Add SystemZ support

This patch then adds all the usual platform-specific pieces for SystemZ:
driver support, basic target info, register names and constraints,
ABI info and vararg support.  It also adds new tests to verify pre-defined
macros and inline asm, and updates a test for the minimum alignment change.

This version of the patch incorporates feedback from reviews by
Eric Christopher and John McCall.  Thanks to all reviewers!

Patch by Richard Sandiford.

llvm-svn: 181211
This commit is contained in:
Ulrich Weigand 2013-05-06 16:26:41 +00:00
parent fa80642205
commit 47445073f8
11 changed files with 846 additions and 6 deletions

View File

@ -157,7 +157,16 @@ public:
/// __builtin_va_list as defined by ARM AAPCS ABI
/// http://infocenter.arm.com
// /help/topic/com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf
AAPCSABIBuiltinVaList
AAPCSABIBuiltinVaList,
// typedef struct __va_list_tag
// {
// long __gpr;
// long __fpr;
// void *__overflow_arg_area;
// void *__reg_save_area;
// } va_list[1];
SystemZBuiltinVaList
};
protected:

View File

@ -5980,6 +5980,80 @@ CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
return VaListTypeDecl;
}
static TypedefDecl *
CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
// typedef struct __va_list_tag {
RecordDecl *VaListTagDecl;
VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
Context->getTranslationUnitDecl(),
&Context->Idents.get("__va_list_tag"));
VaListTagDecl->startDefinition();
const size_t NumFields = 4;
QualType FieldTypes[NumFields];
const char *FieldNames[NumFields];
// long __gpr;
FieldTypes[0] = Context->LongTy;
FieldNames[0] = "__gpr";
// long __fpr;
FieldTypes[1] = Context->LongTy;
FieldNames[1] = "__fpr";
// void *__overflow_arg_area;
FieldTypes[2] = Context->getPointerType(Context->VoidTy);
FieldNames[2] = "__overflow_arg_area";
// void *__reg_save_area;
FieldTypes[3] = Context->getPointerType(Context->VoidTy);
FieldNames[3] = "__reg_save_area";
// Create fields
for (unsigned i = 0; i < NumFields; ++i) {
FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
VaListTagDecl,
SourceLocation(),
SourceLocation(),
&Context->Idents.get(FieldNames[i]),
FieldTypes[i], /*TInfo=*/0,
/*BitWidth=*/0,
/*Mutable=*/false,
ICIS_NoInit);
Field->setAccess(AS_public);
VaListTagDecl->addDecl(Field);
}
VaListTagDecl->completeDefinition();
QualType VaListTagType = Context->getRecordType(VaListTagDecl);
Context->VaListTagTy = VaListTagType;
// } __va_list_tag;
TypedefDecl *VaListTagTypedefDecl
= TypedefDecl::Create(const_cast<ASTContext &>(*Context),
Context->getTranslationUnitDecl(),
SourceLocation(), SourceLocation(),
&Context->Idents.get("__va_list_tag"),
Context->getTrivialTypeSourceInfo(VaListTagType));
QualType VaListTagTypedefType =
Context->getTypedefType(VaListTagTypedefDecl);
// typedef __va_list_tag __builtin_va_list[1];
llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
QualType VaListTagArrayType
= Context->getConstantArrayType(VaListTagTypedefType,
Size, ArrayType::Normal,0);
TypeSourceInfo *TInfo
= Context->getTrivialTypeSourceInfo(VaListTagArrayType);
TypedefDecl *VaListTypedefDecl
= TypedefDecl::Create(const_cast<ASTContext &>(*Context),
Context->getTranslationUnitDecl(),
SourceLocation(), SourceLocation(),
&Context->Idents.get("__builtin_va_list"),
TInfo);
return VaListTypedefDecl;
}
static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
TargetInfo::BuiltinVaListKind Kind) {
switch (Kind) {
@ -5997,6 +6071,8 @@ static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
return CreatePNaClABIBuiltinVaListDecl(Context);
case TargetInfo::AAPCSABIBuiltinVaList:
return CreateAAPCSABIBuiltinVaListDecl(Context);
case TargetInfo::SystemZBuiltinVaList:
return CreateSystemZBuiltinVaListDecl(Context);
}
llvm_unreachable("Unhandled __builtin_va_list type kind");

