Removing loop-convert tool

cpp11-migrate now contains the loop convert transform code and tests.
Cleaning up the old code/tests and updating build system files as
necessary.

Reviewers: klimek
llvm-svn: 172074
This commit is contained in:
Edwin Vane 2013-01-10 15:19:11 +00:00
parent 8f1c8ebb0d
commit 86c63d94bb
30 changed files with 2 additions and 3327 deletions

View File

@ -1,6 +1,5 @@
add_subdirectory(remove-cstr-calls)
add_subdirectory(tool-template)
add_subdirectory(loop-convert)
add_subdirectory(clang-format)
add_subdirectory(cpp11-migrate)

View File

@ -11,7 +11,7 @@ CLANG_LEVEL := ../..
include $(CLANG_LEVEL)/../../Makefile.config
PARALLEL_DIRS := remove-cstr-calls tool-template loop-convert clang-format cpp11-migrate
PARALLEL_DIRS := remove-cstr-calls tool-template clang-format cpp11-migrate
include $(CLANG_LEVEL)/Makefile

View File

@ -1,20 +0,0 @@
set(LLVM_LINK_COMPONENTS support)
set(LLVM_USED_LIBS clangTooling clangBasic clangAST)
add_clang_executable(loop-convert
LoopConvert.cpp
LoopActions.cpp
LoopActions.h
LoopMatchers.cpp
LoopMatchers.h
StmtAncestor.cpp
StmtAncestor.h
VariableNaming.cpp
VariableNaming.h
)
target_link_libraries(loop-convert
clangTooling
clangBasic
clangASTMatchers
)

