Eliminate the DepResultTy abstraction. It is now completely

redundant with MemDepResult, and MemDepResult has a nicer interface.

llvm-svn: 60308
This commit is contained in:
Chris Lattner 2008-11-30 23:17:19 +00:00
parent 11c15a5de7
commit 47e81d0e90
2 changed files with 85 additions and 107 deletions

View File

@ -27,17 +27,28 @@ namespace llvm {
class CallSite;
class AliasAnalysis;
class TargetData;
class MemoryDependenceAnalysis;
/// MemDepResult - A memory dependence query can return one of three different
/// answers:
/// Normal : The query is dependent on a specific instruction.
/// NonLocal: The query does not depend on anything inside this block, but
/// we haven't scanned beyond the block to find out what.
/// None : The query does not depend on anything: we found the entry
/// block or the allocation site of the memory.
/// answers, described below.
class MemDepResult {
enum DepType {
Invalid = 0, Normal, NonLocal, None
/// Invalid - Clients of MemDep never see this.
Invalid = 0,
/// Normal - This is a normal instruction dependence. The pointer member
/// of the DepResultTy pair holds the instruction.
Normal,
/// NonLocal - This marker indicates that the query has no dependency in
/// the specified block. To find out more, the client should query other
/// predecessor blocks.
NonLocal,
/// None - This dependence type indicates that the query does not depend
/// on any instructions, either because it is not a memory instruction or
/// because it scanned to the definition of the memory (alloca/malloc)
/// being accessed.
None
};
typedef PointerIntPair<Instruction*, 2, DepType> PairTy;
PairTy Value;
@ -72,10 +83,29 @@ namespace llvm {
/// getInst() - If this is a normal dependency, return the instruction that
/// is depended on. Otherwise, return null.
Instruction *getInst() const { return isNormal() ? Value.getPointer() : 0; }
Instruction *getInst() const { return Value.getPointer(); }
bool operator==(const MemDepResult &M) { return M.Value == Value; }
bool operator!=(const MemDepResult &M) { return M.Value != Value; }
private:
friend class MemoryDependenceAnalysis;
/// Dirty - Entries with this marker occur in a LocalDeps map or
/// NonLocalDeps map when the instruction they previously referenced was
/// removed from MemDep. In either case, the entry may include an
/// instruction pointer. If so, the pointer is an instruction in the
/// block where scanning can start from, saving some work.
///
/// In a default-constructed DepResultTy object, the type will be Dirty
/// and the instruction pointer will be null.
///
/// isDirty - Return true if this is a MemDepResult in its dirty/invalid.
/// state.
bool isDirty() const { return Value.getInt() == Invalid; }
static MemDepResult getDirty(Instruction *Inst) {
return MemDepResult(PairTy(Inst, Invalid));
}
};
/// MemoryDependenceAnalysis - This is an analysis that determines, for a
@ -94,42 +124,11 @@ namespace llvm {
/// internal caching mechanism.
///
class MemoryDependenceAnalysis : public FunctionPass {
/// DepType - This enum is used to indicate what flavor of dependence this
/// is. If the type is Normal, there is an associated instruction pointer.
enum DepType {
/// Dirty - Entries with this marker occur in a LocalDeps map or
/// NonLocalDeps map when the instruction they previously referenced was
/// removed from MemDep. In either case, the entry may include an
/// instruction pointer. If so, the pointer is an instruction in the
/// block where scanning can start from, saving some work.
///
/// In a default-constructed DepResultTy object, the type will be Dirty
/// and the instruction pointer will be null.
///
Dirty = 0,
/// Normal - This is a normal instruction dependence. The pointer member
/// of the DepResultTy pair holds the instruction.
Normal,
/// None - This dependence type indicates that the query does not depend
/// on any instructions, either because it is not a memory instruction or
/// because it scanned to the definition of the memory (alloca/malloc)
/// being accessed.
None,
/// NonLocal - This marker indicates that the query has no dependency in
/// the specified block. To find out more, the client should query other
/// predecessor blocks.