View File

@ -4314,6 +4314,100 @@ public:
};
} // end anonymous namespace.
namespace {
class SystemZTargetInfo : public TargetInfo {
static const char *const GCCRegNames[];
public:
SystemZTargetInfo(const std::string& triple) : TargetInfo(triple) {
TLSSupported = true;
IntWidth = IntAlign = 32;
LongWidth = LongLongWidth = LongAlign = LongLongAlign = 64;
PointerWidth = PointerAlign = 64;
LongDoubleWidth = 128;
LongDoubleAlign = 64;
LongDoubleFormat = &llvm::APFloat::IEEEquad;
MinGlobalAlign = 16;
DescriptionString = "E-p:64:64:64-i1:8:16-i8:8:16-i16:16-i32:32-i64:64"
"-f32:32-f64:64-f128:64-a0:8:16-n32:64";
MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 64;
}
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
Builder.defineMacro("__s390__");
Builder.defineMacro("__s390x__");
Builder.defineMacro("__zarch__");
Builder.defineMacro("__LONG_DOUBLE_128__");
}
virtual void getTargetBuiltins(const Builtin::Info *&Records,
unsigned &NumRecords) const {
// FIXME: Implement.
Records = 0;
NumRecords = 0;
}
virtual void getGCCRegNames(const char *const *&Names,
unsigned &NumNames) const;
virtual void getGCCRegAliases(const GCCRegAlias *&Aliases,
unsigned &NumAliases) const {
// No aliases.
Aliases = 0;
NumAliases = 0;
}
virtual bool validateAsmConstraint(const char *&Name,
TargetInfo::ConstraintInfo &info) const;
virtual const char *getClobbers() const {
// FIXME: Is this really right?
return "";
}
virtual BuiltinVaListKind getBuiltinVaListKind() const {
return TargetInfo::SystemZBuiltinVaList;
}
};
const char *const SystemZTargetInfo::GCCRegNames[] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"f0", "f2", "f4", "f6", "f1", "f3", "f5", "f7",
"f8", "f10", "f12", "f14", "f9", "f11", "f13", "f15"
};
void SystemZTargetInfo::getGCCRegNames(const char *const *&Names,
unsigned &NumNames) const {
Names = GCCRegNames;
NumNames = llvm::array_lengthof(GCCRegNames);
}
bool SystemZTargetInfo::
validateAsmConstraint(const char *&Name,
TargetInfo::ConstraintInfo &Info) const {
switch (*Name) {
default:
return false;
case 'a': // Address register
case 'd': // Data register (equivalent to 'r')
case 'f': // Floating-point register
Info.setAllowsRegister();
return true;
case 'I': // Unsigned 8-bit constant
case 'J': // Unsigned 12-bit constant
case 'K': // Signed 16-bit constant
case 'L': // Signed 20-bit displacement (on all targets we support)
case 'M': // 0x7fffffff
return true;
case 'Q': // Memory with base and unsigned 12-bit displacement
case 'R': // Likewise, plus an index
case 'S': // Memory with base and signed 20-bit displacement
case 'T': // Likewise, plus an index
Info.setAllowsMemory();
return true;
}
}
}
namespace {
class MSP430TargetInfo : public TargetInfo {
static const char * const GCCRegNames[];
@ -5281,6 +5375,14 @@ static TargetInfo *AllocateTarget(const std::string &T) {
return new SparcV9TargetInfo(T);
}
case llvm::Triple::systemz:
switch (os) {
case llvm::Triple::Linux:
return new LinuxTargetInfo<SystemZTargetInfo>(T);
default:
return new SystemZTargetInfo(T);
}
case llvm::Triple::tce:
return new TCETargetInfo(T);

