Revert "SCEVExpander: Try hard not to create derived induction variables in other loops"

This reverts commit r201465. It broke an arm bot.

llvm-svn: 201466
This commit is contained in:
Arnold Schwaighofer 2014-02-15 18:16:56 +00:00
parent 1e12f8563d
commit 847d96142c
3 changed files with 26 additions and 180 deletions

View File

@ -260,9 +260,7 @@ namespace llvm {
PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
const Loop *L,
Type *ExpandTy,
Type *IntTy,
Type *&TruncTy,
bool &InvertStep);
Type *IntTy);
Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
Type *ExpandTy, Type *IntTy, bool useSubtract);
};

View File

@ -1017,54 +1017,6 @@ Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
return IncV;
}
/// \brief Hoist the addrec instruction chain rooted in the loop phi above the
/// position. This routine assumes that this is possible (has been checked).
static void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
Instruction *Pos, PHINode *LoopPhi) {
do {
if (DT->dominates(InstToHoist, Pos))
break;
// Make sure the increment is where we want it. But don't move it
// down past a potential existing post-inc user.
InstToHoist->moveBefore(Pos);
Pos = InstToHoist;
InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
} while (InstToHoist != LoopPhi);
}
/// \brief Check whether we can cheaply express the requested SCEV in terms of
/// the available PHI SCEV by truncation and/or invertion of the step.
static bool canBeCheaplyTransformed(ScalarEvolution &SE,
const SCEVAddRecExpr *Phi,
const SCEVAddRecExpr *Requested,
bool &InvertStep) {
Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
return false;
// Try truncate it if necessary.
Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
if (!Phi)
return false;
// Check whether truncation will help.
if (Phi == Requested) {
InvertStep = false;
return true;
}
// Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
if (SE.getAddExpr(Requested->getStart(),
SE.getNegativeSCEV(Requested)) == Phi) {
InvertStep = true;
return true;
}
return false;
}
/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
/// the base addrec, which is the addrec without any non-loop-dominating
/// values, and return the PHI.
@ -1072,84 +1024,49 @@ PHINode *
SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
const Loop *L,
Type *ExpandTy,
Type *IntTy,
Type *&TruncTy,
bool &InvertStep) {
Type *IntTy) {
assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
// Reuse a previously-inserted PHI, if present.
BasicBlock *LatchBlock = L->getLoopLatch();
if (LatchBlock) {
PHINode *AddRecPhiMatch = 0;
Instruction *IncV = 0;
TruncTy = 0;
InvertStep = false;
for (BasicBlock::iterator I = L->getHeader()->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
if (!SE.isSCEVable(PN->getType()))
if (!SE.isSCEVable(PN->getType()) ||
(SE.getEffectiveSCEVType(PN->getType()) !=
SE.getEffectiveSCEVType(Normalized->getType())) ||
SE.getSCEV(PN) != Normalized)
continue;
const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PN));
if (!PhiSCEV)
continue;
Instruction *IncV =
cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
bool IsMatchingSCEV = PhiSCEV == Normalized;
Instruction *TempIncV =
cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
// We only handle truncation and inversion of phi recurrences for the
// expanded expression if the expanded expression's loop dominates the
// loop we insert to. Check now, so we can bail out early.
if (!IsMatchingSCEV)
if (!IVIncInsertLoop ||
!SE.DT->properlyDominates(L->getHeader(),
IVIncInsertLoop->getHeader()))
continue;
// Check whether we can reuse this PHI node.
if (LSRMode) {
if (!isExpandedAddRecExprPHI(PN, TempIncV, L))
if (!isExpandedAddRecExprPHI(PN, IncV, L))
continue;
if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
continue;
} else {
if (!isNormalAddRecExprPHI(PN, TempIncV, L))
if (L == IVIncInsertLoop && !hoistIVInc(IncV, IVIncInsertPos))
continue;
}
// Stop if we have found an exact match SCEV.
if (IsMatchingSCEV) {
IncV = TempIncV;
TruncTy = 0;
InvertStep = false;
AddRecPhiMatch = PN;
break;
else {
if (!isNormalAddRecExprPHI(PN, IncV, L))
continue;
if (L == IVIncInsertLoop)
do {
if (SE.DT->dominates(IncV, IVIncInsertPos))
break;
// Make sure the increment is where we want it. But don't move it
// down past a potential existing post-inc user.
IncV->moveBefore(IVIncInsertPos);
IVIncInsertPos = IncV;
IncV = cast<Instruction>(IncV->getOperand(0));
} while (IncV != PN);
}
// Try whether the phi can be translated into the requested form
// (truncated and/or offset by a constant).
if ((!TruncTy || InvertStep) &&
canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
// Record the phi node. But don't stop we might find an exact match
// later.
AddRecPhiMatch = PN;
IncV = TempIncV;
TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
}
}
if (AddRecPhiMatch) {
// Potentially, move the increment. We have made sure in
// isExpandedAddRecExprPHI or hoistIVInc that this is possible.
if (L == IVIncInsertLoop)
hoistBeforePos(SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
// Ok, the add recurrence looks usable.
// Remember this PHI, even in post-inc mode.
InsertedValues.insert(AddRecPhiMatch);
InsertedValues.insert(PN);
// Remember the increment.
rememberInstruction(IncV);
return AddRecPhiMatch;
return PN;
}
}
@ -1274,12 +1191,7 @@ Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
// Expand the core addrec. If we need post-loop scaling, force it to
// expand to an integer type to avoid the need for additional casting.
Type *ExpandTy = PostLoopScale ? IntTy : STy;
// In some cases, we decide to reuse an existing phi node but need to truncate
// it and/or invert the step.
Type *TruncTy = 0;
bool InvertStep = false;
PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy,
TruncTy, InvertStep);
PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
// Accommodate post-inc mode, if necessary.
Value *Result;
@ -1320,20 +1232,6 @@ Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
}
}
// We have decided to reuse an induction variable of a dominating loop. Apply
// truncation and/or invertion of the step.
if (TruncTy) {
if (Result->getType() != TruncTy) {
Result = Builder.CreateTrunc(Result, TruncTy);
rememberInstruction(Result);
}
if (InvertStep) {
Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
Result);
rememberInstruction(Result);
}
}
// Re-apply any non-loop-dominating scale.
if (PostLoopScale) {
assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");