NonLocal
};
typedef PointerIntPair<Instruction*, 2, DepType> DepResultTy;
// A map from instructions to their dependency.
typedef DenseMap<Instruction*, DepResultTy> LocalDepMapType;
typedef DenseMap<Instruction*, MemDepResult> LocalDepMapType;
LocalDepMapType LocalDeps;
typedef DenseMap<BasicBlock*, DepResultTy> NonLocalDepInfo;
typedef DenseMap<BasicBlock*, MemDepResult> NonLocalDepInfo;
/// PerInstNLInfo - This is the instruction we keep for each cached access
/// that we have for an instruction. The pointer is an owning pointer and
@ -187,9 +186,7 @@ namespace llvm {
/// Note that this method does no caching at all. You should use
/// getDependency where possible.
MemDepResult getDependencyFrom(Instruction *QueryInst,
BasicBlock::iterator ScanIt, BasicBlock *BB){
return ConvToResult(getDependencyFromInternal(QueryInst, ScanIt, BB));
}
BasicBlock::iterator ScanIt, BasicBlock *BB);
/// getNonLocalDependency - Perform a full dependency query for the
@ -208,25 +205,11 @@ namespace llvm {
void removeInstruction(Instruction *InstToRemove);
private:
MemDepResult ConvToResult(DepResultTy R) {
if (R.getInt() == Normal)
return MemDepResult::get(R.getPointer());
if (R.getInt() == NonLocal)
return MemDepResult::getNonLocal();
assert(R.getInt() == None && "Unknown MemDepResult!");
return MemDepResult::getNone();
}
/// verifyRemoved - Verify that the specified instruction does not occur
/// in our internal data structures.
void verifyRemoved(Instruction *Inst) const;
/// getDependencyFromInternal - Return the instruction on which the memory
/// operation 'QueryInst' depends. This starts scanning from the
/// instruction before the position indicated by ScanIt.
DepResultTy getDependencyFromInternal(Instruction *QueryInst,
BasicBlock::iterator ScanIt, BasicBlock *BB);
DepResultTy getCallSiteDependency(CallSite C, BasicBlock::iterator ScanIt,
MemDepResult getCallSiteDependency(CallSite C, BasicBlock::iterator ScanIt,
BasicBlock *BB);
};

View File

@ -53,9 +53,8 @@ bool MemoryDependenceAnalysis::runOnFunction(Function &) {
/// getCallSiteDependency - Private helper for finding the local dependencies
/// of a call site.
MemoryDependenceAnalysis::DepResultTy MemoryDependenceAnalysis::
getCallSiteDependency(CallSite C, BasicBlock::iterator ScanIt,
BasicBlock *BB) {
MemDepResult MemoryDependenceAnalysis::
getCallSiteDependency(CallSite C, BasicBlock::iterator ScanIt, BasicBlock *BB) {
// Walk backwards through the block, looking for dependencies
while (ScanIt != BB->begin()) {
Instruction *Inst = --ScanIt;
@ -78,26 +77,25 @@ getCallSiteDependency(CallSite C, BasicBlock::iterator ScanIt,
if (AA->getModRefBehavior(CallSite::get(Inst)) ==
AliasAnalysis::DoesNotAccessMemory)
continue;
return DepResultTy(Inst, Normal);
return MemDepResult::get(Inst);
} else {
// Non-memory instruction.
continue;
}
if (AA->getModRefInfo(C, Pointer, PointerSize) != AliasAnalysis::NoModRef)
return DepResultTy(Inst, Normal);
return MemDepResult::get(Inst);
}
// No dependence found.
return DepResultTy(0, NonLocal);
return MemDepResult::getNonLocal();
}
/// getDependency - Return the instruction on which a memory operation
/// depends. The local parameter indicates if the query should only
/// evaluate dependencies within the same basic block.
MemoryDependenceAnalysis::DepResultTy MemoryDependenceAnalysis::
getDependencyFromInternal(Instruction *QueryInst, BasicBlock::iterator ScanIt,
BasicBlock *BB) {
/// getDependencyFrom - Return the instruction on which a memory operation
/// depends.