View File

@ -4116,6 +4116,293 @@ void NVPTXTargetCodeGenInfo::addKernelMetadata(llvm::Function *F) {
}
//===----------------------------------------------------------------------===//
// SystemZ ABI Implementation
//===----------------------------------------------------------------------===//
namespace {
class SystemZABIInfo : public ABIInfo {
public:
SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
bool isPromotableIntegerType(QualType Ty) const;
bool isCompoundType(QualType Ty) const;
bool isFPArgumentType(QualType Ty) const;
ABIArgInfo classifyReturnType(QualType RetTy) const;
ABIArgInfo classifyArgumentType(QualType ArgTy) const;
virtual void computeInfo(CGFunctionInfo &FI) const {
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
it != ie; ++it)
it->info = classifyArgumentType(it->type);
}
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
CodeGenFunction &CGF) const;
};
class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
public:
SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
: TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
};
}
bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
// Treat an enum type as its underlying type.
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
Ty = EnumTy->getDecl()->getIntegerType();
// Promotable integer types are required to be promoted by the ABI.
if (Ty->isPromotableIntegerType())
return true;
// 32-bit values must also be promoted.
if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
switch (BT->getKind()) {
case BuiltinType::Int:
case BuiltinType::UInt:
return true;
default:
return false;
}
return false;
}
bool SystemZABIInfo::isCompoundType(QualType Ty) const {
return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
}
bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
switch (BT->getKind()) {
case BuiltinType::Float:
case BuiltinType::Double:
return true;
default:
return false;
}
if (const RecordType *RT = Ty->getAsStructureType()) {
const RecordDecl *RD = RT->getDecl();
bool Found = false;
// If this is a C++ record, check the bases first.
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
for (CXXRecordDecl::base_class_const_iterator I = CXXRD->bases_begin(),
E = CXXRD->bases_end(); I != E; ++I) {
QualType Base = I->getType();
// Empty bases don't affect things either way.
if (isEmptyRecord(getContext(), Base, true))
continue;
if (Found)
return false;
Found = isFPArgumentType(Base);
if (!Found)
return false;
}
// Check the fields.
for (RecordDecl::field_iterator I = RD->field_begin(),
E = RD->field_end(); I != E; ++I) {
const FieldDecl *FD = *I;
// Empty bitfields don't affect things either way.
// Unlike isSingleElementStruct(), empty structure and array fields
// do count. So do anonymous bitfields that aren't zero-sized.
if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
return true;
// Unlike isSingleElementStruct(), arrays do not count.
// Nested isFPArgumentType structures still do though.
if (Found)
return false;
Found = isFPArgumentType(FD->getType());
if (!Found)
return false;
}
// Unlike isSingleElementStruct(), trailing padding is allowed.
// An 8-byte aligned struct s { float f; } is passed as a double.
return Found;
}
return false;
}
llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
CodeGenFunction &CGF) const {
// Assume that va_list type is correct; should be pointer to LLVM type:
// struct {
// i64 __gpr;
// i64 __fpr;
// i8 *__overflow_arg_area;
// i8 *__reg_save_area;
// };
// Every argument occupies 8 bytes and is passed by preference in either
// GPRs or FPRs.
Ty = CGF.getContext().getCanonicalType(Ty);
ABIArgInfo AI = classifyArgumentType(Ty);
bool InFPRs = isFPArgumentType(Ty);
llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
bool IsIndirect = AI.isIndirect();
unsigned UnpaddedBitSize;
if (IsIndirect) {
APTy = llvm::PointerType::getUnqual(APTy);
UnpaddedBitSize = 64;
} else
UnpaddedBitSize = getContext().getTypeSize(Ty);
unsigned PaddedBitSize = 64;
assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
unsigned PaddedSize = PaddedBitSize / 8;
unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
if (InFPRs) {
MaxRegs = 4; // Maximum of 4 FPR arguments
RegCountField = 1; // __fpr
RegSaveIndex = 16; // save offset for f0
RegPadding = 0; // floats are passed in the high bits of an FPR
} else {
MaxRegs = 5; // Maximum of 5 GPR arguments
RegCountField = 0; // __gpr
RegSaveIndex = 2; // save offset for r2
RegPadding = Padding; // values are passed in the low bits of a GPR
}
llvm::Value *RegCountPtr =
CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
llvm::Type *IndexTy = RegCount->getType();
llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
"fits_in_regs");
llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
// Emit code to load the value if it was passed in registers.
CGF.EmitBlock(InRegBlock);
// Work out the address of an argument register.
llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
llvm::Value *ScaledRegCount =
CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
llvm::Value *RegBase =
llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
llvm::Value *RegOffset =
CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
llvm::Value *RegSaveAreaPtr =
CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
llvm::Value *RegSaveArea =
CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
llvm::Value *RawRegAddr =
CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
llvm::Value *RegAddr =
CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
// Update the register count
llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
llvm::Value *NewRegCount =
CGF.Builder.CreateAdd(RegCount, One, "reg_count");
CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
CGF.EmitBranch(ContBlock);
// Emit code to load the value if it was passed in memory.
CGF.EmitBlock(InMemBlock);
// Work out the address of a stack argument.
llvm::Value *OverflowArgAreaPtr =
CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
llvm::Value *OverflowArgArea =
CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
llvm::Value *RawMemAddr =
CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
llvm::Value *MemAddr =
CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
// Update overflow_arg_area_ptr pointer
llvm::Value *NewOverflowArgArea =
CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
CGF.EmitBranch(ContBlock);
// Return the appropriate result.
CGF.EmitBlock(ContBlock);
llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
ResAddr->addIncoming(RegAddr, InRegBlock);
ResAddr->addIncoming(MemAddr, InMemBlock);
if (IsIndirect)
return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
return ResAddr;
}
ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
if (RetTy->isVoidType())
return ABIArgInfo::getIgnore();
if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
return ABIArgInfo::getIndirect(0);
return (isPromotableIntegerType(RetTy) ?
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
}
ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
// Handle the generic C++ ABI.
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, CGT))
return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
// Integers and enums are extended to full register width.
if (isPromotableIntegerType(Ty))
return ABIArgInfo::getExtend();
// Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
uint64_t Size = getContext().getTypeSize(Ty);
if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
return ABIArgInfo::getIndirect(0);
// Handle small structures.
if (const RecordType *RT = Ty->getAs<RecordType>()) {
// Structures with flexible arrays have variable length, so really
// fail the size test above.
const RecordDecl *RD = RT->getDecl();
if (RD->hasFlexibleArrayMember())
return ABIArgInfo::getIndirect(0);
// The structure is passed as an unextended integer, a float, or a double.
llvm::Type *PassTy;
if (isFPArgumentType(Ty)) {
assert(Size == 32 || Size == 64);
if (Size == 32)
PassTy = llvm::Type::getFloatTy(getVMContext());
else
PassTy = llvm::Type::getDoubleTy(getVMContext());
} else
PassTy = llvm::IntegerType::get(getVMContext(), Size);
return ABIArgInfo::getDirect(PassTy);
}
// Non-structure compounds are passed indirectly.
if (isCompoundType(Ty))
return ABIArgInfo::getIndirect(0);
return ABIArgInfo::getDirect(0);
}
//===----------------------------------------------------------------------===//
// MBlaze ABI Implementation
//===----------------------------------------------------------------------===//
@ -4860,6 +5147,9 @@ const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
case llvm::Triple::msp430:
return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
case llvm::Triple::systemz:
return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
case llvm::Triple::tce:
return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));