View File

@ -1,990 +0,0 @@
//===-- loop-convert/LoopActions.cpp - C++11 For loop migration -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines matchers and callbacks for use in migrating C++ for loops.
//
//===----------------------------------------------------------------------===//
#include "LoopActions.h"
#include "LoopMatchers.h"
#include "VariableNaming.h"
#include "clang/Lex/Lexer.h"
namespace clang {
namespace loop_migrate {
using namespace clang::ast_matchers;
using namespace clang::tooling;
/// \brief The information needed to describe a valid convertible usage
/// of an array index or iterator.
struct Usage {
const Expr *E;
bool IsArrow;
SourceRange Range;
explicit Usage(const Expr *E)
: E(E), IsArrow(false), Range(E->getSourceRange()) { }
Usage(const Expr *E, bool IsArrow, SourceRange Range)
: E(E), IsArrow(IsArrow), Range(Range) { }
};
/// \brief A class to encapsulate lowering of the tool's confidence level.
class Confidence {
public:
/// \brief Initialize the default confidence level to the maximum value
/// (TCK_Safe).
explicit Confidence(TranslationConfidenceKind Level) :
CurrentLevel(Level) {}
/// \brief Lower the internal confidence level to Level, but do not raise it.
void lowerTo(TranslationConfidenceKind Level) {
CurrentLevel = std::min(Level, CurrentLevel);
}
/// \brief Return the internal confidence level.
TranslationConfidenceKind get() const { return CurrentLevel; }
/// \brief Set the confidence level unconditionally.
void resetTo(TranslationConfidenceKind Level) { CurrentLevel = Level; }
private:
TranslationConfidenceKind CurrentLevel;
};
/// \brief Discover usages of expressions consisting of index or iterator
/// access.
///
/// Given an index variable, recursively crawls a for loop to discover if the
/// index variable is used in a way consistent with range-based for loop access.
class ForLoopIndexUseVisitor
: public RecursiveASTVisitor<ForLoopIndexUseVisitor> {
public:
ForLoopIndexUseVisitor(ASTContext *Context, const VarDecl *IndexVar,
const VarDecl *EndVar, const Expr *ContainerExpr,
const Expr *ArrayBoundExpr,
bool ContainerNeedsDereference) :
Context(Context), IndexVar(IndexVar), EndVar(EndVar),
ContainerExpr(ContainerExpr), ArrayBoundExpr(ArrayBoundExpr),
ContainerNeedsDereference(ContainerNeedsDereference),
OnlyUsedAsIndex(true), AliasDecl(NULL), ConfidenceLevel(TCK_Safe) {
if (ContainerExpr) {
addComponent(ContainerExpr);
llvm::FoldingSetNodeID ID;
const Expr *E = ContainerExpr->IgnoreParenImpCasts();
E->Profile(ID, *Context, true);
}
}
/// \brief Finds all uses of IndexVar in Body, placing all usages in Usages,
/// and returns true if IndexVar was only used in a way consistent with a
/// range-based for loop.
///
/// The general strategy is to reject any DeclRefExprs referencing IndexVar,
/// with the exception of certain acceptable patterns.
/// For arrays, the DeclRefExpr for IndexVar must appear as the index of an
/// ArraySubscriptExpression. Iterator-based loops may dereference
/// IndexVar or call methods through operator-> (builtin or overloaded).
/// Array-like containers may use IndexVar as a parameter to the at() member
/// function and in overloaded operator[].
bool findAndVerifyUsages(const Stmt *Body) {
TraverseStmt(const_cast<Stmt *>(Body));
return OnlyUsedAsIndex && ContainerExpr;
}
/// \brief Add a set of components that we should consider relevant to the
/// container.
void addComponents(const ComponentVector &Components) {
// FIXME: add sort(on ID)+unique to avoid extra work.
for (ComponentVector::const_iterator I = Components.begin(),
E = Components.end(); I != E; ++I)
addComponent(*I);
}
/// \brief Accessor for Usages.
const UsageResult &getUsages() const { return Usages; }
/// \brief Get the container indexed by IndexVar, if any.
const Expr *getContainerIndexed() const {
return ContainerExpr;
}
/// \brief Returns the statement declaring the variable created as an alias
/// for the loop element, if any.
const DeclStmt *getAliasDecl() const { return AliasDecl; }
/// \brief Accessor for ConfidenceLevel.
TranslationConfidenceKind getConfidenceLevel() const {
return ConfidenceLevel.get();
}
private:
/// Typedef used in CRTP functions.
typedef RecursiveASTVisitor<ForLoopIndexUseVisitor> VisitorBase;
friend class RecursiveASTVisitor<ForLoopIndexUseVisitor>;
/// Overriden methods for RecursiveASTVisitor's traversal.
bool TraverseArraySubscriptExpr(ArraySubscriptExpr *ASE);
bool TraverseCXXMemberCallExpr(CXXMemberCallExpr *MemberCall);
bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *OpCall);
bool TraverseMemberExpr(MemberExpr *Member);
bool TraverseUnaryDeref(UnaryOperator *Uop);
bool VisitDeclRefExpr(DeclRefExpr *DRE);
bool VisitDeclStmt(DeclStmt *DS);
/// \brief Add an expression to the list of expressions on which the container
/// expression depends.
void addComponent(const Expr *E) {
llvm::FoldingSetNodeID ID;
const Expr *Node = E->IgnoreParenImpCasts();
Node->Profile(ID, *Context, true);
DependentExprs.push_back(std::make_pair(Node, ID));
}
// Input member variables:
ASTContext *Context;
/// The index variable's VarDecl.
const VarDecl *IndexVar;
/// The loop's 'end' variable, which cannot be mentioned at all.
const VarDecl *EndVar;
/// The Expr which refers to the container.
const Expr *ContainerExpr;
/// The Expr which refers to the terminating condition for array-based loops.
const Expr *ArrayBoundExpr;
bool ContainerNeedsDereference;
// Output member variables:
/// A container which holds all usages of IndexVar as the index of
/// ArraySubscriptExpressions.
UsageResult Usages;
bool OnlyUsedAsIndex;
/// The DeclStmt for an alias to the container element.
const DeclStmt *AliasDecl;
Confidence ConfidenceLevel;
/// \brief A list of expressions on which ContainerExpr depends.
///
/// If any of these expressions are encountered outside of an acceptable usage
/// of the loop element, lower our confidence level.
llvm::SmallVector<
std::pair<const Expr *, llvm::FoldingSetNodeID>, 16> DependentExprs;
};
/// \brief Obtain the original source code text from a SourceRange.
static StringRef getStringFromRange(SourceManager &SourceMgr,
const LangOptions &LangOpts,
SourceRange Range) {
if (SourceMgr.getFileID(Range.getBegin()) !=
SourceMgr.getFileID(Range.getEnd()))
return NULL;
CharSourceRange SourceChars(Range, true);
return Lexer::getSourceText(SourceChars, SourceMgr, LangOpts);
}
/// \brief Returns the DeclRefExpr represented by E, or NULL if there isn't one.
static const DeclRefExpr *getDeclRef(const Expr *E) {
return dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
}
/// \brief If the given expression is actually a DeclRefExpr, find and return
/// the underlying VarDecl; otherwise, return NULL.
static const VarDecl *getReferencedVariable(const Expr *E) {
if (const DeclRefExpr *DRE = getDeclRef(E))
return dyn_cast<VarDecl>(DRE->getDecl());
return NULL;
}
/// \brief Returns true when the given expression is a member expression
/// whose base is `this` (implicitly or not).
static bool isDirectMemberExpr(const Expr *E) {
if (const MemberExpr *Member = dyn_cast<MemberExpr>(E->IgnoreParenImpCasts()))
return isa<CXXThisExpr>(Member->getBase()->IgnoreParenImpCasts());
return false;
}
/// \brief Returns true when two ValueDecls are the same variable.
static bool areSameVariable(const ValueDecl *First, const ValueDecl *Second) {
return First && Second &&
First->getCanonicalDecl() == Second->getCanonicalDecl();
}
/// \brief Determines if an expression is a declaration reference to a
/// particular variable.
static bool exprReferencesVariable(const ValueDecl *Target, const Expr *E) {
if (!Target || !E)
return false;
const DeclRefExpr *DRE = getDeclRef(E);
return DRE && areSameVariable(Target, DRE->getDecl());
}
/// \brief Returns true when two Exprs are equivalent.
static bool areSameExpr(ASTContext* Context, const Expr *First,
const Expr *Second) {
if (!First || !Second)
return false;
llvm::FoldingSetNodeID FirstID, SecondID;
First->Profile(FirstID, *Context, true);
Second->Profile(SecondID, *Context, true);
return FirstID == SecondID;
}
/// \brief Look through conversion/copy constructors to find the explicit
/// initialization expression, returning it is found.
///
/// The main idea is that given
/// vector<int> v;
/// we consider either of these initializations
/// vector<int>::iterator it = v.begin();
/// vector<int>::iterator it(v.begin());
/// and retrieve `v.begin()` as the expression used to initialize `it` but do
/// not include
/// vector<int>::iterator it;
/// vector<int>::iterator it(v.begin(), 0); // if this constructor existed
/// as being initialized from `v.begin()`
static const Expr *digThroughConstructors(const Expr *E) {
if (!E)
return NULL;
E = E->IgnoreParenImpCasts();
if (const CXXConstructExpr *ConstructExpr = dyn_cast<CXXConstructExpr>(E)) {
// The initial constructor must take exactly one parameter, but base class
// and deferred constructors can take more.
if (ConstructExpr->getNumArgs() != 1 ||
ConstructExpr->getConstructionKind() != CXXConstructExpr::CK_Complete)
return NULL;
E = ConstructExpr->getArg(0);
if (const MaterializeTemporaryExpr *MTE =
dyn_cast<MaterializeTemporaryExpr>(E))
E = MTE->GetTemporaryExpr();
return digThroughConstructors(E);
}
return E;
}
/// \brief If the expression is a dereference or call to operator*(), return the
/// operand. Otherwise, return NULL.
static const Expr *getDereferenceOperand(const Expr *E) {
if (const UnaryOperator *Uop = dyn_cast<UnaryOperator>(E))
return Uop->getOpcode() == UO_Deref ? Uop->getSubExpr() : NULL;
if (const CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(E))
return OpCall->getOperator() == OO_Star && OpCall->getNumArgs() == 1 ?
OpCall->getArg(0) : NULL;
return NULL;
}
/// \brief Returns true when the Container contains an Expr equivalent to E.
template<typename ContainerT>
static bool containsExpr(ASTContext *Context, const ContainerT *Container,
const Expr *E) {
llvm::FoldingSetNodeID ID;
E->Profile(ID, *Context, true);
for (typename ContainerT::const_iterator I = Container->begin(),
End = Container->end(); I != End; ++I)
if (ID == I->second)
return true;
return false;
}
/// \brief Returns true when the index expression is a declaration reference to
/// IndexVar.
///
/// If the index variable is `index`, this function returns true on
/// arrayExpression[index];
/// containerExpression[index];
/// but not
/// containerExpression[notIndex];
static bool isIndexInSubscriptExpr(const Expr *IndexExpr,
const VarDecl *IndexVar) {
const DeclRefExpr *Idx = getDeclRef(IndexExpr);
return Idx && Idx->getType()->isIntegerType()
&& areSameVariable(IndexVar, Idx->getDecl());
}
/// \brief Returns true when the index expression is a declaration reference to
/// IndexVar, Obj is the same expression as SourceExpr after all parens and
/// implicit casts are stripped off.
///
/// If PermitDeref is true, IndexExpression may
/// be a dereference (overloaded or builtin operator*).
///
/// This function is intended for array-like containers, as it makes sure that
/// both the container and the index match.
/// If the loop has index variable `index` and iterates over `container`, then
/// isIndexInSubscriptExpr returns true for
/// \code
/// container[index]
/// container.at(index)
/// container->at(index)
/// \endcode
/// but not for
/// \code
/// container[notIndex]
/// notContainer[index]
/// \endcode
/// If PermitDeref is true, then isIndexInSubscriptExpr additionally returns
/// true on these expressions:
/// \code
/// (*container)[index]
/// (*container).at(index)
/// \endcode
static bool isIndexInSubscriptExpr(ASTContext *Context, const Expr *IndexExpr,
const VarDecl *IndexVar, const Expr *Obj,
const Expr *SourceExpr, bool PermitDeref) {
if (!SourceExpr || !Obj || !isIndexInSubscriptExpr(IndexExpr, IndexVar))
return false;
if (areSameExpr(Context, SourceExpr->IgnoreParenImpCasts(),
Obj->IgnoreParenImpCasts()))
return true;
if (const Expr *InnerObj = getDereferenceOperand(Obj->IgnoreParenImpCasts()))
if (PermitDeref && areSameExpr(Context, SourceExpr->IgnoreParenImpCasts(),
InnerObj->IgnoreParenImpCasts()))
return true;
return false;
}
/// \brief Returns true when Opcall is a call a one-parameter dereference of
/// IndexVar.
///
/// For example, if the index variable is `index`, returns true for
/// *index
/// but not
/// index
/// *notIndex
static bool isDereferenceOfOpCall(const CXXOperatorCallExpr *OpCall,
const VarDecl *IndexVar) {
return OpCall->getOperator() == OO_Star && OpCall->getNumArgs() == 1 &&
exprReferencesVariable(IndexVar, OpCall->getArg(0));
}
/// \brief Returns true when Uop is a dereference of IndexVar.
///
/// For example, if the index variable is `index`, returns true for
/// *index
/// but not
/// index
/// *notIndex
static bool isDereferenceOfUop(const UnaryOperator *Uop,
const VarDecl *IndexVar) {
return Uop->getOpcode() == UO_Deref &&
exprReferencesVariable(IndexVar, Uop->getSubExpr());
}
/// \brief Determines whether the given Decl defines a variable initialized to
/// the loop object.
///
/// This is intended to find cases such as
/// \code
/// for (int i = 0; i < arraySize(arr); ++i) {
/// T t = arr[i];
/// // use t, do not use i
/// }
/// \endcode
/// and
/// \code
/// for (iterator i = container.begin(), e = container.end(); i != e; ++i) {
/// T t = *i;
/// // use t, do not use i
/// }
/// \code
static bool isAliasDecl(const Decl *TheDecl, const VarDecl *IndexVar) {
const VarDecl *VDecl = dyn_cast<VarDecl>(TheDecl);
if (!VDecl)
return false;
if (!VDecl->hasInit())
return false;
const Expr *Init =
digThroughConstructors(VDecl->getInit()->IgnoreParenImpCasts());
if (!Init)
return false;
switch (Init->getStmtClass()) {
case Stmt::ArraySubscriptExprClass: {
const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
// We don't really care which array is used here. We check to make sure
// it was the correct one later, since the AST will traverse it next.
return isIndexInSubscriptExpr(ASE->getIdx(), IndexVar);
}
case Stmt::UnaryOperatorClass:
return isDereferenceOfUop(cast<UnaryOperator>(Init), IndexVar);
case Stmt::CXXOperatorCallExprClass: {
const CXXOperatorCallExpr *OpCall = cast<CXXOperatorCallExpr>(Init);
if (OpCall->getOperator() == OO_Star)
return isDereferenceOfOpCall(OpCall, IndexVar);
break;
}
default:
break;
}
return false;
}
/// \brief Determines whether the bound of a for loop condition expression is
/// the same as the statically computable size of ArrayType.
///
/// Given
/// \code
/// const int N = 5;
/// int arr[N];
/// \endcode
/// This is intended to permit
/// \code
/// for (int i = 0; i < N; ++i) { /* use arr[i] */ }
/// for (int i = 0; i < arraysize(arr); ++i) { /* use arr[i] */ }
/// \endcode
static bool arrayMatchesBoundExpr(ASTContext *Context,
const QualType &ArrayType,
const Expr *ConditionExpr) {
if (!ConditionExpr || ConditionExpr->isValueDependent())
return false;
const ConstantArrayType *CAT = Context->getAsConstantArrayType(ArrayType);
if (!CAT)
return false;
llvm::APSInt ConditionSize;
if (!ConditionExpr->isIntegerConstantExpr(ConditionSize, *Context))
return false;
llvm::APSInt ArraySize(CAT->getSize());
return llvm::APSInt::isSameValue(ConditionSize, ArraySize);
}
/// \brief If the unary operator is a dereference of IndexVar, include it
/// as a valid usage and prune the traversal.
///
/// For example, if container.begin() and container.end() both return pointers
/// to int, this makes sure that the initialization for `k` is not counted as an
/// unconvertible use of the iterator `i`.
/// \code
/// for (int *i = container.begin(), *e = container.end(); i != e; ++i) {
/// int k = *i + 2;
/// }
/// \endcode
bool ForLoopIndexUseVisitor::TraverseUnaryDeref(UnaryOperator *Uop) {
// If we dereference an iterator that's actually a pointer, count the
// occurrence.
if (isDereferenceOfUop(Uop, IndexVar)) {
Usages.push_back(Usage(Uop));
return true;
}
return VisitorBase::TraverseUnaryOperator(Uop);
}
/// \brief If the member expression is operator-> (overloaded or not) on
/// IndexVar, include it as a valid usage and prune the traversal.
///
/// For example, given
/// \code
/// struct Foo { int bar(); int x; };
/// vector<Foo> v;
/// \endcode
/// the following uses will be considered convertible:
/// \code
/// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
/// int b = i->bar();
/// int k = i->x + 1;
/// }
/// \endcode
/// though
/// \code
/// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
/// int k = i.insert(1);
/// }
/// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
/// int b = e->bar();
/// }
/// \endcode
/// will not.
bool ForLoopIndexUseVisitor::TraverseMemberExpr(MemberExpr *Member) {
const Expr *Base = Member->getBase();
const DeclRefExpr *Obj = getDeclRef(Base);
const Expr *ResultExpr = Member;
QualType ExprType;
if (const CXXOperatorCallExpr *Call =
dyn_cast<CXXOperatorCallExpr>(Base->IgnoreParenImpCasts())) {
// If operator->() is a MemberExpr containing a CXXOperatorCallExpr, then
// the MemberExpr does not have the expression we want. We therefore catch
// that instance here.
// For example, if vector<Foo>::iterator defines operator->(), then the
// example `i->bar()` at the top of this function is a CXXMemberCallExpr
// referring to `i->` as the member function called. We want just `i`, so
// we take the argument to operator->() as the base object.
if(Call->getOperator() == OO_Arrow) {
assert(Call->getNumArgs() == 1 &&
"Operator-> takes more than one argument");
Obj = getDeclRef(Call->getArg(0));
ResultExpr = Obj;
ExprType = Call->getCallReturnType();
}
}
if (Member->isArrow() && Obj && exprReferencesVariable(IndexVar, Obj)) {
if (ExprType.isNull())
ExprType = Obj->getType();
assert(ExprType->isPointerType() && "Operator-> returned non-pointer type");
// FIXME: This works around not having the location of the arrow operator.
// Consider adding OperatorLoc to MemberExpr?
SourceLocation ArrowLoc =
Lexer::getLocForEndOfToken(Base->getExprLoc(), 0,
Context->getSourceManager(),
Context->getLangOpts());
// If something complicated is happening (i.e. the next token isn't an
// arrow), give up on making this work.
if (!ArrowLoc.isInvalid()) {
Usages.push_back(Usage(ResultExpr, /*IsArrow=*/true,
SourceRange(Base->getExprLoc(), ArrowLoc)));
return true;
}
}
return TraverseStmt(Member->getBase());
}
/// \brief If a member function call is the at() accessor on the container with
/// IndexVar as the single argument, include it as a valid usage and prune
/// the traversal.
///
/// Member calls on other objects will not be permitted.
/// Calls on the iterator object are not permitted, unless done through
/// operator->(). The one exception is allowing vector::at() for pseudoarrays.
bool ForLoopIndexUseVisitor::TraverseCXXMemberCallExpr(
CXXMemberCallExpr *MemberCall) {
MemberExpr *Member =
dyn_cast<MemberExpr>(MemberCall->getCallee()->IgnoreParenImpCasts());
if (!Member)
return VisitorBase::TraverseCXXMemberCallExpr(MemberCall);
// We specifically allow an accessor named "at" to let STL in, though
// this is restricted to pseudo-arrays by requiring a single, integer
// argument.
const IdentifierInfo *Ident = Member->getMemberDecl()->getIdentifier();
if (Ident && Ident->isStr("at") && MemberCall->getNumArgs() == 1) {
if (isIndexInSubscriptExpr(Context, MemberCall->getArg(0), IndexVar,
Member->getBase(), ContainerExpr,
ContainerNeedsDereference)) {
Usages.push_back(Usage(MemberCall));
return true;
}
}
if (containsExpr(Context, &DependentExprs, Member->getBase()))
ConfidenceLevel.lowerTo(TCK_Risky);
return VisitorBase::TraverseCXXMemberCallExpr(MemberCall);
}
/// \brief If an overloaded operator call is a dereference of IndexVar or
/// a subscript of a the container with IndexVar as the single argument,
/// include it as a valid usage and prune the traversal.
///
/// For example, given
/// \code
/// struct Foo { int bar(); int x; };
/// vector<Foo> v;
/// void f(Foo);
/// \endcode
/// the following uses will be considered convertible:
/// \code
/// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
/// f(*i);
/// }
/// for (int i = 0; i < v.size(); ++i) {
/// int i = v[i] + 1;
/// }
/// \endcode
bool ForLoopIndexUseVisitor::TraverseCXXOperatorCallExpr(
CXXOperatorCallExpr *OpCall) {
switch (OpCall->getOperator()) {
case OO_Star:
if (isDereferenceOfOpCall(OpCall, IndexVar)) {
Usages.push_back(Usage(OpCall));
return true;
}
break;
case OO_Subscript:
if (OpCall->getNumArgs() != 2)
break;
if (isIndexInSubscriptExpr(Context, OpCall->getArg(1), IndexVar,
OpCall->getArg(0), ContainerExpr,
ContainerNeedsDereference)) {
Usages.push_back(Usage(OpCall));
return true;
}
break;
default:
break;
}
return VisitorBase::TraverseCXXOperatorCallExpr(OpCall);
}
/// \brief If we encounter an array with IndexVar as the index of an
/// ArraySubsriptExpression, note it as a consistent usage and prune the
/// AST traversal.
///
/// For example, given
/// \code
/// const int N = 5;
/// int arr[N];
/// \endcode
/// This is intended to permit
/// \code
/// for (int i = 0; i < N; ++i) { /* use arr[i] */ }
/// \endcode
/// but not
/// \code
/// for (int i = 0; i < N; ++i) { /* use notArr[i] */ }
/// \endcode
/// and further checking needs to be done later to ensure that exactly one array
/// is referenced.
bool ForLoopIndexUseVisitor::TraverseArraySubscriptExpr(
ArraySubscriptExpr *ASE) {
Expr *Arr = ASE->getBase();
if (!isIndexInSubscriptExpr(ASE->getIdx(), IndexVar))
return VisitorBase::TraverseArraySubscriptExpr(ASE);
if ((ContainerExpr && !areSameExpr(Context, Arr->IgnoreParenImpCasts(),
ContainerExpr->IgnoreParenImpCasts()))
|| !arrayMatchesBoundExpr(Context, Arr->IgnoreImpCasts()->getType(),
ArrayBoundExpr)) {
// If we have already discovered the array being indexed and this isn't it
// or this array doesn't match, mark this loop as unconvertible.
OnlyUsedAsIndex = false;
return VisitorBase::TraverseArraySubscriptExpr(ASE);
}
if (!ContainerExpr)
ContainerExpr = Arr;
Usages.push_back(Usage(ASE));
return true;
}
/// \brief If we encounter a reference to IndexVar in an unpruned branch of the
/// traversal, mark this loop as unconvertible.
///
/// This implements the whitelist for convertible loops: any usages of IndexVar
/// not explicitly considered convertible by this traversal will be caught by
/// this function.
///
/// Additionally, if the container expression is more complex than just a
/// DeclRefExpr, and some part of it is appears elsewhere in the loop, lower
/// our confidence in the transformation.
///
/// For example, these are not permitted:
/// \code
/// for (int i = 0; i < N; ++i) { printf("arr[%d] = %d", i, arr[i]); }
/// for (vector<int>::iterator i = container.begin(), e = container.end();
/// i != e; ++i)
/// i.insert(0);
/// for (vector<int>::iterator i = container.begin(), e = container.end();
/// i != e; ++i)
/// i.insert(0);
/// for (vector<int>::iterator i = container.begin(), e = container.end();
/// i != e; ++i)
/// if (i + 1 != e)
/// printf("%d", *i);
/// \endcode
///
/// And these will raise the risk level:
/// \code
/// int arr[10][20];
/// int l = 5;
/// for (int j = 0; j < 20; ++j)
/// int k = arr[l][j] + l; // using l outside arr[l] is considered risky
/// for (int i = 0; i < obj.getVector().size(); ++i)
/// obj.foo(10); // using `obj` is considered risky
/// \endcode
bool ForLoopIndexUseVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
const ValueDecl *TheDecl = DRE->getDecl();
if (areSameVariable(IndexVar, TheDecl) || areSameVariable(EndVar, TheDecl))
OnlyUsedAsIndex = false;
if (containsExpr(Context, &DependentExprs, DRE))
ConfidenceLevel.lowerTo(TCK_Risky);
return true;
}
/// \brief If we find that another variable is created just to refer to the loop
/// element, note it for reuse as the loop variable.
///
/// See the comments for isAliasDecl.
bool ForLoopIndexUseVisitor::VisitDeclStmt(DeclStmt *DS) {
if (!AliasDecl && DS->isSingleDecl() &&
isAliasDecl(DS->getSingleDecl(), IndexVar))
AliasDecl = DS;
return true;
}
//// \brief Apply the source transformations necessary to migrate the loop!
void LoopFixer::doConversion(ASTContext *Context,
const VarDecl *IndexVar,
const VarDecl *MaybeContainer,
StringRef ContainerString,
const UsageResult &Usages,
const DeclStmt *AliasDecl, const ForStmt *TheLoop,
bool ContainerNeedsDereference) {
std::string VarName;
if (Usages.size() == 1 && AliasDecl) {
const VarDecl *AliasVar = cast<VarDecl>(AliasDecl->getSingleDecl());
VarName = AliasVar->getName().str();
// We keep along the entire DeclStmt to keep the correct range here.
const SourceRange &ReplaceRange = AliasDecl->getSourceRange();
if (!CountOnly)
Replace->insert(
Replacement(Context->getSourceManager(),
CharSourceRange::getTokenRange(ReplaceRange), ""));
// No further replacements are made to the loop, since the iterator or index
// was used exactly once - in the initialization of AliasVar.
} else {
VariableNamer Namer(GeneratedDecls, &ParentFinder->getStmtToParentStmtMap(),
TheLoop, IndexVar, MaybeContainer);
VarName = Namer.createIndexName();
// First, replace all usages of the array subscript expression with our new
// variable.
for (UsageResult::const_iterator I = Usages.begin(), E = Usages.end();
I != E; ++I) {
std::string ReplaceText = I->IsArrow ? VarName + "." : VarName;
ReplacedVarRanges->insert(std::make_pair(TheLoop, IndexVar));
if (!CountOnly)
Replace->insert(
Replacement(Context->getSourceManager(),
CharSourceRange::getTokenRange(I->Range),
ReplaceText));
}
}
// Now, we need to construct the new range expresion.
SourceRange ParenRange(TheLoop->getLParenLoc(), TheLoop->getRParenLoc());
QualType AutoRefType =
Context->getLValueReferenceType(Context->getAutoDeductType());
std::string MaybeDereference = ContainerNeedsDereference ? "*" : "";
std::string TypeString = AutoRefType.getAsString();
std::string Range = ("(" + TypeString + " " + VarName + " : "
+ MaybeDereference + ContainerString + ")").str();
if (!CountOnly)
Replace->insert(Replacement(Context->getSourceManager(),
CharSourceRange::getTokenRange(ParenRange),
Range));
GeneratedDecls->insert(make_pair(TheLoop, VarName));
}
/// \brief Determine whether Init appears to be an initializing an iterator.
///
/// If it is, returns the object whose begin() or end() method is called, and
/// the output parameter isArrow is set to indicate whether the initialization
/// is called via . or ->.
static const Expr *getContainerFromBeginEndCall(const Expr* Init, bool IsBegin,
bool *IsArrow) {
// FIXME: Maybe allow declaration/initialization outside of the for loop?
const CXXMemberCallExpr *TheCall =
dyn_cast_or_null<CXXMemberCallExpr>(digThroughConstructors(Init));
if (!TheCall || TheCall->getNumArgs() != 0)
return NULL;
const MemberExpr *Member = dyn_cast<MemberExpr>(TheCall->getCallee());
if (!Member)
return NULL;
const std::string Name = Member->getMemberDecl()->getName();
const std::string TargetName = IsBegin ? "begin" : "end";
if (Name != TargetName)
return NULL;
const Expr *SourceExpr = Member->getBase();
if (!SourceExpr)
return NULL;
*IsArrow = Member->isArrow();
return SourceExpr;
}
/// \brief Determines the container whose begin() and end() functions are called
/// for an iterator-based loop.
///
/// BeginExpr must be a member call to a function named "begin()", and EndExpr
/// must be a member .
static const Expr *findContainer(ASTContext *Context, const Expr *BeginExpr,
const Expr *EndExpr,
bool *ContainerNeedsDereference) {
// Now that we know the loop variable and test expression, make sure they are
// valid.
bool BeginIsArrow = false;
bool EndIsArrow = false;
const Expr *BeginContainerExpr =
getContainerFromBeginEndCall(BeginExpr, /*IsBegin=*/true, &BeginIsArrow);
if (!BeginContainerExpr)
return NULL;
const Expr *EndContainerExpr =
getContainerFromBeginEndCall(EndExpr, /*IsBegin=*/false, &EndIsArrow);
// Disallow loops that try evil things like this (note the dot and arrow):
// for (IteratorType It = Obj.begin(), E = Obj->end(); It != E; ++It) { }
if (!EndContainerExpr || BeginIsArrow != EndIsArrow ||
!areSameExpr(Context, EndContainerExpr, BeginContainerExpr))
return NULL;
*ContainerNeedsDereference = BeginIsArrow;
return BeginContainerExpr;
}
StringRef LoopFixer::checkDeferralsAndRejections(ASTContext *Context,
const Expr *ContainerExpr,
Confidence ConfidenceLevel,
const ForStmt *TheLoop) {
// If we already modified the range of this for loop, don't do any further
// updates on this iteration.
// FIXME: Once Replacements can detect conflicting edits, replace this
// implementation and rely on conflicting edit detection instead.
if (ReplacedVarRanges->count(TheLoop)) {
++*DeferredChanges;
return "";
}
ParentFinder->gatherAncestors(Context->getTranslationUnitDecl());
// Ensure that we do not try to move an expression dependent on a local
// variable declared inside the loop outside of it!
DependencyFinderASTVisitor
DependencyFinder(&ParentFinder->getStmtToParentStmtMap(),
&ParentFinder->getDeclToParentStmtMap(),
ReplacedVarRanges, TheLoop);
// Not all of these are actually deferred changes.
// FIXME: Determine when the external dependency isn't an expression converted
// by another loop.
if (DependencyFinder.dependsOnInsideVariable(ContainerExpr)) {
++*DeferredChanges;
return "";
}
if (ConfidenceLevel.get() < RequiredConfidenceLevel) {
++*RejectedChanges;
return "";
}
StringRef ContainerString =
getStringFromRange(Context->getSourceManager(), Context->getLangOpts(),
ContainerExpr->getSourceRange());
// In case someone is using an evil macro, reject this change.
if (ContainerString.empty())
++*RejectedChanges;
return ContainerString;
}
/// \brief Given that we have verified that the loop's header appears to be
/// convertible, run the complete analysis on the loop to determine if the
/// loop's body is convertible.
void LoopFixer::findAndVerifyUsages(ASTContext *Context,
const VarDecl *LoopVar,
const VarDecl *EndVar,
const Expr *ContainerExpr,
const Expr *BoundExpr,
bool ContainerNeedsDereference,
const ForStmt *TheLoop,
Confidence ConfidenceLevel) {
ForLoopIndexUseVisitor Finder(Context, LoopVar, EndVar, ContainerExpr,
BoundExpr, ContainerNeedsDereference);
if (ContainerExpr) {
ComponentFinderASTVisitor ComponentFinder;
ComponentFinder.findExprComponents(ContainerExpr->IgnoreParenImpCasts());
Finder.addComponents(ComponentFinder.getComponents());
}
if (!Finder.findAndVerifyUsages(TheLoop->getBody()))
return;
ConfidenceLevel.lowerTo(Finder.getConfidenceLevel());
if (FixerKind == LFK_Array) {
// The array being indexed by IndexVar was discovered during traversal.
ContainerExpr = Finder.getContainerIndexed()->IgnoreParenImpCasts();
// Very few loops are over expressions that generate arrays rather than
// array variables. Consider loops over arrays that aren't just represented
// by a variable to be risky conversions.
if (!getReferencedVariable(ContainerExpr) &&
!isDirectMemberExpr(ContainerExpr))
ConfidenceLevel.lowerTo(TCK_Risky);
}
std::string ContainerString =
checkDeferralsAndRejections(Context, ContainerExpr,
ConfidenceLevel, TheLoop);
if (ContainerString.empty())
return;
doConversion(Context, LoopVar, getReferencedVariable(ContainerExpr),
ContainerString, Finder.getUsages(),
Finder.getAliasDecl(), TheLoop, ContainerNeedsDereference);
++*AcceptedChanges;
}
/// \brief The LoopFixer callback, which determines if loops discovered by the
/// matchers are convertible, printing information about the loops if so.
void LoopFixer::run(const MatchFinder::MatchResult &Result) {
const BoundNodes &Nodes = Result.Nodes;
Confidence ConfidenceLevel(TCK_Safe);
ASTContext *Context = Result.Context;
const ForStmt *TheLoop = Nodes.getStmtAs<ForStmt>(LoopName);
if (!Context->getSourceManager().isFromMainFile(TheLoop->getForLoc()))
return;
// Check that we have exactly one index variable and at most one end variable.
const VarDecl *LoopVar = Nodes.getDeclAs<VarDecl>(IncrementVarName);
const VarDecl *CondVar = Nodes.getDeclAs<VarDecl>(ConditionVarName);
const VarDecl *InitVar = Nodes.getDeclAs<VarDecl>(InitVarName);
if (!areSameVariable(LoopVar, CondVar) || !areSameVariable(LoopVar, InitVar))
return;
const VarDecl *EndVar = Nodes.getDeclAs<VarDecl>(EndVarName);
const VarDecl *ConditionEndVar =
Nodes.getDeclAs<VarDecl>(ConditionEndVarName);
if (EndVar && !areSameVariable(EndVar, ConditionEndVar))
return;
// If the end comparison isn't a variable, we can try to work with the
// expression the loop variable is being tested against instead.
const CXXMemberCallExpr *EndCall =
Nodes.getStmtAs<CXXMemberCallExpr>(EndCallName);
const Expr *BoundExpr = Nodes.getStmtAs<Expr>(ConditionBoundName);
// If the loop calls end()/size() after each iteration, lower our confidence
// level.
if (FixerKind != LFK_Array && !EndVar)
ConfidenceLevel.lowerTo(TCK_Reasonable);
const Expr *ContainerExpr = NULL;
bool ContainerNeedsDereference = false;
// FIXME: Try to put most of this logic inside a matcher. Currently, matchers
// don't allow the right-recursive checks in digThroughConstructors.
if (FixerKind == LFK_Iterator)
ContainerExpr = findContainer(Context, LoopVar->getInit(),
EndVar ? EndVar->getInit() : EndCall,
&ContainerNeedsDereference);
else if (FixerKind == LFK_PseudoArray) {
if (!EndCall)
return;
ContainerExpr = EndCall->getImplicitObjectArgument();
const MemberExpr *Member = dyn_cast<MemberExpr>(EndCall->getCallee());
if (!Member)
return;
ContainerNeedsDereference = Member->isArrow();
}
// We must know the container or an array length bound.
if (!ContainerExpr && !BoundExpr)
return;
findAndVerifyUsages(Context, LoopVar, EndVar, ContainerExpr, BoundExpr,
ContainerNeedsDereference, TheLoop, ConfidenceLevel);
}
} // namespace loop_migrate
} // namespace clang