MemDepResult MemoryDependenceAnalysis::
getDependencyFrom(Instruction *QueryInst, BasicBlock::iterator ScanIt,
BasicBlock *BB) {
// Get the pointer value for which dependence will be determined
Value *MemPtr = 0;
uint64_t MemSize = 0;
@ -121,7 +119,7 @@ getDependencyFromInternal(Instruction *QueryInst, BasicBlock::iterator ScanIt,
} else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst))
return getCallSiteDependency(CallSite::get(QueryInst), ScanIt, BB);
else // Non-memory instructions depend on nothing.
return DepResultTy(0, None);
return MemDepResult::getNone();
// Walk backwards through the basic block, looking for dependencies
while (ScanIt != BB->begin()) {
@ -132,7 +130,7 @@ getDependencyFromInternal(Instruction *QueryInst, BasicBlock::iterator ScanIt,
if (MemVolatile &&
((isa<LoadInst>(Inst) && cast<LoadInst>(Inst)->isVolatile()) ||
(isa<StoreInst>(Inst) && cast<StoreInst>(Inst)->isVolatile())))
return DepResultTy(Inst, Normal);
return MemDepResult::get(Inst);
// Values depend on loads if the pointers are must aliased. This means that
// a load depends on another must aliased load from the same value.
@ -150,7 +148,7 @@ getDependencyFromInternal(Instruction *QueryInst, BasicBlock::iterator ScanIt,
// May-alias loads don't depend on each other without a dependence.
if (isa<LoadInst>(QueryInst) && R == AliasAnalysis::MayAlias)
continue;
return DepResultTy(Inst, Normal);
return MemDepResult::get(Inst);
}
// If this is an allocation, and if we know that the accessed pointer is to
@ -162,7 +160,7 @@ getDependencyFromInternal(Instruction *QueryInst, BasicBlock::iterator ScanIt,
if (AccessPtr == AI ||
AA->alias(AI, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
return DepResultTy(0, None);
return MemDepResult::getNone();
continue;
}
@ -177,11 +175,11 @@ getDependencyFromInternal(Instruction *QueryInst, BasicBlock::iterator ScanIt,
continue;
// Otherwise, there is a dependence.
return DepResultTy(Inst, Normal);
return MemDepResult::get(Inst);
}
// If we found nothing, return the non-local flag.
return DepResultTy(0, NonLocal);
return MemDepResult::getNonLocal();
}
/// getDependency - Return the instruction on which a memory operation
@ -190,16 +188,16 @@ MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
Instruction *ScanPos = QueryInst;
// Check for a cached result
DepResultTy &LocalCache = LocalDeps[QueryInst];
MemDepResult &LocalCache = LocalDeps[QueryInst];
// If the cached entry is non-dirty, just return it. Note that this depends
// on DepResultTy's default constructing to 'dirty'.
if (LocalCache.getInt() != Dirty)
return ConvToResult(LocalCache);
// on MemDepResult's default constructing to 'dirty'.
if (!LocalCache.isDirty())
return LocalCache;
// Otherwise, if we have a dirty entry, we know we can start the scan at that
// instruction, which may save us some work.
if (Instruction *Inst = LocalCache.getPointer()) {
if (Instruction *Inst = LocalCache.getInst()) {
ScanPos = Inst;
SmallPtrSet<Instruction*, 4> &InstMap = ReverseLocalDeps[Inst];
@ -209,14 +207,13 @@ MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
}
// Do the scan.
LocalCache = getDependencyFromInternal(QueryInst, ScanPos,
QueryInst->getParent());
LocalCache = getDependencyFrom(QueryInst, ScanPos, QueryInst->getParent());
// Remember the result!
if (Instruction *I = LocalCache.getPointer())
if (Instruction *I = LocalCache.getInst())
ReverseLocalDeps[I].insert(QueryInst);
return ConvToResult(LocalCache);
return LocalCache;
}
/// getNonLocalDependency - Perform a full dependency query for the
@ -251,7 +248,7 @@ getNonLocalDependency(Instruction *QueryInst,
if (CacheP.getInt())
for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
I != E; ++I)
if (I->second.getInt() == Dirty)
if (I->second.isDirty())
DirtyBlocks.push_back(I->first);
NumCacheNonLocal++;
@ -270,17 +267,17 @@ getNonLocalDependency(Instruction *QueryInst,
BasicBlock *DirtyBB = DirtyBlocks.back();
DirtyBlocks.pop_back();
// Get the entry for this block. Note that this relies on DepResultTy
// Get the entry for this block. Note that this relies on MemDepResult
// default initializing to Dirty.
DepResultTy &DirtyBBEntry = Cache[DirtyBB];
MemDepResult &DirtyBBEntry = Cache[DirtyBB];
// If DirtyBBEntry isn't dirty, it ended up on the worklist multiple times.
if (DirtyBBEntry.getInt() != Dirty) continue;
if (!DirtyBBEntry.isDirty()) continue;
// If the dirty entry has a pointer, start scanning from it so we don't have
// to rescan the entire block.