View File

@ -1146,6 +1146,15 @@ Generic_GCC::GCCInstallationDetector::GCCInstallationDetector(
"ppc64-redhat-linux"
};
static const char *const SystemZLibDirs[] = { "/lib64", "/lib" };
static const char *const SystemZTriples[] = {
"s390x-linux-gnu",
"s390x-unknown-linux-gnu",
"s390x-ibm-linux-gnu",
"s390x-suse-linux",
"s390x-redhat-linux"
};
switch (TargetTriple.getArch()) {
case llvm::Triple::aarch64:
LibDirs.append(AArch64LibDirs, AArch64LibDirs
@ -1246,6 +1255,12 @@ Generic_GCC::GCCInstallationDetector::GCCInstallationDetector(
MultiarchTripleAliases.append(
PPCTriples, PPCTriples + llvm::array_lengthof(PPCTriples));
break;
case llvm::Triple::systemz:
LibDirs.append(
SystemZLibDirs, SystemZLibDirs + llvm::array_lengthof(SystemZLibDirs));
TripleAliases.append(
SystemZTriples, SystemZTriples + llvm::array_lengthof(SystemZTriples));
break;
default:
// By default, just rely on the standard lib directories and the original
@ -1349,7 +1364,8 @@ static bool findTargetMultiarchSuffix(std::string &Suffix,
}
if (TargetArch == llvm::Triple::x86_64 ||
TargetArch == llvm::Triple::ppc64)
TargetArch == llvm::Triple::ppc64 ||
TargetArch == llvm::Triple::systemz)
Suffix = "/64";
else
Suffix = "/32";

View File

@ -545,6 +545,9 @@ static bool isSignedCharDefault(const llvm::Triple &Triple) {
if (Triple.isOSDarwin())
return true;
return false;
case llvm::Triple::systemz:
return false;
}
}
@ -5820,6 +5823,9 @@ void gnutools::Assemble::ConstructJob(Compilation &C, const JobAction &JA,
LastPICArg->getOption().matches(options::OPT_fpie))) {
CmdArgs.push_back("-KPIC");
}
} else if (getToolChain().getArch() == llvm::Triple::systemz) {
// At the moment we always produce z10 code.
CmdArgs.push_back("-march=z10");
}
Args.AddAllArgValues(CmdArgs, options::OPT_Wa_COMMA,
@ -5951,6 +5957,8 @@ void gnutools::Link::ConstructJob(Compilation &C, const JobAction &JA,
else
CmdArgs.push_back("elf64ltsmip");
}
else if (ToolChain.getArch() == llvm::Triple::systemz)
CmdArgs.push_back("elf64_s390");
else
CmdArgs.push_back("elf_x86_64");
@ -5997,7 +6005,8 @@ void gnutools::Link::ConstructJob(Compilation &C, const JobAction &JA,
}
else if (ToolChain.getArch() == llvm::Triple::ppc)
CmdArgs.push_back("/lib/ld.so.1");
else if (ToolChain.getArch() == llvm::Triple::ppc64)
else if (ToolChain.getArch() == llvm::Triple::ppc64 ||
ToolChain.getArch() == llvm::Triple::systemz)
CmdArgs.push_back("/lib64/ld64.so.1");
else
CmdArgs.push_back("/lib64/ld-linux-x86-64.so.2");