View File

@ -1,108 +0,0 @@
//===-- loop-convert/LoopActions.h - C++11 For loop migration ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares matchers and callbacks for use in migrating C++ for loops.
//
//===----------------------------------------------------------------------===//
#ifndef _LLVM_TOOLS_CLANG_TOOLS_EXTRA_LOOP_CONVERT_LOOPACTIONS_H_
#define _LLVM_TOOLS_CLANG_TOOLS_EXTRA_LOOP_CONVERT_LOOPACTIONS_H_
#include "StmtAncestor.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Tooling/Refactoring.h"
namespace clang {
namespace loop_migrate {
struct Usage;
class Confidence;
// The main computational result of ForLoopIndexUseVisitor.
typedef llvm::SmallVector<Usage, 8> UsageResult;
/// \brief The level of safety to require of transformations.
enum TranslationConfidenceKind {
TCK_Risky,
TCK_Reasonable,
TCK_Safe
};
enum LoopFixerKind {
LFK_Array,
LFK_Iterator,
LFK_PseudoArray
};
/// \brief The callback to be used for loop migration matchers.
///
/// The callback does extra checking not possible in matchers, and attempts to
/// convert the for loop, if possible.
class LoopFixer : public ast_matchers::MatchFinder::MatchCallback {
public:
LoopFixer(StmtAncestorASTVisitor *ParentFinder,
tooling::Replacements *Replace,
StmtGeneratedVarNameMap *GeneratedDecls,
ReplacedVarsMap *ReplacedVarRanges,
unsigned *AcceptedChanges, unsigned *DeferredChanges,
unsigned *RejectedChanges, bool CountOnly,
TranslationConfidenceKind RequiredConfidenceLevel,
LoopFixerKind FixerKind) :
ParentFinder(ParentFinder), Replace(Replace),
GeneratedDecls(GeneratedDecls), ReplacedVarRanges(ReplacedVarRanges),
AcceptedChanges(AcceptedChanges), DeferredChanges(DeferredChanges),
RejectedChanges(RejectedChanges), CountOnly(CountOnly),
RequiredConfidenceLevel(RequiredConfidenceLevel), FixerKind(FixerKind) { }
virtual void run(const ast_matchers::MatchFinder::MatchResult &Result);
private:
StmtAncestorASTVisitor *ParentFinder;
tooling::Replacements *Replace;
StmtGeneratedVarNameMap *GeneratedDecls;
ReplacedVarsMap *ReplacedVarRanges;
unsigned *AcceptedChanges;
unsigned *DeferredChanges;
unsigned *RejectedChanges;
bool CountOnly;
TranslationConfidenceKind RequiredConfidenceLevel;
LoopFixerKind FixerKind;
/// \brief Computes the changes needed to convert a given for loop, and
/// applies it if this->CountOnly is false.
void doConversion(ASTContext *Context,
const VarDecl *IndexVar,
const VarDecl *MaybeContainer,
StringRef ContainerString,
const UsageResult &Usages,
const DeclStmt *AliasDecl, const ForStmt *TheLoop,
bool ContainerNeedsDereference);
/// \brief Given a loop header that would be convertible, discover all usages
/// of the index variable and convert the loop if possible.
void findAndVerifyUsages(ASTContext *Context,
const VarDecl *LoopVar,
const VarDecl *EndVar,
const Expr *ContainerExpr,
const Expr *BoundExpr,
bool ContainerNeedsDereference,
const ForStmt *TheLoop,
Confidence ConfidenceLevel);
/// \brief Determine if the change should be deferred or rejected, returning
/// text which refers to the container iterated over if the change should
/// proceed.
StringRef checkDeferralsAndRejections(ASTContext *Context,
const Expr *ContainerExpr,
Confidence ConfidenceLevel,
const ForStmt *TheLoop);
};
} // namespace loop_migrate
} // namespace clang
#endif // _LLVM_TOOLS_CLANG_TOOLS_EXTRA_LOOP_CONVERT_LOOPACTIONS_H_

