0;
if (const EnumType *EnumT = Arg->getAsEnumType())
if (const EnumType *EnumT = Arg->getAs<EnumType>())
Tag = EnumT;
else if (const RecordType *RecordT = Arg->getAs<RecordType>())
Tag = RecordT;
@ -1890,7 +1890,7 @@ bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
}
QualType IntegerType = Context.getCanonicalType(ParamType);
if (const EnumType *Enum = IntegerType->getAsEnumType())
if (const EnumType *Enum = IntegerType->getAs<EnumType>())
IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
if (!Arg->isValueDependent()) {
@ -3209,7 +3209,7 @@ Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
NestedNameSpecifier *NNS
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
const TemplateSpecializationType *TemplateId
= T->getAsTemplateSpecializationType();
= T->getAs<TemplateSpecializationType>();
assert(TemplateId && "Expected a template specialization type");
if (computeDeclContext(SS, false)) {

View File

@ -410,7 +410,7 @@ DeduceTemplateArguments(ASTContext &Context,
// T
// cv-list T
if (const TemplateTypeParmType *TemplateTypeParm
= Param->getAsTemplateTypeParmType()) {
= Param->getAs<TemplateTypeParmType>()) {
unsigned Index = TemplateTypeParm->getIndex();
bool RecanonicalizeArg = false;
@ -1040,7 +1040,7 @@ Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
/// \brief Determine whether the given type T is a simple-template-id type.
static bool isSimpleTemplateIdType(QualType T) {
if (const TemplateSpecializationType *Spec
= T->getAsTemplateSpecializationType())
= T->getAs<TemplateSpecializationType>())
return Spec->getTemplateName().getAsTemplateDecl() != 0;
return false;
@ -1157,7 +1157,7 @@ Sema::SubstituteExplicitTemplateArguments(
if (FunctionType) {
// FIXME: exception-specifications?
const FunctionProtoType *Proto
= Function->getType()->getAsFunctionProtoType();
= Function->getType()->getAs<FunctionProtoType>();
assert(Proto && "Function template does not have a prototype?");
QualType ResultType
@ -1310,7 +1310,7 @@ Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
return TDK_TooFewArguments;
else if (NumArgs > Function->getNumParams()) {
const FunctionProtoType *Proto
= Function->getType()->getAsFunctionProtoType();
= Function->getType()->getAs<FunctionProtoType>();
if (!Proto->isVariadic())
return TDK_TooManyArguments;
@ -1384,7 +1384,7 @@ Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
// the argument is an lvalue, the type A& is used in place of A for
// type deduction.
if (isa<RValueReferenceType>(ParamRefType) &&
ParamRefType->getAsTemplateTypeParmType() &&
ParamRefType->getAs<TemplateTypeParmType>() &&
Args[I]->isLvalue(Context) == Expr::LV_Valid)
ArgType = Context.getLValueReferenceType(ArgType);
}

View File

@ -592,7 +592,7 @@ TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D,
} else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
CanQualType ConvTy
= SemaRef.Context.getCanonicalType(
T->getAsFunctionType()->getResultType());
T->getAs<FunctionType>()->getResultType());
Name = SemaRef.Context.DeclarationNames.getCXXConversionFunctionName(
ConvTy);
Method = CXXConversionDecl::Create(SemaRef.Context, Record,
@ -867,7 +867,7 @@ TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D,
if (InvalidDecl)
return QualType();
const FunctionProtoType *Proto = D->getType()->getAsFunctionProtoType();
const FunctionProtoType *Proto = D->getType()->getAs<FunctionProtoType>();
assert(Proto && "Missing prototype?");
QualType ResultType
= SemaRef.SubstType(Proto->getResultType(), TemplateArgs,

View File

@ -214,7 +214,7 @@ QualType Sema::ConvertDeclSpecToType(const DeclSpec &DS,
Result = GetTypeFromParser(DS.getTypeRep());
if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
if (const ObjCInterfaceType *Interface = Result->getAsObjCInterfaceType())
if (const ObjCInterfaceType *Interface = Result->getAs<ObjCInterfaceType>())
// It would be nice if protocol qualifiers were only stored with the
// ObjCObjectPointerType. Unfortunately, this isn't possible due
// to the following typedef idiom (which is uncommon, but allowed):
@ -949,7 +949,7 @@ QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
// Build the type anyway.
}
if (getLangOptions().ObjC1 && T->isObjCInterfaceType()) {
const ObjCInterfaceType *OIT = T->getAsObjCInterfaceType();
const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>();
T = Context.getObjCObjectPointerType(T,
(ObjCProtocolDecl **)OIT->qual_begin(),
OIT->getNumProtocols());
@ -1141,7 +1141,7 @@ QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
} else if (!FTI.hasPrototype) {
if (ArgTy->isPromotableIntegerType()) {
ArgTy = Context.getPromotedIntegerType(ArgTy);
} else if (const BuiltinType* BTy = ArgTy->getAsBuiltinType()) {
} else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
if (BTy->getKind() == BuiltinType::Float)
ArgTy = Context.DoubleTy;
}
@ -1223,7 +1223,7 @@ QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
}
if (getLangOptions().CPlusPlus && T->isFunctionType()) {
const FunctionProtoType *FnTy = T->getAsFunctionProtoType();
const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
assert(FnTy && "Why oh why is there not a FunctionProtoType here ?");
// C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
@ -1400,7 +1400,7 @@ bool Sema::CheckDistantExceptionSpec(QualType T) {
else
return false;
const FunctionProtoType *FnT = T->getAsFunctionProtoType();
const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
if (!FnT)
return false;
@ -1816,7 +1816,7 @@ bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
const TagType *Tag = 0;
if (const RecordType *Record = T->getAs<RecordType>())
Tag = Record;
else if (const EnumType *Enum = T->getAsEnumType())
else if (const EnumType *Enum = T->getAs<EnumType>())
Tag = Enum;
if (Tag && !Tag->getDecl()->isInvalidDecl())