View File

@ -3,12 +3,19 @@
// Should be 3 hello strings, two global (of different sizes), the rest are
// shared.
// CHECK: @align = global i8 [[ALIGN:[0-9]+]]
// CHECK: @.str = private unnamed_addr constant [6 x i8] c"hello\00"
// CHECK: @f1.x = internal global i8* getelementptr inbounds ([6 x i8]* @.str, i32 0, i32 0)
// CHECK: @f2.x = internal global [6 x i8] c"hello\00", align 1
// CHECK: @f3.x = internal global [8 x i8] c"hello\00\00\00", align 1
// CHECK: @f2.x = internal global [6 x i8] c"hello\00", align [[ALIGN]]
// CHECK: @f3.x = internal global [8 x i8] c"hello\00\00\00", align [[ALIGN]]
// CHECK: @f4.x = internal global %struct.s { i8* getelementptr inbounds ([6 x i8]* @.str, i32 0, i32 0) }
// CHECK: @x = global [3 x i8] c"ola", align 1
// CHECK: @x = global [3 x i8] c"ola", align [[ALIGN]]
#if defined(__s390x__)
unsigned char align = 2;
#else
unsigned char align = 1;
#endif
void bar(const char *);

View File

@ -6,6 +6,7 @@
// RUN: %clang_cc1 -triple mipsel %s -emit-llvm -o - | FileCheck %s
// RUN: %clang_cc1 -triple powerpc %s -emit-llvm -o - | FileCheck %s
// RUN: %clang_cc1 -triple powerpc64 %s -emit-llvm -o - | FileCheck %s
// RUN: %clang_cc1 -triple s390x %s -emit-llvm -o - | FileCheck %s
// RUN: %clang_cc1 -triple sparc %s -emit-llvm -o - | FileCheck %s
// RUN: %clang_cc1 -triple sparcv9 %s -emit-llvm -o - | FileCheck %s
// RUN: %clang_cc1 -triple thumb %s -emit-llvm -o - | FileCheck %s

View File

@ -0,0 +1,131 @@
// RUN: %clang_cc1 -triple s390x-linux-gnu -O2 -emit-llvm -o - %s | FileCheck %s
unsigned int gi;
unsigned long gl;
void test_store_m(unsigned int i) {
asm("st %1, %0" : "=m" (gi) : "r" (i));
// CHECK: define void @test_store_m(i32 zeroext %i)
// CHECK: call void asm "st $1, $0", "=*m,r"(i32* @gi, i32 %i)
}
void test_store_Q(unsigned int i) {
asm("st %1, %0" : "=Q" (gi) : "r" (i));
// CHECK: define void @test_store_Q(i32 zeroext %i)
// CHECK: call void asm "st $1, $0", "=*Q,r"(i32* @gi, i32 %i)
}
void test_store_R(unsigned int i) {
asm("st %1, %0" : "=R" (gi) : "r" (i));
// CHECK: define void @test_store_R(i32 zeroext %i)
// CHECK: call void asm "st $1, $0", "=*R,r"(i32* @gi, i32 %i)
}
void test_store_S(unsigned int i) {
asm("st %1, %0" : "=S" (gi) : "r" (i));
// CHECK: define void @test_store_S(i32 zeroext %i)
// CHECK: call void asm "st $1, $0", "=*S,r"(i32* @gi, i32 %i)
}
void test_store_T(unsigned int i) {
asm("st %1, %0" : "=T" (gi) : "r" (i));
// CHECK: define void @test_store_T(i32 zeroext %i)
// CHECK: call void asm "st $1, $0", "=*T,r"(i32* @gi, i32 %i)
}
int test_load_m() {
unsigned int i;
asm("l %0, %1" : "=r" (i) : "m" (gi));
return i;
// CHECK: define signext i32 @test_load_m()
// CHECK: call i32 asm "l $0, $1", "=r,*m"(i32* @gi)