View File

@ -1,136 +0,0 @@
//===-- loop-convert/LoopConvert.cpp - C++11 For loop migration -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a tool that migrates for loops to take advantage of the
// range-basead syntax new to C++11.
//
// Usage:
// loop-convert <cmake-output-dir> <file1> <file2> ...
//
// Where <cmake-output-dir> is a CMake build directory containing a file named
// compile_commands.json.
//
// <file1>... specify the pahs of files in the CMake source tree, with the same
// requirements as other tools built on LibTooling.
//
//===----------------------------------------------------------------------===//
#include "LoopActions.h"
#include "LoopMatchers.h"
#include "clang/Basic/FileManager.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Tooling/Refactoring.h"
#include "clang/Tooling/Tooling.h"
using clang::ast_matchers::MatchFinder;
namespace cl = llvm::cl;
using namespace clang::tooling;
using namespace clang::loop_migrate;
static cl::opt<std::string> BuildPath(
cl::Positional,
cl::desc("<build-path>"));
static cl::list<std::string> SourcePaths(
cl::Positional,
cl::desc("<source0> [... <sourceN>]"),
cl::OneOrMore);
// General options go here:
static cl::opt<bool> CountOnly(
"count-only", cl::desc("Do not apply transformations; only count them."));
static cl::opt<TranslationConfidenceKind> TransformationLevel(
cl::desc("Choose safety requirements for transformations:"),
cl::values(clEnumValN(TCK_Safe, "A0", "Enable safe transformations"),
clEnumValN(TCK_Reasonable, "A1",
"Enable transformations that might change semantics "
"(default)"),
clEnumValN(TCK_Risky, "A2",
"Enable transformations that are likely "
"to change semantics"),
clEnumValEnd),
cl::init(TCK_Reasonable));
int main(int argc, const char **argv) {
llvm::OwningPtr<CompilationDatabase> Compilations(
FixedCompilationDatabase::loadFromCommandLine(argc, argv));
cl::ParseCommandLineOptions(argc, argv);
if (!Compilations) {
std::string ErrorMessage;
Compilations.reset(
!BuildPath.empty() ?
CompilationDatabase::autoDetectFromDirectory(BuildPath, ErrorMessage) :
CompilationDatabase::autoDetectFromSource(SourcePaths[0],
ErrorMessage));
if (!Compilations)
llvm::report_fatal_error(ErrorMessage);
}
ClangTool SyntaxTool(*Compilations, SourcePaths);
// First, let's check to make sure there were no errors.
if (int result =
SyntaxTool.run(newFrontendActionFactory<clang::SyntaxOnlyAction>())) {
llvm::errs() << "Error compiling files.\n";
return result;
}
RefactoringTool LoopTool(*Compilations, SourcePaths);
StmtAncestorASTVisitor ParentFinder;
StmtGeneratedVarNameMap GeneratedDecls;
ReplacedVarsMap ReplacedVars;
unsigned AcceptedChanges = 0;
unsigned DeferredChanges = 0;
unsigned RejectedChanges = 0;
MatchFinder Finder;
LoopFixer ArrayLoopFixer(&ParentFinder, &LoopTool.getReplacements(),
&GeneratedDecls, &ReplacedVars, &AcceptedChanges,
&DeferredChanges, &RejectedChanges,
CountOnly, TransformationLevel, LFK_Array);
Finder.addMatcher(makeArrayLoopMatcher(), &ArrayLoopFixer);
LoopFixer IteratorLoopFixer(&ParentFinder, &LoopTool.getReplacements(),
&GeneratedDecls, &ReplacedVars, &AcceptedChanges,
&DeferredChanges, &RejectedChanges,
CountOnly, TransformationLevel, LFK_Iterator);
Finder.addMatcher(makeIteratorLoopMatcher(), &IteratorLoopFixer);
LoopFixer PseudoarrrayLoopFixer(&ParentFinder, &LoopTool.getReplacements(),
&GeneratedDecls, &ReplacedVars,
&AcceptedChanges, &DeferredChanges,
&RejectedChanges, CountOnly,
TransformationLevel, LFK_PseudoArray);
Finder.addMatcher(makePseudoArrayLoopMatcher(), &PseudoarrrayLoopFixer);
if (int result = LoopTool.run(newFrontendActionFactory(&Finder))) {
llvm::errs() << "Error encountered during translation.\n";
return result;
}
llvm::outs() << "\nFor Loop Conversion:\n\t" << AcceptedChanges
<< " converted loop(s)\n\t" << DeferredChanges
<< " potentially conflicting change(s) deferred.\n\t"
<< RejectedChanges << " change(s) rejected.\n";
if (DeferredChanges > 0)
llvm::outs() << "Re-run this tool to attempt applying deferred changes.\n";
if (RejectedChanges > 0)
llvm::outs() << "Re-run this tool with a lower required confidence level "
"to apply rejected changes.\n";
if (AcceptedChanges > 0) {
// Check to see if the changes introduced any new errors.
ClangTool EndSyntaxTool(*Compilations, SourcePaths);
if (int result = EndSyntaxTool.run(
newFrontendActionFactory<clang::SyntaxOnlyAction>())) {
llvm::errs() << "Error compiling files after translation.\n";
return result;
}
}
return 0;
}

View File

@ -1,235 +0,0 @@
//===-- loop-convert/LoopMatchers.h - Matchers for for loops ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains definitions of the matchers for use in migrating
// C++ for loops.
//
//===----------------------------------------------------------------------===//
#include "LoopMatchers.h"
namespace clang {
namespace loop_migrate {
using namespace clang::ast_matchers;
const char LoopName[] = "forLoop";
const char ConditionBoundName[] = "conditionBound";
const char ConditionVarName[] = "conditionVar";
const char IncrementVarName[] = "incrementVar";
const char InitVarName[] = "initVar";
const char EndCallName[] = "endCall";
const char ConditionEndVarName[] = "conditionEndVar";
const char EndVarName[] = "endVar";
// shared matchers
static const TypeMatcher AnyType = anything();
static const StatementMatcher IntegerComparisonMatcher =
expr(ignoringParenImpCasts(declRefExpr(to(
varDecl(hasType(isInteger())).bind(ConditionVarName)))));
static const DeclarationMatcher InitToZeroMatcher =
varDecl(hasInitializer(ignoringParenImpCasts(
integerLiteral(equals(0))))).bind(InitVarName);
static const StatementMatcher IncrementVarMatcher =
declRefExpr(to(
varDecl(hasType(isInteger())).bind(IncrementVarName)));
// FIXME: How best to document complicated matcher expressions? They're fairly
// self-documenting...but there may be some unintuitive parts.
/// \brief The matcher for loops over arrays.
///
/// In this general example, assuming 'j' and 'k' are of integral type:
/// \code
/// for (int i = 0; j < 3 + 2; ++k) { ... }
/// \endcode
/// The following string identifers are bound to the parts of the AST:
/// ConditionVarName: 'j' (as a VarDecl)
/// ConditionBoundName: '3 + 2' (as an Expr)
/// InitVarName: 'i' (as a VarDecl)
/// IncrementVarName: 'k' (as a VarDecl)
/// LoopName: The entire for loop (as a ForStmt)
///
/// Client code will need to make sure that:
/// - The three index variables identified by the matcher are the same
/// VarDecl.
/// - The index variable is only used as an array index.
/// - All arrays indexed by the loop are the same.
StatementMatcher makeArrayLoopMatcher() {
StatementMatcher ArrayBoundMatcher =
expr(hasType(isInteger())).bind(ConditionBoundName);
return forStmt(
hasLoopInit(declStmt(hasSingleDecl(InitToZeroMatcher))),
hasCondition(anyOf(binaryOperator(hasOperatorName("<"),
hasLHS(IntegerComparisonMatcher),
hasRHS(ArrayBoundMatcher)),
binaryOperator(hasOperatorName(">"),
hasLHS(ArrayBoundMatcher),
hasRHS(IntegerComparisonMatcher)))),
hasIncrement(unaryOperator(hasOperatorName("++"),
hasUnaryOperand(IncrementVarMatcher))))
.bind(LoopName);
}
/// \brief The matcher used for iterator-based for loops.
///
/// This matcher is more flexible than array-based loops. It will match
/// catch loops of the following textual forms (regardless of whether the
/// iterator type is actually a pointer type or a class type):
///
/// Assuming f, g, and h are of type containerType::iterator,
/// \code
/// for (containerType::iterator it = container.begin(),
/// e = createIterator(); f != g; ++h) { ... }
/// for (containerType::iterator it = container.begin();
/// f != anotherContainer.end(); ++h) { ... }
/// \endcode
/// The following string identifiers are bound to the parts of the AST:
/// InitVarName: 'it' (as a VarDecl)
/// ConditionVarName: 'f' (as a VarDecl)
/// LoopName: The entire for loop (as a ForStmt)
/// In the first example only:
/// EndVarName: 'e' (as a VarDecl)
/// ConditionEndVarName: 'g' (as a VarDecl)
/// In the second example only:
/// EndCallName: 'container.end()' (as a CXXMemberCallExpr)
///
/// Client code will need to make sure that:
/// - The iterator variables 'it', 'f', and 'h' are the same
/// - The two containers on which 'begin' and 'end' are called are the same
/// - If the end iterator variable 'g' is defined, it is the same as 'f'
StatementMatcher makeIteratorLoopMatcher() {
StatementMatcher BeginCallMatcher =
memberCallExpr(argumentCountIs(0), callee(methodDecl(hasName("begin"))));
DeclarationMatcher InitDeclMatcher =
varDecl(hasInitializer(anything())).bind(InitVarName);
DeclarationMatcher EndDeclMatcher =
varDecl(hasInitializer(anything())).bind(EndVarName);
StatementMatcher EndCallMatcher =
memberCallExpr(argumentCountIs(0), callee(methodDecl(hasName("end"))));
StatementMatcher IteratorBoundMatcher =
expr(anyOf(ignoringParenImpCasts(declRefExpr(to(
varDecl().bind(ConditionEndVarName)))),
ignoringParenImpCasts(
expr(EndCallMatcher).bind(EndCallName)),
materializeTemporaryExpr(ignoringParenImpCasts(
expr(EndCallMatcher).bind(EndCallName)))));
StatementMatcher IteratorComparisonMatcher =
expr(ignoringParenImpCasts(declRefExpr(to(
varDecl().bind(ConditionVarName)))));
StatementMatcher OverloadedNEQMatcher = operatorCallExpr(
hasOverloadedOperatorName("!="),
argumentCountIs(2),
hasArgument(0, IteratorComparisonMatcher),
hasArgument(1, IteratorBoundMatcher));
return forStmt(
hasLoopInit(anyOf(
declStmt(declCountIs(2),
containsDeclaration(0, InitDeclMatcher),
containsDeclaration(1, EndDeclMatcher)),
declStmt(hasSingleDecl(InitDeclMatcher)))),
hasCondition(anyOf(
binaryOperator(hasOperatorName("!="),
hasLHS(IteratorComparisonMatcher),
hasRHS(IteratorBoundMatcher)),
binaryOperator(hasOperatorName("!="),
hasLHS(IteratorBoundMatcher),
hasRHS(IteratorComparisonMatcher)),
OverloadedNEQMatcher)),
hasIncrement(anyOf(
unaryOperator(hasOperatorName("++"),
hasUnaryOperand(declRefExpr(to(
varDecl(hasType(pointsTo(AnyType)))
.bind(IncrementVarName))))),
operatorCallExpr(
hasOverloadedOperatorName("++"),
hasArgument(0, declRefExpr(to(
varDecl().bind(IncrementVarName))))))))
.bind(LoopName);
}
/// \brief The matcher used for array-like containers (pseudoarrays).
///
/// This matcher is more flexible than array-based loops. It will match
/// loops of the following textual forms (regardless of whether the
/// iterator type is actually a pointer type or a class type):
///
/// Assuming f, g, and h are of type containerType::iterator,
/// \code
/// for (int i = 0, j = container.size(); f < g; ++h) { ... }
/// for (int i = 0; f < container.size(); ++h) { ... }
/// \endcode
/// The following string identifiers are bound to the parts of the AST:
/// InitVarName: 'i' (as a VarDecl)
/// ConditionVarName: 'f' (as a VarDecl)
/// LoopName: The entire for loop (as a ForStmt)
/// In the first example only:
/// EndVarName: 'j' (as a VarDecl)
/// ConditionEndVarName: 'g' (as a VarDecl)
/// In the second example only:
/// EndCallName: 'container.size()' (as a CXXMemberCallExpr)
///
/// Client code will need to make sure that:
/// - The index variables 'i', 'f', and 'h' are the same
/// - The containers on which 'size()' is called is the container indexed
/// - The index variable is only used in overloaded operator[] or
/// container.at()
/// - If the end iterator variable 'g' is defined, it is the same as 'j'
/// - The container's iterators would not be invalidated during the loop
StatementMatcher makePseudoArrayLoopMatcher() {
StatementMatcher SizeCallMatcher =
memberCallExpr(argumentCountIs(0),
callee(methodDecl(anyOf(hasName("size"),
hasName("length")))));
StatementMatcher EndInitMatcher =
expr(anyOf(
ignoringParenImpCasts(expr(SizeCallMatcher).bind(EndCallName)),
explicitCastExpr(hasSourceExpression(ignoringParenImpCasts(
expr(SizeCallMatcher).bind(EndCallName))))));
DeclarationMatcher EndDeclMatcher =
varDecl(hasInitializer(EndInitMatcher)).bind(EndVarName);
StatementMatcher IndexBoundMatcher =
expr(anyOf(
ignoringParenImpCasts(declRefExpr(to(
varDecl(hasType(isInteger())).bind(ConditionEndVarName)))),
EndInitMatcher));
return forStmt(
hasLoopInit(anyOf(
declStmt(declCountIs(2),
containsDeclaration(0, InitToZeroMatcher),
containsDeclaration(1, EndDeclMatcher)),
declStmt(hasSingleDecl(InitToZeroMatcher)))),
hasCondition(anyOf(
binaryOperator(hasOperatorName("<"),
hasLHS(IntegerComparisonMatcher),
hasRHS(IndexBoundMatcher)),
binaryOperator(hasOperatorName(">"),
hasLHS(IndexBoundMatcher),
hasRHS(IntegerComparisonMatcher)))),
hasIncrement(unaryOperator(
hasOperatorName("++"),
hasUnaryOperand(IncrementVarMatcher))))
.bind(LoopName);
}
} // namespace loop_migrate
} // namespace clang

View File

@ -1,43 +0,0 @@
//===-- loop-convert/LoopMatchers.h - Matchers for for loops ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains declarations of the matchers for use in migrating
// C++ for loops. The matchers are responsible for checking the general shape of
// the for loop, namely the init, condition, and increment portions.
// Further analysis will be needed to confirm that the loop is in fact
// convertible in the matcher callback.
//
//===----------------------------------------------------------------------===//
#ifndef _LLVM_TOOLS_CLANG_TOOLS_EXTRA_LOOP_CONVERT_LOOP_MATCHERS_H_
#define _LLVM_TOOLS_CLANG_TOOLS_EXTRA_LOOP_CONVERT_LOOP_MATCHERS_H_
#include "clang/ASTMatchers/ASTMatchers.h"
namespace clang {
namespace loop_migrate {
// Constants used for matcher name bindings
extern const char LoopName[];
extern const char ConditionBoundName[];
extern const char ConditionVarName[];
extern const char ConditionEndVarName[];
extern const char IncrementVarName[];
extern const char InitVarName[];
extern const char EndExprName[];
extern const char EndCallName[];
extern const char EndVarName[];
ast_matchers::StatementMatcher makeArrayLoopMatcher();
ast_matchers::StatementMatcher makeIteratorLoopMatcher();
ast_matchers::StatementMatcher makePseudoArrayLoopMatcher();
} //namespace loop_migrate
} //namespace clang
#endif //_LLVM_TOOLS_CLANG_TOOLS_EXTRA_LOOP_CONVERT_LOOP_MATCHERS_H_