View File

@ -1,50 +0,0 @@
; RUN: opt -S -loop-reduce -mcpu=corei7-avx -mtriple=x86_64-apple-macosx < %s | FileCheck %s
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
define void @indvar_expansion(i8* nocapture readonly %rowsptr) {
entry:
br label %for.cond
; SCEVExpander used to create induction variables in the loop %for.cond while
; expanding the recurrence start value of loop strength reduced values from
; %vector.body.
; CHECK-LABEL: indvar_expansion
; CHECK: for.cond:
; CHECK-NOT: phi i3
; CHECK: br i1 {{.+}}, label %for.cond
for.cond:
%indvars.iv44 = phi i64 [ %indvars.iv.next45, %for.cond ], [ 0, %entry ]
%cmp = icmp eq i8 undef, 0
%indvars.iv.next45 = add nuw nsw i64 %indvars.iv44, 1
br i1 %cmp, label %for.cond, label %for.cond2
for.cond2:
br i1 undef, label %for.cond2, label %for.body14.lr.ph
for.body14.lr.ph:
%sext = shl i64 %indvars.iv44, 32
%0 = ashr exact i64 %sext, 32
%1 = sub i64 undef, %indvars.iv44
%2 = and i64 %1, 4294967295
%3 = add i64 %2, 1
%fold = add i64 %1, 1
%n.mod.vf = and i64 %fold, 7
%n.vec = sub i64 %3, %n.mod.vf
%end.idx.rnd.down = add i64 %n.vec, %0
br label %vector.body
vector.body:
%index = phi i64 [ %index.next, %vector.body ], [ %0, %for.body14.lr.ph ]
%4 = getelementptr inbounds i8* %rowsptr, i64 %index
%5 = bitcast i8* %4 to <4 x i8>*
%wide.load = load <4 x i8>* %5, align 1
%index.next = add i64 %index, 8
%6 = icmp eq i64 %index.next, %end.idx.rnd.down
br i1 %6, label %for.end24, label %vector.body
for.end24:
ret void
}