}
int test_load_Q() {
unsigned int i;
asm("l %0, %1" : "=r" (i) : "Q" (gi));
return i;
// CHECK: define signext i32 @test_load_Q()
// CHECK: call i32 asm "l $0, $1", "=r,*Q"(i32* @gi)
}
int test_load_R() {
unsigned int i;
asm("l %0, %1" : "=r" (i) : "R" (gi));
return i;
// CHECK: define signext i32 @test_load_R()
// CHECK: call i32 asm "l $0, $1", "=r,*R"(i32* @gi)
}
int test_load_S() {
unsigned int i;
asm("l %0, %1" : "=r" (i) : "S" (gi));
return i;
// CHECK: define signext i32 @test_load_S()
// CHECK: call i32 asm "l $0, $1", "=r,*S"(i32* @gi)
}
int test_load_T() {
unsigned int i;
asm("l %0, %1" : "=r" (i) : "T" (gi));
return i;
// CHECK: define signext i32 @test_load_T()
// CHECK: call i32 asm "l $0, $1", "=r,*T"(i32* @gi)
}
void test_mI(unsigned char *c) {
asm volatile("cli %0, %1" :: "Q" (*c), "I" (100));
// CHECK: define void @test_mI(i8* %c)
// CHECK: call void asm sideeffect "cli $0, $1", "*Q,I"(i8* %c, i32 100)
}
unsigned int test_dJa(unsigned int i, unsigned int j) {
asm("sll %0, %2(%3)" : "=d" (i) : "0" (i), "J" (1000), "a" (j));
return i;
// CHECK: define zeroext i32 @test_dJa(i32 zeroext %i, i32 zeroext %j)
// CHECK: call i32 asm "sll $0, $2($3)", "=d,0,J,a"(i32 %i, i32 1000, i32 %j)
}
unsigned long test_rK(unsigned long i) {
asm("aghi %0, %2" : "=r" (i) : "0" (i), "K" (-30000));
return i;
// CHECK: define i64 @test_rK(i64 %i)
// CHECK: call i64 asm "aghi $0, $2", "=r,0,K"(i64 %i, i32 -30000)
}
unsigned long test_rL(unsigned long i) {
asm("sllg %0, %1, %2" : "=r" (i) : "r" (i), "L" (500000));
return i;
// CHECK: define i64 @test_rL(i64 %i)
// CHECK: call i64 asm "sllg $0, $1, $2", "=r,r,L"(i64 %i, i32 500000)
}
void test_M() {
asm volatile("#FOO %0" :: "M"(0x7fffffff));
// CHECK: define void @test_M()
// CHECK: call void asm sideeffect "#FOO $0", "M"(i32 2147483647)
}
float test_f32(float f, float g) {
asm("aebr %0, %2" : "=f" (f) : "0" (f), "f" (g));
return f;
// CHECK: define float @test_f32(float %f, float %g)
// CHECK: call float asm "aebr $0, $2", "=f,0,f"(float %f, float %g)
}
double test_f64(double f, double g) {
asm("adbr %0, %2" : "=f" (f) : "0" (f), "f" (g));
return f;
// CHECK: define double @test_f64(double %f, double %g)
// CHECK: call double asm "adbr $0, $2", "=f,0,f"(double %f, double %g)
}
long double test_f128(long double f, long double g) {
asm("axbr %0, %2" : "=f" (f) : "0" (f), "f" (g));
return f;
// CHECK: define void @test_f128(fp128* noalias nocapture sret [[DEST:%.*]], fp128* byval nocapture, fp128* byval nocapture)
// CHECK: %f = load fp128* %0
// CHECK: %g = load fp128* %1
// CHECK: [[RESULT:%.*]] = tail call fp128 asm "axbr $0, $2", "=f,0,f"(fp128 %f, fp128 %g)
// CHECK: store fp128 [[RESULT]], fp128* [[DEST]]
}