View File

@ -1,26 +0,0 @@
##===- tools/extra/loop-convert/Makefile ----sssss----------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file is distributed under the University of Illinois Open Source
# License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
CLANG_LEVEL := ../../..
TOOLNAME = loop-convert
NO_INSTALL = 1
# No plugins, optimize startup time.
TOOL_NO_EXPORTS = 1
include $(CLANG_LEVEL)/../../Makefile.config
LINK_COMPONENTS := $(TARGETS_TO_BUILD) asmparser support mc
USEDLIBS = clangTooling.a clangFrontend.a clangSerialization.a clangDriver.a \
clangRewriteFrontend.a clangRewriteCore.a clangParse.a \
clangSema.a clangAnalysis.a \
clangAST.a clangASTMatchers.a clangEdit.a clangLex.a clangBasic.a
include $(CLANG_LEVEL)/Makefile

View File

@ -1,120 +0,0 @@
//===-- loop-convert/StmtAncestor.cpp - AST property visitors ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the definitions of several RecursiveASTVisitors used to
// build and check data structures used in loop migration.
//
//===----------------------------------------------------------------------===//
#include "StmtAncestor.h"
namespace clang {
namespace loop_migrate {
/// \brief Tracks a stack of parent statements during traversal.
///
/// All this really does is inject push_back() before running
/// RecursiveASTVisitor::TraverseStmt() and pop_back() afterwards. The Stmt atop
/// the stack is the parent of the current statement (NULL for the topmost
/// statement).
bool StmtAncestorASTVisitor::TraverseStmt(Stmt *Statement) {
StmtAncestors.insert(std::make_pair(Statement, StmtStack.back()));
StmtStack.push_back(Statement);
RecursiveASTVisitor<StmtAncestorASTVisitor>::TraverseStmt(Statement);
StmtStack.pop_back();
return true;
}
/// \brief Keep track of the DeclStmt associated with each VarDecl.
///
/// Combined with StmtAncestors, this provides roughly the same information as
/// Scope, as we can map a VarDecl to its DeclStmt, then walk up the parent tree
/// using StmtAncestors.
bool StmtAncestorASTVisitor::VisitDeclStmt(DeclStmt *Decls) {
for (DeclStmt::const_decl_iterator I = Decls->decl_begin(),
E = Decls->decl_end(); I != E; ++I)
if (const VarDecl *VD = dyn_cast<VarDecl>(*I))
DeclParents.insert(std::make_pair(VD, Decls));
return true;
}
/// \brief record the DeclRefExpr as part of the parent expression.
bool ComponentFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *E) {
Components.push_back(E);
return true;
}
/// \brief record the MemberExpr as part of the parent expression.
bool ComponentFinderASTVisitor::VisitMemberExpr(MemberExpr *Member) {
Components.push_back(Member);
return true;
}
/// \brief Forward any DeclRefExprs to a check on the referenced variable
/// declaration.
bool DependencyFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
if (VarDecl *VD = dyn_cast_or_null<VarDecl>(DRE->getDecl()))
return VisitVarDecl(VD);
return true;
}
/// \brief Determine if any this variable is declared inside the ContainingStmt.
bool DependencyFinderASTVisitor::VisitVarDecl(VarDecl *VD) {
const Stmt *Curr = DeclParents->lookup(VD);
// First, see if the variable was declared within an inner scope of the loop.
while (Curr != NULL) {
if (Curr == ContainingStmt) {
DependsOnInsideVariable = true;
return false;
}
Curr = StmtParents->lookup(Curr);
}
// Next, check if the variable was removed from existence by an earlier
// iteration.
for (ReplacedVarsMap::const_iterator I = ReplacedVars->begin(),
E = ReplacedVars->end(); I != E; ++I)
if ((*I).second == VD) {
DependsOnInsideVariable = true;
return false;
}
return true;
}
/// \brief If we already created a variable for TheLoop, check to make sure
/// that the name was not already taken.
bool DeclFinderASTVisitor::VisitForStmt(ForStmt *TheLoop) {
StmtGeneratedVarNameMap::const_iterator I = GeneratedDecls->find(TheLoop);
if (I != GeneratedDecls->end() && I->second == Name) {
Found = true;
return false;
}
return true;
}
/// \brief If any named declaration within the AST subtree has the same name,
/// then consider Name already taken.
bool DeclFinderASTVisitor::VisitNamedDecl(NamedDecl *ND) {
const IdentifierInfo *Ident = ND->getIdentifier();
if (Ident && Ident->getName() == Name) {
Found = true;
return false;
}
return true;
}
/// \brief Forward any declaration references to the actual check on the
/// referenced declaration.
bool DeclFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
if (NamedDecl *ND = dyn_cast<NamedDecl>(DRE->getDecl()))
return VisitNamedDecl(ND);
return true;
}
} // namespace clang
} // namespace for_migrate

View File

@ -1,199 +0,0 @@
//===-- loop-convert/StmtAncestor.h - AST property visitors -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declarations of several RecursiveASTVisitors used to
// build and check data structures used in loop migration.
//
//===----------------------------------------------------------------------===//
#ifndef _LLVM_TOOLS_CLANG_TOOLS_EXTRA_LOOP_CONVERT_STMT_ANCESTOR_H_
#define _LLVM_TOOLS_CLANG_TOOLS_EXTRA_LOOP_CONVERT_STMT_ANCESTOR_H_
#include "clang/AST/RecursiveASTVisitor.h"
namespace clang {
namespace loop_migrate {
/// A map used to walk the AST in reverse: maps child Stmt to parent Stmt.
typedef llvm::DenseMap<const Stmt*, const Stmt*> StmtParentMap;
/// A map used to walk the AST in reverse:
/// maps VarDecl to the to parent DeclStmt.
typedef llvm::DenseMap<const VarDecl*, const DeclStmt*> DeclParentMap;
/// A map used to track which variables have been removed by a refactoring pass.
/// It maps the parent ForStmt to the removed index variable's VarDecl.
typedef llvm::DenseMap<const ForStmt*, const VarDecl *> ReplacedVarsMap;
/// A map used to remember the variable names generated in a Stmt
typedef llvm::DenseMap<const Stmt*, std::string> StmtGeneratedVarNameMap;
/// A vector used to store the AST subtrees of an Expr.
typedef llvm::SmallVector<const Expr *, 16> ComponentVector;
/// \brief Class used build the reverse AST properties needed to detect
/// name conflicts and free variables.
class StmtAncestorASTVisitor :
public RecursiveASTVisitor<StmtAncestorASTVisitor> {
public:
StmtAncestorASTVisitor() {
StmtStack.push_back(NULL);
}
/// \brief Run the analysis on the TranslationUnitDecl.
///
/// In case we're running this analysis multiple times, don't repeat the work.
void gatherAncestors(const TranslationUnitDecl *TUD) {
if (StmtAncestors.empty())
TraverseDecl(const_cast<TranslationUnitDecl *>(TUD));
}
/// Accessor for StmtAncestors.
const StmtParentMap &getStmtToParentStmtMap() {
return StmtAncestors;
}
/// Accessor for DeclParents.
const DeclParentMap &getDeclToParentStmtMap() {
return DeclParents;
}
friend class RecursiveASTVisitor<StmtAncestorASTVisitor>;
private:
StmtParentMap StmtAncestors;
DeclParentMap DeclParents;
llvm::SmallVector<const Stmt *, 16> StmtStack;
bool TraverseStmt(Stmt *Statement);
bool VisitDeclStmt(DeclStmt *Statement);
};
/// Class used to find the variables and member expressions on which an
/// arbitrary expression depends.
class ComponentFinderASTVisitor :
public RecursiveASTVisitor<ComponentFinderASTVisitor> {
public:
ComponentFinderASTVisitor() { }
/// Find the components of an expression and place them in a ComponentVector.
void findExprComponents(const Expr *SourceExpr) {
Expr *E = const_cast<Expr *>(SourceExpr);
RecursiveASTVisitor<ComponentFinderASTVisitor>::TraverseStmt(E);
}
/// Accessor for Components.
const ComponentVector &getComponents() {
return Components;
}
friend class RecursiveASTVisitor<ComponentFinderASTVisitor>;
private:
ComponentVector Components;
bool VisitDeclRefExpr(DeclRefExpr *E);
bool VisitMemberExpr(MemberExpr *Member);
};
/// Class used to determine if an expression is dependent on a variable declared
/// inside of the loop where it would be used.
class DependencyFinderASTVisitor :
public RecursiveASTVisitor<DependencyFinderASTVisitor> {
public:
DependencyFinderASTVisitor(const StmtParentMap *StmtParents,
const DeclParentMap *DeclParents,
const ReplacedVarsMap *ReplacedVars,
const Stmt *ContainingStmt) :
StmtParents(StmtParents), DeclParents(DeclParents),
ContainingStmt(ContainingStmt), ReplacedVars(ReplacedVars) { }
/// \brief Run the analysis on Body, and return true iff the expression
/// depends on some variable declared within ContainingStmt.
///
/// This is intended to protect against hoisting the container expression
/// outside of an inner context if part of that expression is declared in that
/// inner context.
///
/// For example,
/// \code
/// const int N = 10, M = 20;
/// int arr[N][M];
/// int getRow();
///
/// for (int i = 0; i < M; ++i) {
/// int k = getRow();
/// printf("%d:", arr[k][i]);
/// }
/// \endcode
/// At first glance, this loop looks like it could be changed to
/// \code
/// for (int elem : arr[k]) {
/// int k = getIndex();
/// printf("%d:", elem);
/// }
/// \endcode
/// But this is malformed, since `k` is used before it is defined!
///
/// In order to avoid this, this class looks at the container expression
/// `arr[k]` and decides whether or not it contains a sub-expression declared
/// within the the loop body.
bool dependsOnInsideVariable(const Stmt *Body) {
DependsOnInsideVariable = false;
TraverseStmt(const_cast<Stmt *>(Body));
return DependsOnInsideVariable;
}
friend class RecursiveASTVisitor<DependencyFinderASTVisitor>;
private:
const StmtParentMap *StmtParents;
const DeclParentMap *DeclParents;
const Stmt *ContainingStmt;
const ReplacedVarsMap *ReplacedVars;
bool DependsOnInsideVariable;
bool VisitVarDecl(VarDecl *VD);
bool VisitDeclRefExpr(DeclRefExpr *DRE);
};
/// Class used to determine if any declarations used in a Stmt would conflict
/// with a particular identifier. This search includes the names that don't
/// actually appear in the AST (i.e. created by a refactoring tool) by including
/// a map from Stmts to generated names associated with those stmts.
class DeclFinderASTVisitor : public RecursiveASTVisitor<DeclFinderASTVisitor> {
public:
DeclFinderASTVisitor(const std::string &Name,
const StmtGeneratedVarNameMap *GeneratedDecls) :
Name(Name), GeneratedDecls(GeneratedDecls), Found(false) { }
/// Attempts to find any usages of variables name Name in Body, returning
/// true when it is used in Body. This includes the generated loop variables
/// of ForStmts which have already been transformed.
bool findUsages(const Stmt *Body) {
Found = false;
TraverseStmt(const_cast<Stmt *>(Body));
return Found;
}
friend class RecursiveASTVisitor<DeclFinderASTVisitor>;
private:
std::string Name;
/// GeneratedDecls keeps track of ForStmts which have been tranformed, mapping
/// each modified ForStmt to the variable generated in the loop.
const StmtGeneratedVarNameMap *GeneratedDecls;
bool Found;
bool VisitForStmt(ForStmt *FS);
bool VisitNamedDecl(NamedDecl *ND);
bool VisitDeclRefExpr(DeclRefExpr *DRE);
};
} // namespace for_migrate
} // namespace clang
#endif // _LLVM_TOOLS_CLANG_TOOLS_EXTRA_LOOP_CONVERT_STMT_ANCESTOR_H_

View File

@ -1,84 +0,0 @@
//===-- loop-convert/VariableNaming.h - Gererate variable names -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the definitino of the VariableNamer class, which is
// responsible for generating new variable names and ensuring that they do not
// conflict with existing ones.
//
//===----------------------------------------------------------------------===//
#include "VariableNaming.h"
namespace clang {
namespace loop_migrate {
std::string VariableNamer::createIndexName() {
// FIXME: Add in naming conventions to handle:
// - Uppercase/lowercase indices
// - How to handle conflicts
// - An interactive process for naming
std::string IteratorName;
std::string ContainerName;
if (TheContainer)
ContainerName = TheContainer->getName().str();
size_t Len = ContainerName.length();
if (Len > 1 && ContainerName[Len - 1] == 's')
IteratorName = ContainerName.substr(0, Len - 1);
else
IteratorName = "elem";
if (!declarationExists(IteratorName))
return IteratorName;
IteratorName = ContainerName + "_" + OldIndex->getName().str();
if (!declarationExists(IteratorName))
return IteratorName;
IteratorName = ContainerName + "_elem";
if (!declarationExists(IteratorName))
return IteratorName;
IteratorName += "_elem";
if (!declarationExists(IteratorName))
return IteratorName;
IteratorName = "_elem_";
// Someone defeated my naming scheme...
while (declarationExists(IteratorName))
IteratorName += "i";
return IteratorName;
}
/// \brief Determines whether or not the the name Symbol exists in LoopContext,
/// any of its parent contexts, or any of its child statements.
///
/// We also check to see if the same identifier was generated by this loop
/// converter in a loop nested within SourceStmt.
bool VariableNamer::declarationExists(const StringRef Symbol) {
// Determine if the symbol was generated in a parent context.
for (const Stmt *S = SourceStmt; S != NULL; S = ReverseAST->lookup(S)) {
StmtGeneratedVarNameMap::const_iterator I = GeneratedDecls->find(S);
if (I != GeneratedDecls->end() && I->second == Symbol)
return true;
}
// FIXME: Rather than detecting conflicts at their usages, we should check the
// parent context.
// For some reason, lookup() always returns the pair (NULL, NULL) because its
// StoredDeclsMap is not initialized (i.e. LookupPtr.getInt() is false inside
// of DeclContext::lookup()). Why is this?
// Finally, determine if the symbol was used in the loop or a child context.
DeclFinderASTVisitor DeclFinder(Symbol, GeneratedDecls);
return DeclFinder.findUsages(SourceStmt);
}
} // namespace loop_migrate
} // namespace clang