BasicBlock::iterator ScanPos = DirtyBB->end();
if (Instruction *Inst = DirtyBBEntry.getPointer()) {
if (Instruction *Inst = DirtyBBEntry.getInst()) {
ScanPos = Inst;
// We're removing QueryInst's dependence on Inst.
@ -290,14 +287,14 @@ getNonLocalDependency(Instruction *QueryInst,
}
// Find out if this block has a local dependency for QueryInst.
DirtyBBEntry = getDependencyFromInternal(QueryInst, ScanPos, DirtyBB);
DirtyBBEntry = getDependencyFrom(QueryInst, ScanPos, DirtyBB);
// If the block has a dependency (i.e. it isn't completely transparent to
// the value), remember it!
if (DirtyBBEntry.getInt() != NonLocal) {
if (!DirtyBBEntry.isNonLocal()) {
// Keep the ReverseNonLocalDeps map up to date so we can efficiently
// update this when we remove instructions.
if (Instruction *Inst = DirtyBBEntry.getPointer())
if (Instruction *Inst = DirtyBBEntry.getInst())
ReverseNonLocalDeps[Inst].insert(QueryInst);
continue;
}
@ -310,7 +307,7 @@ getNonLocalDependency(Instruction *QueryInst,
// Copy the result into the output set.
for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); I != E;++I)
Result.push_back(std::make_pair(I->first, ConvToResult(I->second)));
Result.push_back(std::make_pair(I->first, I->second));
}
/// removeInstruction - Remove an instruction from the dependence analysis,
@ -324,7 +321,7 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
NonLocalDepInfo &BlockMap = *NLDI->second.getPointer();
for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
DI != DE; ++DI)
if (Instruction *Inst = DI->second.getPointer())
if (Instruction *Inst = DI->second.getInst())
ReverseNonLocalDeps[Inst].erase(RemInst);
delete &BlockMap;
NonLocalDeps.erase(NLDI);
@ -335,7 +332,7 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
if (LocalDepEntry != LocalDeps.end()) {
// Remove us from DepInst's reverse set now that the local dep info is gone.
if (Instruction *Inst = LocalDepEntry->second.getPointer()) {
if (Instruction *Inst = LocalDepEntry->second.getInst()) {
SmallPtrSet<Instruction*, 4> &RLD = ReverseLocalDeps[Inst];
RLD.erase(RemInst);
if (RLD.empty())
@ -369,7 +366,7 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
assert(InstDependingOnRemInst != RemInst &&
"Already removed our local dep info");
LocalDeps[InstDependingOnRemInst] = DepResultTy(NewDepInst, Dirty);
LocalDeps[InstDependingOnRemInst] = MemDepResult::getDirty(NewDepInst);
// Make sure to remember that new things depend on NewDepInst.
ReverseDepsToAdd.push_back(std::make_pair(NewDepInst,
@ -401,17 +398,15 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
for (NonLocalDepInfo::iterator DI = INLD.getPointer()->begin(),
DE = INLD.getPointer()->end(); DI != DE; ++DI) {
if (DI->second.getPointer() != RemInst) continue;
if (DI->second.getInst() != RemInst) continue;
// Convert to a dirty entry for the subsequent instruction.
DI->second.setInt(Dirty);
if (RemInst->isTerminator())
DI->second.setPointer(0);
else {
Instruction *NextI = next(BasicBlock::iterator(RemInst));
DI->second.setPointer(NextI);
Instruction *NextI = 0;
if (!RemInst->isTerminator()) {
NextI = next(BasicBlock::iterator(RemInst));
ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
}
DI->second = MemDepResult::getDirty(NextI);
}
}
@ -436,7 +431,7 @@ void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
E = LocalDeps.end(); I != E; ++I) {
assert(I->first != D && "Inst occurs in data structures");
assert(I->second.getPointer() != D &&
assert(I->second.getInst() != D &&
"Inst occurs in data structures");
}
@ -446,7 +441,7 @@ void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
const PerInstNLInfo &INLD = I->second;
for (NonLocalDepInfo::iterator II = INLD.getPointer()->begin(),
EE = INLD.getPointer()->end(); II != EE; ++II)
assert(II->second.getPointer() != D && "Inst occurs in data structures");
assert(II->second.getInst() != D && "Inst occurs in data structures");
}
for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),