View File

@ -2177,6 +2177,98 @@
// PPC-LINUX:#define __powerpc__ 1
// PPC-LINUX:#define __ppc__ 1
//
// RUN: %clang_cc1 -E -dM -ffreestanding -triple=s390x-none-none -fno-signed-char < /dev/null | FileCheck -check-prefix S390X %s
//
// S390X:#define __CHAR16_TYPE__ unsigned short
// S390X:#define __CHAR32_TYPE__ unsigned int
// S390X:#define __CHAR_BIT__ 8
// S390X:#define __CHAR_UNSIGNED__ 1
// S390X:#define __DBL_DENORM_MIN__ 4.9406564584124654e-324
// S390X:#define __DBL_DIG__ 15
// S390X:#define __DBL_EPSILON__ 2.2204460492503131e-16
// S390X:#define __DBL_HAS_DENORM__ 1
// S390X:#define __DBL_HAS_INFINITY__ 1
// S390X:#define __DBL_HAS_QUIET_NAN__ 1
// S390X:#define __DBL_MANT_DIG__ 53
// S390X:#define __DBL_MAX_10_EXP__ 308
// S390X:#define __DBL_MAX_EXP__ 1024
// S390X:#define __DBL_MAX__ 1.7976931348623157e+308
// S390X:#define __DBL_MIN_10_EXP__ (-307)
// S390X:#define __DBL_MIN_EXP__ (-1021)
// S390X:#define __DBL_MIN__ 2.2250738585072014e-308
// S390X:#define __DECIMAL_DIG__ 36
// S390X:#define __FLT_DENORM_MIN__ 1.40129846e-45F
// S390X:#define __FLT_DIG__ 6
// S390X:#define __FLT_EPSILON__ 1.19209290e-7F
// S390X:#define __FLT_EVAL_METHOD__ 0
// S390X:#define __FLT_HAS_DENORM__ 1
// S390X:#define __FLT_HAS_INFINITY__ 1
// S390X:#define __FLT_HAS_QUIET_NAN__ 1
// S390X:#define __FLT_MANT_DIG__ 24
// S390X:#define __FLT_MAX_10_EXP__ 38
// S390X:#define __FLT_MAX_EXP__ 128
// S390X:#define __FLT_MAX__ 3.40282347e+38F
// S390X:#define __FLT_MIN_10_EXP__ (-37)
// S390X:#define __FLT_MIN_EXP__ (-125)
// S390X:#define __FLT_MIN__ 1.17549435e-38F
// S390X:#define __FLT_RADIX__ 2
// S390X:#define __INT16_TYPE__ short
// S390X:#define __INT32_TYPE__ int
// S390X:#define __INT64_C_SUFFIX__ L
// S390X:#define __INT64_TYPE__ long long int
// S390X:#define __INT8_TYPE__ char
// S390X:#define __INTMAX_MAX__ 9223372036854775807LL
// S390X:#define __INTMAX_TYPE__ long long int
// S390X:#define __INTMAX_WIDTH__ 64
// S390X:#define __INTPTR_TYPE__ long int
// S390X:#define __INTPTR_WIDTH__ 64
// S390X:#define __INT_MAX__ 2147483647
// S390X:#define __LDBL_DENORM_MIN__ 6.47517511943802511092443895822764655e-4966L
// S390X:#define __LDBL_DIG__ 33
// S390X:#define __LDBL_EPSILON__ 1.92592994438723585305597794258492732e-34L
// S390X:#define __LDBL_HAS_DENORM__ 1
// S390X:#define __LDBL_HAS_INFINITY__ 1
// S390X:#define __LDBL_HAS_QUIET_NAN__ 1
// S390X:#define __LDBL_MANT_DIG__ 113
// S390X:#define __LDBL_MAX_10_EXP__ 4932
// S390X:#define __LDBL_MAX_EXP__ 16384
// S390X:#define __LDBL_MAX__ 1.18973149535723176508575932662800702e+4932L
// S390X:#define __LDBL_MIN_10_EXP__ (-4931)
// S390X:#define __LDBL_MIN_EXP__ (-16381)
// S390X:#define __LDBL_MIN__ 3.36210314311209350626267781732175260e-4932L
// S390X:#define __LONG_LONG_MAX__ 9223372036854775807LL
// S390X:#define __LONG_MAX__ 9223372036854775807L
// S390X:#define __NO_INLINE__ 1
// S390X:#define __POINTER_WIDTH__ 64
// S390X:#define __PTRDIFF_TYPE__ long int
// S390X:#define __PTRDIFF_WIDTH__ 64
// S390X:#define __SCHAR_MAX__ 127
// S390X:#define __SHRT_MAX__ 32767
// S390X:#define __SIG_ATOMIC_WIDTH__ 32
// S390X:#define __SIZEOF_DOUBLE__ 8
// S390X:#define __SIZEOF_FLOAT__ 4
// S390X:#define __SIZEOF_INT__ 4
// S390X:#define __SIZEOF_LONG_DOUBLE__ 16
// S390X:#define __SIZEOF_LONG_LONG__ 8
// S390X:#define __SIZEOF_LONG__ 8
// S390X:#define __SIZEOF_POINTER__ 8
// S390X:#define __SIZEOF_PTRDIFF_T__ 8
// S390X:#define __SIZEOF_SHORT__ 2
// S390X:#define __SIZEOF_SIZE_T__ 8
// S390X:#define __SIZEOF_WCHAR_T__ 4
// S390X:#define __SIZEOF_WINT_T__ 4
// S390X:#define __SIZE_TYPE__ long unsigned int
// S390X:#define __SIZE_WIDTH__ 64
// S390X:#define __UINTMAX_TYPE__ long long unsigned int
// S390X:#define __USER_LABEL_PREFIX__ _
// S390X:#define __WCHAR_MAX__ 2147483647
// S390X:#define __WCHAR_TYPE__ int
// S390X:#define __WCHAR_WIDTH__ 32
// S390X:#define __WINT_TYPE__ int
// S390X:#define __WINT_WIDTH__ 32
// S390X:#define __s390__ 1
// S390X:#define __s390x__ 1
//
// RUN: %clang_cc1 -E -dM -ffreestanding -triple=sparc-none-none < /dev/null | FileCheck -check-prefix SPARC %s
//
// SPARC-NOT:#define _LP64