View File

@ -1,59 +0,0 @@
//===-- loop-convert/VariableNaming.h - Gererate variable names -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the VariableNamer class, which is
// responsible for generating new variable names and ensuring that they do not
// conflict with existing ones.
//
//===----------------------------------------------------------------------===//
#ifndef _LLVM_TOOLS_CLANG_TOOLS_EXTRA_LOOP_VARIABLE_NAMING_H_
#define _LLVM_TOOLS_CLANG_TOOLS_EXTRA_LOOP_VARIABLE_NAMING_H_
#include "StmtAncestor.h"
#include "clang/AST/ASTContext.h"
namespace clang {
namespace loop_migrate {
/// \brief Create names for generated variables within a particular statement.
///
/// VariableNamer uses a DeclContext as a reference point, checking for any
/// conflicting declarations higher up in the context or within SourceStmt.
/// It creates a variable name using hints from a source container and the old
/// index, if they exist.
class VariableNamer {
public:
VariableNamer(StmtGeneratedVarNameMap *GeneratedDecls,
const StmtParentMap *ReverseAST, const Stmt *SourceStmt,
const VarDecl *OldIndex, const VarDecl *TheContainer) :
GeneratedDecls(GeneratedDecls), ReverseAST(ReverseAST),
SourceStmt(SourceStmt), OldIndex(OldIndex), TheContainer(TheContainer) { }
/// \brief Generate a new index name.
///
/// Generates the name to be used for an inserted iterator. It relies on
/// declarationExists() to determine that there are no naming conflicts, and
/// tries to use some hints from the container name and the old index name.
std::string createIndexName();
private:
StmtGeneratedVarNameMap *GeneratedDecls;
const StmtParentMap *ReverseAST;
const Stmt *SourceStmt;
const VarDecl *OldIndex;
const VarDecl *TheContainer;
// Determine whether or not a declaration that would conflict with Symbol
// exists in an outer context or in any statement contained in SourceStmt.
bool declarationExists(const StringRef Symbol);
};
} // namespace loop_migrate
} // namespace clang
#endif // _LLVM_TOOLS_CLANG_TOOLS_EXTRA_LOOP_VARIABLE_NAMING_H_

View File

@ -22,7 +22,7 @@ set(CLANG_TOOLS_TEST_DEPS
clang clang-headers FileCheck count not
# Individual tools we test.
remove-cstr-calls loop-convert cpp11-migrate
remove-cstr-calls cpp11-migrate
)
add_lit_testsuite(check-clang-tools "Running the Clang extra tools' regression tests"

View File

@ -1,14 +0,0 @@
#ifndef _CLANG_TOOLS_EXTRA_H_
#define _CLANG_TOOLS_EXTRA_H_
// Single FileCheck line to make sure that no loops are converted.
// CHECK-NOT: for ({{.*[^:]:[^:].*}})
static void loopInHeader() {
const int N = 10;
int arr[N];
int sum = 0;
for (int i = 0; i < N; ++i)
sum += arr[i];
}
#endif //_CLANG_TOOLS_EXTRA_H_

View File

@ -1,140 +0,0 @@
#ifndef _LLVM_TOOLS_CLANG_TOOLS_TESTS_TOOLING_STRUCTURES_H_
#define _LLVM_TOOLS_CLANG_TOOLS_TESTS_TOOLING_STRUCTURES_H_
extern "C" {
extern int printf(const char *restrict, ...);
}
struct Val {int x; void g(); };
struct MutableVal {
void constFun(int) const;
void nonConstFun(int, int);
void constFun(MutableVal &) const;
void constParamFun(const MutableVal &) const;
void nonConstParamFun(const MutableVal &);
int x;
};
struct S {
typedef MutableVal *iterator;
typedef const MutableVal *const_iterator;
const_iterator begin() const;
const_iterator end() const;
iterator begin();
iterator end();
};
struct T {
struct iterator {
int& operator*();
const int& operator*()const;
iterator& operator ++();
bool operator!=(const iterator &other);
void insert(int);
int x;
};
iterator begin();
iterator end();
};
struct U {
struct iterator {
Val& operator*();
const Val& operator*()const;
iterator& operator ++();
bool operator!=(const iterator &other);
Val *operator->();
};
iterator begin();
iterator end();
int x;
};
struct X {
S s;
T t;
U u;
S getS();
};
template<typename ElemType>
class dependent{
public:
struct iterator_base {
const ElemType& operator*()const;
iterator_base& operator ++();
bool operator!=(const iterator_base &other) const;
const ElemType *operator->() const;
};
struct iterator : iterator_base {
ElemType& operator*();
iterator& operator ++();
ElemType *operator->();
};
typedef iterator_base const_iterator;
const_iterator begin() const;
const_iterator end() const;
iterator begin();
iterator end();
unsigned size() const;
ElemType & operator[](unsigned);
const ElemType & operator[](unsigned) const;
ElemType & at(unsigned);
const ElemType & at(unsigned) const;
// Intentionally evil.
dependent<ElemType> operator*();
void foo();
void constFoo() const;
};
template<typename First, typename Second>
class doublyDependent{
public:
struct Value {
First first;
Second second;
};
struct iterator_base {
const Value& operator*()const;
iterator_base& operator ++();
bool operator!=(const iterator_base &other) const;
const Value *operator->() const;
};
struct iterator : iterator_base {
Value& operator*();
Value& operator ++();
Value *operator->();
};
typedef iterator_base const_iterator;
const_iterator begin() const;
const_iterator end() const;
iterator begin();
iterator end();
};
template<typename Contained>
class transparent {
public:
Contained *at();
Contained *operator->();
Contained operator*();
};
template<typename IteratorType>
struct Nested {
typedef IteratorType* iterator;
IteratorType *operator->();
IteratorType operator*();
iterator begin();
iterator end();
};
#endif // _LLVM_TOOLS_CLANG_TOOLS_TESTS_TOOLING_STRUCTURES_H_

View File

@ -1,155 +0,0 @@
// RUN: grep -Ev "// *[A-Z-]+:" %s > %t.cpp
// RUN: cp %t.cpp %t.base
// RUN: loop-convert . %t.cpp -- -I %S/Inputs
// RUN: FileCheck -input-file=%t.cpp %s
// RUN: cp %t.base %t.cpp
// RUN: loop-convert -count-only . %t.cpp -- -I %S/Inputs > %T/out
// RUN: FileCheck -check-prefix=COUNTONLY -input-file=%T/out %s
// RUN: diff %t.cpp %t.base
#include "structures.h"
const int N = 6;
const int NMinusOne = N - 1;
int arr[N] = {1, 2, 3, 4, 5, 6};
int (*pArr)[N] = &arr;
void f() {
int sum = 0;
// Update the number of correctly converted loops as this test changes:
// COUNTONLY: 15 converted
// COUNTONLY-NEXT: 0 potentially conflicting
// COUNTONLY-NEXT: 0 change(s) rejected
for (int i = 0; i < N; ++i) {
sum += arr[i];
int k;
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : arr) {
// CHECK-NEXT: sum += [[VAR]];
// CHECK-NEXT: int k;
// CHECK-NEXT: }
for (int i = 0; i < N; ++i) {
printf("Fibonacci number is %d\n", arr[i]);
sum += arr[i] + 2;
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : arr)
// CHECK-NEXT: printf("Fibonacci number is %d\n", [[VAR]]);
// CHECK-NEXT: sum += [[VAR]] + 2;
for (int i = 0; i < N; ++i) {
int x = arr[i];
int y = arr[i] + 2;
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : arr)
// CHECK-NEXT: int x = [[VAR]];
// CHECK-NEXT: int y = [[VAR]] + 2;
for (int i = 0; i < N; ++i) {
int x = N;
x = arr[i];
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : arr)
// CHECK-NEXT: int x = N;
// CHECK-NEXT: x = [[VAR]];
for (int i = 0; i < N; ++i) {
arr[i] += 1;
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : arr) {
// CHECK-NEXT: [[VAR]] += 1;
// CHECK-NEXT: }
for (int i = 0; i < N; ++i) {
int x = arr[i] + 2;
arr[i] ++;
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : arr)
// CHECK-NEXT: int x = [[VAR]] + 2;
// CHECK-NEXT: [[VAR]] ++;
for (int i = 0; i < N; ++i) {
arr[i] = 4 + arr[i];
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : arr)
// CHECK-NEXT: [[VAR]] = 4 + [[VAR]];
for (int i = 0; i < NMinusOne + 1; ++i) {
sum += arr[i];
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : arr) {
// CHECK-NEXT: sum += [[VAR]];
// CHECK-NEXT: }
for (int i = 0; i < N; ++i) {
printf("Fibonacci number %d has address %p\n", arr[i], &arr[i]);
sum += arr[i] + 2;
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : arr)
// CHECK-NEXT: printf("Fibonacci number %d has address %p\n", [[VAR]], &[[VAR]]);
// CHECK-NEXT: sum += [[VAR]] + 2;
Val teas[N];
for (int i = 0; i < N; ++i) {
teas[i].g();
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : teas) {
// CHECK-NEXT: [[VAR]].g();
// CHECK-NEXT: }
}
struct HasArr {
int Arr[N];
Val ValArr[N];
void implicitThis() {
for (int i = 0; i < N; ++i) {
printf("%d", Arr[i]);
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : Arr) {
// CHECK-NEXT: printf("%d", [[VAR]]);
// CHECK-NEXT: }
for (int i = 0; i < N; ++i) {
printf("%d", ValArr[i].x);
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : ValArr) {
// CHECK-NEXT: printf("%d", [[VAR]].x);
// CHECK-NEXT: }
}
void explicitThis() {
for (int i = 0; i < N; ++i) {
printf("%d", this->Arr[i]);
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : this->Arr) {
// CHECK-NEXT: printf("%d", [[VAR]]);
// CHECK-NEXT: }
for (int i = 0; i < N; ++i) {
printf("%d", this->ValArr[i].x);
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : this->ValArr) {
// CHECK-NEXT: printf("%d", [[VAR]].x);
// CHECK-NEXT: }
}
};
// Loops whose bounds are value-dependent shold not be converted.
template<int N>
void dependentExprBound() {
for (int i = 0; i < N; ++i)
arr[i] = 0;
// CHECK: for (int i = 0; i < N; ++i)
// CHECK-NEXT: arr[i] = 0;
}
template void dependentExprBound<20>();
void memberFunctionPointer() {
Val v;
void (Val::*mfpArr[N])(void) = { &Val::g };
for (int i = 0; i < N; ++i)
(v.*mfpArr[i])();
// CHECK: for (auto & [[VAR:[a-z_]+]] : mfpArr)
// CHECK-NEXT: (v.*[[VAR]])();
}

View File

@ -1,35 +0,0 @@
// RUN: grep -Ev "// *[A-Z-]+:" %s > %t.cpp
// RUN: loop-convert . %t.cpp -- -I %S/Inputs
// RUN: FileCheck -input-file=%t.cpp %s
// RUN: loop-convert . %t.cpp -A2 -- -I %S/Inputs
// RUN: FileCheck -check-prefix=RISKY -input-file=%t.cpp %s
#include "structures.h"
void f() {
const int N = 5;
const int M = 7;
int (*pArr)[N];
int Arr[N][M];
int sum = 0;
for (int i = 0; i < M; ++i) {
sum += Arr[0][i];
}
// CHECK: for (int i = 0; i < M; ++i) {
// CHECK-NEXT: sum += Arr[0][i];
// CHECK-NEXT: }
// RISKY: for (auto & [[VAR:[a-z_]+]] : Arr[0]) {
// RISKY-NEXT: sum += [[VAR]];
// RISKY-NEXT: }
for (int i = 0; i < N; ++i) {
sum += (*pArr)[i];
}
// RISKY: for (auto & [[VAR:[a-z_]+]] : *pArr) {
// RISKY-NEXT: sum += [[VAR]];
// RISKY-NEXT: }
// CHECK: for (int i = 0; i < N; ++i) {
// CHECK-NEXT: sum += (*pArr)[i];
// CHECK-NEXT: }
}

View File

@ -1,26 +0,0 @@
// RUN: grep -Ev "// *[A-Z-]+:" %s > %t.cpp
// RUN: loop-convert . %t.cpp -- && FileCheck -input-file=%t.cpp %s
void f() {
const int N = 6;
const int M = 8;
int arr[N][M];
for (int i = 0; i < N; ++i) {
int a = 0;
int b = arr[i][a];
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : arr) {
// CHECK-NEXT: int a = 0;
// CHECK-NEXT: int b = [[VAR]][a];
// CHECK-NEXT: }
for (int j = 0; j < M; ++j) {
int a = 0;
int b = arr[a][j];
}
// CHECK: for (int j = 0; j < M; ++j) {
// CHECK-NEXT: int a = 0;
// CHECK-NEXT: int b = arr[a][j];
// CHECK-NEXT: }
}