View File

@ -528,6 +528,113 @@
// PPC:INTMAX_C_(0) 0LL
// PPC:UINTMAX_C_(0) 0ULL
//
// RUN: %clang_cc1 -E -ffreestanding -triple=s390x-none-none %s | FileCheck -check-prefix S390X %s
//
// S390X:typedef signed long long int int64_t;
// S390X:typedef unsigned long long int uint64_t;
// S390X:typedef int64_t int_least64_t;
// S390X:typedef uint64_t uint_least64_t;
// S390X:typedef int64_t int_fast64_t;
// S390X:typedef uint64_t uint_fast64_t;
//
// S390X:typedef signed int int32_t;
// S390X:typedef unsigned int uint32_t;
// S390X:typedef int32_t int_least32_t;
// S390X:typedef uint32_t uint_least32_t;
// S390X:typedef int32_t int_fast32_t;
// S390X:typedef uint32_t uint_fast32_t;
//
// S390X:typedef signed short int16_t;
// S390X:typedef unsigned short uint16_t;
// S390X:typedef int16_t int_least16_t;
// S390X:typedef uint16_t uint_least16_t;
// S390X:typedef int16_t int_fast16_t;
// S390X:typedef uint16_t uint_fast16_t;
//
// S390X:typedef signed char int8_t;
// S390X:typedef unsigned char uint8_t;
// S390X:typedef int8_t int_least8_t;
// S390X:typedef uint8_t uint_least8_t;
// S390X:typedef int8_t int_fast8_t;
// S390X:typedef uint8_t uint_fast8_t;
//
// S390X:typedef int64_t intptr_t;
// S390X:typedef uint64_t uintptr_t;
//
// S390X:typedef long long int intmax_t;
// S390X:typedef long long unsigned int uintmax_t;
//
// S390X:INT8_MAX_ 127
// S390X:INT8_MIN_ (-127 -1)
// S390X:UINT8_MAX_ 255
// S390X:INT_LEAST8_MIN_ (-127 -1)
// S390X:INT_LEAST8_MAX_ 127
// S390X:UINT_LEAST8_MAX_ 255
// S390X:INT_FAST8_MIN_ (-127 -1)
// S390X:INT_FAST8_MAX_ 127
// S390X:UINT_FAST8_MAX_ 255
//
// S390X:INT16_MAX_ 32767
// S390X:INT16_MIN_ (-32767 -1)
// S390X:UINT16_MAX_ 65535
// S390X:INT_LEAST16_MIN_ (-32767 -1)
// S390X:INT_LEAST16_MAX_ 32767
// S390X:UINT_LEAST16_MAX_ 65535
// S390X:INT_FAST16_MIN_ (-32767 -1)
// S390X:INT_FAST16_MAX_ 32767
// S390X:UINT_FAST16_MAX_ 65535
//
// S390X:INT32_MAX_ 2147483647
// S390X:INT32_MIN_ (-2147483647 -1)
// S390X:UINT32_MAX_ 4294967295U
// S390X:INT_LEAST32_MIN_ (-2147483647 -1)
// S390X:INT_LEAST32_MAX_ 2147483647
// S390X:UINT_LEAST32_MAX_ 4294967295U
// S390X:INT_FAST32_MIN_ (-2147483647 -1)
// S390X:INT_FAST32_MAX_ 2147483647
// S390X:UINT_FAST32_MAX_ 4294967295U
//
// S390X:INT64_MAX_ 9223372036854775807L
// S390X:INT64_MIN_ (-9223372036854775807LL -1)
// S390X:UINT64_MAX_ 18446744073709551615UL
// S390X:INT_LEAST64_MIN_ (-9223372036854775807LL -1)
// S390X:INT_LEAST64_MAX_ 9223372036854775807L
// S390X:UINT_LEAST64_MAX_ 18446744073709551615UL
// S390X:INT_FAST64_MIN_ (-9223372036854775807LL -1)
// S390X:INT_FAST64_MAX_ 9223372036854775807L
// S390X:UINT_FAST64_MAX_ 18446744073709551615UL
//
// S390X:INTPTR_MIN_ (-9223372036854775807LL -1)
// S390X:INTPTR_MAX_ 9223372036854775807L
// S390X:UINTPTR_MAX_ 18446744073709551615UL
// S390X:PTRDIFF_MIN_ (-9223372036854775807LL -1)
// S390X:PTRDIFF_MAX_ 9223372036854775807L
// S390X:SIZE_MAX_ 18446744073709551615UL
//
// S390X:INTMAX_MIN_ (-9223372036854775807LL -1)
// S390X:INTMAX_MAX_ 9223372036854775807L
// S390X:UINTMAX_MAX_ 18446744073709551615UL
//
// S390X:SIG_ATOMIC_MIN_ (-2147483647 -1)
// S390X:SIG_ATOMIC_MAX_ 2147483647
// S390X:WINT_MIN_ (-2147483647 -1)
// S390X:WINT_MAX_ 2147483647
//
// S390X:WCHAR_MAX_ 2147483647
// S390X:WCHAR_MIN_ (-2147483647 -1)
//
// S390X:INT8_C_(0) 0
// S390X:UINT8_C_(0) 0U
// S390X:INT16_C_(0) 0
// S390X:UINT16_C_(0) 0U
// S390X:INT32_C_(0) 0
// S390X:UINT32_C_(0) 0U
// S390X:INT64_C_(0) 0L
// S390X:UINT64_C_(0) 0UL
//
// S390X:INTMAX_C_(0) 0L
// S390X:UINTMAX_C_(0) 0UL
//
// RUN: %clang_cc1 -E -ffreestanding -triple=sparc-none-none %s | FileCheck -check-prefix SPARC %s
//
// SPARC:typedef signed long long int int64_t;