View File

@ -1,103 +0,0 @@
// RUN: grep -Ev "// *[A-Z-]+:" %s > %t.cpp
// RUN: loop-convert . %t.cpp -- -I %S/Inputs
// RUN: FileCheck -input-file=%t.cpp %s
#include "structures.h"
void f() {
/// begin()/end() - based for loops here:
T t;
for (T::iterator it = t.begin(), e = t.end(); it != e; ++it) {
printf("I found %d\n", *it);
}
// CHECK: for ({{[a-zA-Z_ ]+&? ?}}[[VAR:[a-z_]+]] : t)
// CHECK-NEXT: printf("I found %d\n", [[VAR]]);
T *pt;
for (T::iterator it = pt->begin(), e = pt->end(); it != e; ++it) {
printf("I found %d\n", *it);
}
// CHECK: for ({{[a-zA-Z_ ]+&? ?}}[[VAR:[a-z_]+]] : *pt)
// CHECK-NEXT: printf("I found %d\n", [[VAR]]);
S s;
for (S::const_iterator it = s.begin(), e = s.end(); it != e; ++it) {
printf("s has value %d\n", (*it).x);
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : s)
// CHECK-NEXT: printf("s has value %d\n", ([[VAR]]).x);
S *ps;
for (S::const_iterator it = ps->begin(), e = ps->end(); it != e; ++it) {
printf("s has value %d\n", (*it).x);
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : *ps)
// CHECK-NEXT: printf("s has value %d\n", ([[VAR]]).x);
for (S::const_iterator it = s.begin(), e = s.end(); it != e; ++it) {
printf("s has value %d\n", it->x);
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : s)
// CHECK-NEXT: printf("s has value %d\n", [[VAR]].x);
for (S::iterator it = s.begin(), e = s.end(); it != e; ++it) {
it->x = 3;
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : s)
// CHECK-NEXT: [[VAR]].x = 3;
for (S::iterator it = s.begin(), e = s.end(); it != e; ++it) {
(*it).x = 3;
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : s)
// CHECK-NEXT: ([[VAR]]).x = 3;
for (S::iterator it = s.begin(), e = s.end(); it != e; ++it) {
it->nonConstFun(4, 5);
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : s)
// CHECK-NEXT: [[VAR]].nonConstFun(4, 5);
U u;
for (U::iterator it = u.begin(), e = u.end(); it != e; ++it) {
printf("s has value %d\n", it->x);
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : u)
// CHECK-NEXT: printf("s has value %d\n", [[VAR]].x);
for (U::iterator it = u.begin(), e = u.end(); it != e; ++it) {
printf("s has value %d\n", (*it).x);
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : u)
// CHECK-NEXT: printf("s has value %d\n", ([[VAR]]).x);
U::iterator A;
for (U::iterator i = u.begin(), e = u.end(); i != e; ++i)
int k = A->x + i->x;
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : u)
// CHECK-NEXT: int k = A->x + [[VAR]].x;
dependent<int> v;
for (dependent<int>::const_iterator it = v.begin(), e = v.end();
it != e; ++it) {
printf("Fibonacci number is %d\n", *it);
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : v)
// CHECK-NEXT: printf("Fibonacci number is %d\n", [[VAR]]);
for (dependent<int>::const_iterator it(v.begin()), e = v.end();
it != e; ++it) {
printf("Fibonacci number is %d\n", *it);
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : v)
// CHECK-NEXT: printf("Fibonacci number is %d\n", [[VAR]]);
doublyDependent<int,int> intmap;
for (doublyDependent<int,int>::iterator it = intmap.begin(), e = intmap.end();
it != e; ++it) {
printf("intmap[%d] = %d", it->first, it->second);
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : intmap)
// CHECK-NEXT: printf("intmap[%d] = %d", [[VAR]].first, [[VAR]].second);
}

View File

@ -1,67 +0,0 @@
// RUN: grep -Ev "// *[A-Z-]+:" %s > %t.cpp
// RUN: loop-convert . %t.cpp -- -I %S/Inputs
// RUN: FileCheck -input-file=%t.cpp %s
#include "structures.h"
const int N = 10;
int nums[N];
int sum = 0;
Val Arr[N];
Val &func(Val &);
void aliasing() {
// The extra blank braces are left as a placeholder for after the variable
// declaration is deleted.
for (int i = 0; i < N; ++i) {
Val &t = Arr[i]; { }
int y = t.x;
}
// CHECK: for (auto & t : Arr)
// CHECK-NEXT: { }
// CHECK-NEXT: int y = t.x;
for (int i = 0; i < N; ++i) {
Val &t = Arr[i];
int y = t.x;
int z = Arr[i].x + t.x;
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : Arr)
// CHECK-NEXT: Val &t = [[VAR]];
// CHECK-NEXT: int y = t.x;
// CHECK-NEXT: int z = [[VAR]].x + t.x;
for (int i = 0; i < N; ++i) {
Val t = Arr[i];
int y = t.x;
int z = Arr[i].x + t.x;
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : Arr)
// CHECK-NEXT: Val t = [[VAR]];
// CHECK-NEXT: int y = t.x;
// CHECK-NEXT: int z = [[VAR]].x + t.x;
for (int i = 0; i < N; ++i) {
Val &t = func(Arr[i]);
int y = t.x;
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : Arr)
// CHECK-NEXT: Val &t = func([[VAR]]);
// CHECK-NEXT: int y = t.x;
}
void sameNames() {
int num = 0;
for (int i = 0; i < N; ++i) {
printf("Fibonacci number is %d\n", nums[i]);
sum += nums[i] + 2 + num;
(void) nums[i];
}
// CHECK: int num = 0;
// CHECK-NEXT: for (auto & [[VAR:[a-z_]+]] : nums)
// CHECK-NEXT: printf("Fibonacci number is %d\n", [[VAR]]);
// CHECK-NEXT: sum += [[VAR]] + 2 + num;
// CHECK-NOT: (void) num;
// CHECK: }
}

View File

@ -1,160 +0,0 @@
// RUN: grep -Ev "// *[A-Z-]+:" %s > %t.cpp
// RUN: loop-convert . %t.cpp -- -I %S/Inputs
// RUN: FileCheck -input-file=%t.cpp %s
#include "structures.h"
// Single FileCheck line to make sure that no loops are converted.
// CHECK-NOT: for ({{.*[^:]:[^:].*}})
S s;
T t;
U u;
struct BadBeginEnd : T {
iterator notBegin();
iterator notEnd();
};
void notBeginOrEnd() {
BadBeginEnd Bad;
for (T::iterator i = Bad.notBegin(), e = Bad.end(); i != e; ++i)
int k = *i;
for (T::iterator i = Bad.begin(), e = Bad.notEnd(); i != e; ++i)
int k = *i;
}
void badLoopShapes() {
for (T::iterator i = t.begin(), e = t.end(), f = e; i != e; ++i)
int k = *i;
for (T::iterator i = t.begin(), e = t.end(); i != e; )
int k = *i;
for (T::iterator i = t.begin(), e = t.end(); ; ++i)
int k = *i;
T::iterator outsideI;
T::iterator outsideE;
for (; outsideI != outsideE ; ++outsideI)
int k = *outsideI;
}
void iteratorArrayMix() {
int lower;
const int N = 6;
for (T::iterator i = t.begin(), e = t.end(); lower < N; ++i)
int k = *i;
for (T::iterator i = t.begin(), e = t.end(); lower < N; ++lower)
int k = *i;
}
struct ExtraConstructor : T::iterator {
ExtraConstructor(T::iterator, int);
explicit ExtraConstructor(T::iterator);
};
void badConstructor() {
for (T::iterator i = ExtraConstructor(t.begin(), 0), e = t.end();
i != e; ++i)
int k = *i;
for (T::iterator i = ExtraConstructor(t.begin()), e = t.end(); i != e; ++i)
int k = *i;
}
void iteratorMemberUsed() {
for (T::iterator i = t.begin(), e = t.end(); i != e; ++i)
i.x = *i;
for (T::iterator i = t.begin(), e = t.end(); i != e; ++i)
int k = i.x + *i;
for (T::iterator i = t.begin(), e = t.end(); i != e; ++i)
int k = e.x + *i;
}
void iteratorMethodCalled() {
for (T::iterator i = t.begin(), e = t.end(); i != e; ++i)
i.insert(3);
for (T::iterator i = t.begin(), e = t.end(); i != e; ++i)
if (i != i)
int k = 3;
}
void iteratorOperatorCalled() {
for (T::iterator i = t.begin(), e = t.end(); i != e; ++i)
int k = *(++i);
for (S::iterator i = s.begin(), e = s.end(); i != e; ++i)
MutableVal k = *(++i);
}
void differentContainers() {
T other;
for (T::iterator i = t.begin(), e = other.end(); i != e; ++i)
int k = *i;
for (T::iterator i = other.begin(), e = t.end(); i != e; ++i)
int k = *i;
S otherS;
for (S::iterator i = s.begin(), e = otherS.end(); i != e; ++i)
MutableVal k = *i;
for (S::iterator i = otherS.begin(), e = s.end(); i != e; ++i)
MutableVal k = *i;
}
void wrongIterators() {
T::iterator other;
for (T::iterator i = t.begin(), e = t.end(); i != other; ++i)
int k = *i;
}
struct EvilArrow : U {
// Please, no one ever write code like this.
U* operator->();
};
void differentMemberAccessTypes() {
EvilArrow A;
for (EvilArrow::iterator i = A.begin(), e = A->end(); i != e; ++i)
Val k = *i;
for (EvilArrow::iterator i = A->begin(), e = A.end(); i != e; ++i)
Val k = *i;
}
void f(const T::iterator &it, int);
void f(const T &it, int);
void g(T &it, int);
void iteratorPassedToFunction() {
for (T::iterator i = t.begin(), e = t.end(); i != e; ++i)
f(i, *i);
}
// FIXME: Disallow this except for containers passed by value and/or const
// reference. Or maybe this is correct enough for any container?
void containerPassedToFunction() {
// for (T::iterator i = t.begin(), e = t.end(); i != e; ++i)
// f(t, *i);
// for (T::iterator i = t.begin(), e = t.end(); i != e; ++i)
// g(t, *i);
}
// FIXME: These tests can be removed if this tool ever does enough analysis to
// decide that this is a safe transformation.
// Until then, we don't want it applied.
void iteratorDefinedOutside() {
T::iterator theEnd = t.end();
for (T::iterator i = t.begin(); i != theEnd; ++i)
int k = *i;
T::iterator theBegin = t.begin();
for (T::iterator e = t.end(); theBegin != e; ++theBegin)
int k = *theBegin;
}

View File

@ -1,64 +0,0 @@
// RUN: grep -Ev "// *[A-Z-]+:" %s > %t.cpp
// RUN: loop-convert -A0 . %t.cpp -- -I %S/Inputs
// RUN: FileCheck -input-file=%t.cpp %s
#include "structures.h"
// Single FileCheck line to make sure that no loops are converted.
// CHECK-NOT: for ({{.*[^:]:[^:].*}})
S s;
T t;
U u;
void multipleEnd() {
for (S::iterator i = s.begin(); i != s.end(); ++i)
MutableVal k = *i;
for (T::iterator i = t.begin(); i != t.end(); ++i)
int k = *i;
for (U::iterator i = u.begin(); i != u.end(); ++i)
Val k = *i;
}
void f(X);
void f(S);
void f(T);
void complexContainer() {
X x;
for (S::iterator i = x.s.begin(), e = x.s.end(); i != e; ++i) {
f(x);
MutableVal k = *i;
}
for (T::iterator i = x.t.begin(), e = x.t.end(); i != e; ++i) {
f(x);
int k = *i;
}
for (S::iterator i = x.s.begin(), e = x.s.end(); i != e; ++i) {
f(x.s);
MutableVal k = *i;
}
for (T::iterator i = x.t.begin(), e = x.t.end(); i != e; ++i) {
f(x.t);
int k = *i;
}
for (S::iterator i = x.getS().begin(), e = x.getS().end(); i != e; ++i) {
f(x.getS());
MutableVal k = *i;
}
X exes[5];
int index = 0;
for (S::iterator i = exes[index].getS().begin(),
e = exes[index].getS().end(); i != e; ++i) {
index++;
MutableVal k = *i;
}
}

View File

@ -1,29 +0,0 @@
// RUN: grep -Ev "// *[A-Z-]+:" %s > %t.cpp
// RUN: loop-convert -A1 . %t.cpp -- -I %S/Inputs
// RUN: FileCheck -input-file=%t.cpp %s
#include "structures.h"
// Single FileCheck line to make sure that no loops are converted.
// CHECK-NOT: for ({{.*[^:]:[^:].*}})
const int N = 6;
dependent<int> v;
dependent<int> *pv;
int sum = 0;
// Checks to see that non-const member functions are not called on the container
// object.
// These could be conceivably allowed with a lower required confidence level.
void memberFunctionCalled() {
for (int i = 0; i < v.size(); ++i) {
sum += v[i];
v.foo();
}
for (int i = 0; i < v.size(); ++i) {
sum += v[i];
dependent<int>::iterator it = v.begin();
}
}

View File

@ -1,129 +0,0 @@
// RUN: grep -Ev "// *[A-Z-]+:" %s > %t.cpp
// RUN: loop-convert -A1 . %t.cpp -- -I %S/Inputs
// RUN: FileCheck -input-file=%t.cpp %s
#include "structures.h"
// Single FileCheck line to make sure that no loops are converted.
// CHECK-NOT: for ({{.*[^:]:[^:].*}})
const int N = 6;
dependent<int> v;
dependent<int> *pv;
transparent<dependent<int> > cv;
int sum = 0;
// Checks for the index start and end:
void indexStartAndEnd() {
for (int i = 0; i < v.size() + 1; ++i)
sum += v[i];
for (int i = 0; i < v.size() - 1; ++i)
sum += v[i];
for (int i = 1; i < v.size(); ++i)
sum += v[i];
for (int i = 1; i < v.size(); ++i)
sum += v[i];
for (int i = 0; ; ++i)
sum += (*pv)[i];
}
// Checks for invalid increment steps:
void increment() {
for (int i = 0; i < v.size(); --i)
sum += v[i];
for (int i = 0; i < v.size(); i)
sum += v[i];
for (int i = 0; i < v.size();)
sum += v[i];
for (int i = 0; i < v.size(); i += 2)
sum ++;
}
// Checks to make sure that the index isn't used outside of the container:
void indexUse() {
for (int i = 0; i < v.size(); ++i)
v[i] += 1 + i;
}
// Checks for incorrect loop variables.
void mixedVariables() {
int badIndex;
for (int i = 0; badIndex < v.size(); ++i)
sum += v[i];
for (int i = 0; i < v.size(); ++badIndex)
sum += v[i];
for (int i = 0; badIndex < v.size(); ++badIndex)
sum += v[i];
for (int i = 0; badIndex < v.size(); ++badIndex)
sum += v[badIndex];
}
// Checks for an array indexed in addition to the container.
void multipleArrays() {
int badArr[N];
for (int i = 0; i < v.size(); ++i)
sum += v[i] + badArr[i];
for (int i = 0; i < v.size(); ++i)
sum += badArr[i];
for (int i = 0; i < v.size(); ++i) {
int k = badArr[i];
sum += k + 2;
}
for (int i = 0; i < v.size(); ++i) {
int k = badArr[i];
sum += v[i] + k;
}
}
// Checks for multiple containers being indexed container.
void multipleContainers() {
dependent<int> badArr;
for (int i = 0; i < v.size(); ++i)
sum += v[i] + badArr[i];
for (int i = 0; i < v.size(); ++i)
sum += badArr[i];
for (int i = 0; i < v.size(); ++i) {
int k = badArr[i];
sum += k + 2;
}
for (int i = 0; i < v.size(); ++i) {
int k = badArr[i];
sum += v[i] + k;
}
}
// Check to make sure that dereferenced pointers-to-containers behave nicely
void derefContainer() {
// Note the dependent<T>::operator*() returns another dependent<T>.
// This test makes sure that we don't allow an arbitrary number of *'s.
for (int i = 0; i < pv->size(); ++i)
sum += (**pv).at(i);
for (int i = 0; i < pv->size(); ++i)
sum += (**pv)[i];
}
void wrongEnd() {
int bad;
for (int i = 0, e = v.size(); i < bad; ++i)
sum += v[i];
}

View File

@ -1,123 +0,0 @@
// RUN: grep -Ev "// *[A-Z-]+:" %s > %t.cpp
// RUN: grep -Ev "// *[A-Z-]+:" %S/Inputs/negative-header.h > \
// RUN: %T/negative-header.h
// RUN: loop-convert . %t.cpp -- -I %S/Inputs/
// RUN: FileCheck -input-file=%t.cpp %s
// RUN: FileCheck -input-file=%T/negative-header.h %S/Inputs/negative-header.h
#include "negative-header.h"
#include "structures.h"
// Single FileCheck line to make sure that no loops are converted.
// CHECK-NOT: for ({{.*[^:]:[^:].*}})
const int N = 6;
int arr[N] = {1, 2, 3, 4, 5, 6};
int (*pArr)[N] = &arr;
int sum = 0;
// Checks for the index start and end:
void indexStartAndEnd() {
for (int i = 0; i < N + 1; ++i)
sum += arr[i];
for (int i = 0; i < N - 1; ++i)
sum += arr[i];
for (int i = 1; i < N; ++i)
sum += arr[i];
for (int i = 1; i < N; ++i)
sum += arr[i];
for (int i = 0; ; ++i)
sum += (*pArr)[i];
}
// Checks for invalid increment steps:
void increment() {
for (int i = 0; i < N; --i)
sum += arr[i];
for (int i = 0; i < N; i)
sum += arr[i];
for (int i = 0; i < N;)
sum += arr[i];
for (int i = 0; i < N; i += 2)
sum ++;
}
// Checks to make sure that the index isn't used outside of the array:
void indexUse() {
for (int i = 0; i < N; ++i)
arr[i] += 1 + i;
}
// Check for loops that don't mention arrays
void noArray() {
for (int i = 0; i < N; ++i)
sum += i;
for (int i = 0; i < N; ++i) { }
for (int i = 0; i < N; ++i) ;
}
// Checks for incorrect loop variables.
void mixedVariables() {
int badIndex;
for (int i = 0; badIndex < N; ++i)
sum += arr[i];
for (int i = 0; i < N; ++badIndex)
sum += arr[i];
for (int i = 0; badIndex < N; ++badIndex)
sum += arr[i];
for (int i = 0; badIndex < N; ++badIndex)
sum += arr[badIndex];
}
// Checks for multiple arrays indexed.
void multipleArrays() {
int badArr[N];
for (int i = 0; i < N; ++i)
sum += arr[i] + badArr[i];
for (int i = 0; i < N; ++i) {
int k = badArr[i];
sum += arr[i] + k;
}
}
struct HasArr {
int Arr[N];
Val ValArr[N];
};
struct HasIndirectArr {
HasArr HA;
void implicitThis() {
for (int i = 0; i < N; ++i) {
printf("%d", HA.Arr[i]);
}
for (int i = 0; i < N; ++i) {
printf("%d", HA.ValArr[i].x);
}
}
void explicitThis() {
for (int i = 0; i < N; ++i) {
printf("%d", this->HA.Arr[i]);
}
for (int i = 0; i < N; ++i) {
printf("%d", this->HA.ValArr[i].x);
}
}
};

View File

@ -1,57 +0,0 @@
// RUN: grep -Ev "// *[A-Z-]+:" %s > %t.cpp
// RUN: loop-convert . %t.cpp -- -I %S/Inputs
// RUN: FileCheck -input-file=%t.cpp %s
#include "structures.h"
void f() {
const int N = 10;
const int M = 15;
Val Arr[N];
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
int k = Arr[i].x + Arr[j].x;
// The repeat is there to allow FileCheck to make sure the two variable
// names aren't the same.
int l = Arr[i].x + Arr[j].x;
}
}
// CHECK: for (auto & [[VAR:[a-zA-Z_]+]] : Arr)
// CHECK-NEXT: for (auto & [[INNERVAR:[a-zA-Z_]+]] : Arr)
// CHECK-NEXT: int k = [[VAR]].x + [[INNERVAR]].x;
// CHECK-NOT: int l = [[VAR]].x + [[VAR]].x;
Val Nest[N][M];
for (int i = 0; i < N; ++i) {
for (int j = 0; j < M; ++j) {
printf("Got item %d", Nest[i][j].x);
}
}
// The inner loop is also convertible, but doesn't need to be converted
// immediately. Update this test when that changes!
// CHECK: for (auto & [[VAR:[a-zA-Z_]+]] : Nest)
// CHECK-NEXT: for (int j = 0; j < M; ++j)
// CHECK-NEXT: printf("Got item %d", [[VAR]][j].x);
// Note that the order of M and N are switched for this test.
for (int j = 0; j < M; ++j) {
for (int i = 0; i < N; ++i) {
printf("Got item %d", Nest[i][j].x);
}
}
// CHECK-NOT: for (auto & {{[a-zA-Z_]+}} : Nest[i])
// CHECK: for (int j = 0; j < M; ++j)
// CHECK-NEXT: for (auto & [[VAR:[a-zA-Z_]+]] : Nest)
// CHECK-NEXT: printf("Got item %d", [[VAR]][j].x);
Nested<T> NestT;
for (Nested<T>::iterator I = NestT.begin(), E = NestT.end(); I != E; ++I) {
for (T::iterator TI = (*I).begin(), TE = (*I).end(); TI != TE; ++TI) {
printf("%d", *TI);
}
}
// The inner loop is also convertible, but doesn't need to be converted
// immediately. Update this test when that changes!
// CHECK: for (auto & [[VAR:[a-zA-Z_]+]] : NestT) {
// CHECK-NEXT: for (T::iterator TI = ([[VAR]]).begin(), TE = ([[VAR]]).end(); TI != TE; ++TI) {
// CHECK-NEXT: printf("%d", *TI);
}

View File

@ -1,21 +0,0 @@
// RUN: grep -Ev "// *[A-Z-]+:" %s > %t.cpp
// RUN: not loop-convert . %t.cpp -- -I %S/Inputs
// RUN: FileCheck -input-file=%t.cpp %s
void valid() {
const int arr[5];
int sum = 0;
for (int i = 0; i < 5; ++i) {
sum += arr[i];
}
}
void hasSyntaxError = 3;
// CHECK: void valid() {
// CHECK-NEXT: const int arr[5];
// CHECK-NEXT: int sum = 0;
// CHECK-NEXT: for (int i = 0; i < 5; ++i) {
// CHECK-NEXT: sum += arr[i];
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: void hasSyntaxError = 3;

View File

@ -1,66 +0,0 @@
// RUN: grep -Ev "// *[A-Z-]+:" %s > %t.cpp
// RUN: loop-convert . %t.cpp -- -I %S/Inputs
// RUN: FileCheck -input-file=%t.cpp %s
#include "structures.h"
const int N = 6;
dependent<int> v;
dependent<int> *pv;
transparent<dependent<int> > cv;
void f() {
int sum = 0;
for (int i = 0, e = v.size(); i < e; ++i) {
printf("Fibonacci number is %d\n", v[i]);
sum += v[i] + 2;
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : v)
// CHECK-NEXT: printf("Fibonacci number is %d\n", [[VAR]]);
// CHECK-NEXT: sum += [[VAR]] + 2;
for (int i = 0, e = v.size(); i < e; ++i) {
printf("Fibonacci number is %d\n", v.at(i));
sum += v.at(i) + 2;
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : v)
// CHECK-NEXT: printf("Fibonacci number is %d\n", [[VAR]]);
// CHECK-NEXT: sum += [[VAR]] + 2;
for (int i = 0, e = pv->size(); i < e; ++i) {
printf("Fibonacci number is %d\n", pv->at(i));
sum += pv->at(i) + 2;
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : *pv)
// CHECK-NEXT: printf("Fibonacci number is %d\n", [[VAR]]);
// CHECK-NEXT: sum += [[VAR]] + 2;
// This test will fail if size() isn't called repeatedly, since it
// returns unsigned int, and 0 is deduced to be signed int.
// FIXME: Insert the necessary explicit conversion, or write out the types
// explicitly.
for (int i = 0; i < pv->size(); ++i) {
printf("Fibonacci number is %d\n", (*pv).at(i));
sum += (*pv)[i] + 2;
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : *pv)
// CHECK-NEXT: printf("Fibonacci number is %d\n", [[VAR]]);
// CHECK-NEXT: sum += [[VAR]] + 2;
for (int i = 0; i < cv->size(); ++i) {
printf("Fibonacci number is %d\n", cv->at(i));
sum += cv->at(i) + 2;
}
// CHECK: for (auto & [[VAR:[a-z_]+]] : *cv)
// CHECK-NEXT: printf("Fibonacci number is %d\n", [[VAR]]);
// CHECK-NEXT: sum += [[VAR]] + 2;
}
// Check for loops that don't mention containers
void noContainer() {
for (auto i = 0; i < v.size(); ++i) { }
// CHECK: for (auto & [[VAR:[a-z_]+]] : v) { }
for (auto i = 0; i < v.size(); ++i) ;
// CHECK: for (auto & [[VAR:[a-z_]+]] : v) ;
}

View File

@ -1,115 +0,0 @@
// RUN: grep -Ev "// *[A-Z-]+:" %s > %t.cpp
// RUN: loop-convert . %t.cpp -- -I %S/Inputs
// RUN: FileCheck -input-file=%t.cpp %s
#include "structures.h"
void complexContainer() {
X exes[5];
int index = 0;
for (S::iterator i = exes[index].getS().begin(), e = exes[index].getS().end(); i != e; ++i) {
MutableVal k = *i;
MutableVal j = *i;
}
// CHECK: for ({{[a-zA-Z_ ]+&? ?}}[[VAR:[a-z_]+]] : exes[index].getS())
// CHECK-NEXT: MutableVal k = [[VAR]];
// CHECK-NEXT: MutableVal j = [[VAR]];
}
void f() {
/// begin()/end() - based for loops here:
T t;
for (T::iterator it = t.begin(); it != t.end(); ++it) {
printf("I found %d\n", *it);
}
// CHECK: for ({{[a-zA-Z_ ]+&? ?}}[[VAR:[a-z_]+]] : t)
// CHECK-NEXT: printf("I found %d\n", [[VAR]]);
T *pt;
for (T::iterator it = pt->begin(); it != pt->end(); ++it) {
printf("I found %d\n", *it);
}
// CHECK: for ({{[a-zA-Z_ ]+&? ?}}[[VAR:[a-z_]+]] : *pt)
// CHECK-NEXT: printf("I found %d\n", [[VAR]]);
S s;
for (S::const_iterator it = s.begin(); it != s.end(); ++it) {
printf("s has value %d\n", (*it).x);
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : s)
// CHECK-NEXT: printf("s has value %d\n", ([[VAR]]).x);
S *ps;
for (S::const_iterator it = ps->begin(); it != ps->end(); ++it) {
printf("s has value %d\n", (*it).x);
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : *ps)
// CHECK-NEXT: printf("s has value %d\n", ([[VAR]]).x);
for (S::const_iterator it = s.begin(); it != s.end(); ++it) {
printf("s has value %d\n", it->x);
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : s)
// CHECK-NEXT: printf("s has value %d\n", [[VAR]].x);
for (S::iterator it = s.begin(); it != s.end(); ++it) {
it->x = 3;
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : s)
// CHECK-NEXT: [[VAR]].x = 3;
for (S::iterator it = s.begin(); it != s.end(); ++it) {
(*it).x = 3;
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : s)
// CHECK-NEXT: ([[VAR]]).x = 3;
for (S::iterator it = s.begin(); it != s.end(); ++it) {
it->nonConstFun(4, 5);
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : s)
// CHECK-NEXT: [[VAR]].nonConstFun(4, 5);
U u;
for (U::iterator it = u.begin(); it != u.end(); ++it) {
printf("s has value %d\n", it->x);
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : u)
// CHECK-NEXT: printf("s has value %d\n", [[VAR]].x);
for (U::iterator it = u.begin(); it != u.end(); ++it) {
printf("s has value %d\n", (*it).x);
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : u)
// CHECK-NEXT: printf("s has value %d\n", ([[VAR]]).x);
U::iterator A;
for (U::iterator i = u.begin(); i != u.end(); ++i)
int k = A->x + i->x;
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : u)
// CHECK-NEXT: int k = A->x + [[VAR]].x;
dependent<int> v;
for (dependent<int>::const_iterator it = v.begin();
it != v.end(); ++it) {
printf("Fibonacci number is %d\n", *it);
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : v)
// CHECK-NEXT: printf("Fibonacci number is %d\n", [[VAR]]);
for (dependent<int>::const_iterator it(v.begin());
it != v.end(); ++it) {
printf("Fibonacci number is %d\n", *it);
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : v)
// CHECK-NEXT: printf("Fibonacci number is %d\n", [[VAR]]);
doublyDependent<int,int> intmap;
for (doublyDependent<int,int>::iterator it = intmap.begin();
it != intmap.end(); ++it) {
printf("intmap[%d] = %d", it->first, it->second);
}
// CHECK: for ({{[a-zA-Z_ ]*&? ?}}[[VAR:[a-z_]+]] : intmap)
// CHECK-NEXT: printf("intmap[%d] = %d", [[VAR]].first, [[VAR]].second);
}