Refactor code for selecting NEON load lane intrinsics.

llvm-svn: 84109
This commit is contained in:
Bob Wilson 2009-10-14 16:19:03 +00:00
parent cef56992b0
commit 4145e3ac8d
1 changed files with 122 additions and 211 deletions

View File

@ -126,6 +126,13 @@ private:
/// SelectDYN_ALLOC - Select dynamic alloc for Thumb.
SDNode *SelectDYN_ALLOC(SDValue Op);
/// SelectVLDLane - Select NEON load structure to one lane. NumVecs should
/// be 2, 3 or 4. The opcode arrays specify the instructions used for
/// loading D registers and even subregs and odd subregs of Q registers.
SDNode *SelectVLDLane(SDValue Op, unsigned NumVecs,
unsigned *DOpcodes, unsigned *QOpcodes0,
unsigned *QOpcodes1);
/// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM.
SDNode *SelectV6T2BitfieldExtractOp(SDValue Op, unsigned Opc);
@ -970,6 +977,109 @@ SDNode *ARMDAGToDAGISel::PairDRegs(EVT VT, SDValue V0, SDValue V1) {
VT, SDValue(Pair, 0), V1, SubReg1);
}
/// GetNEONSubregVT - Given a type for a 128-bit NEON vector, return the type
/// for a 64-bit subregister of the vector.
static EVT GetNEONSubregVT(EVT VT) {
switch (VT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("unhandled NEON type");
case MVT::v16i8: return MVT::v8i8;
case MVT::v8i16: return MVT::v4i16;
case MVT::v4f32: return MVT::v2f32;
case MVT::v4i32: return MVT::v2i32;
case MVT::v2i64: return MVT::v1i64;
}
}
SDNode *ARMDAGToDAGISel::SelectVLDLane(SDValue Op, unsigned NumVecs,
unsigned *DOpcodes, unsigned *QOpcodes0,
unsigned *QOpcodes1) {
assert(NumVecs >=2 && NumVecs <= 4 && "VLDLane NumVecs out-of-range");
SDNode *N = Op.getNode();
DebugLoc dl = N->getDebugLoc();
SDValue MemAddr, MemUpdate, MemOpc;
if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc))
return NULL;
SDValue Chain = N->getOperand(0);
unsigned Lane =
cast<ConstantSDNode>(N->getOperand(NumVecs+3))->getZExtValue();
EVT VT = N->getValueType(0);
bool is64BitVector = VT.is64BitVector();
// Quad registers are handled by extracting subregs, doing the load,
// and then inserting the results as subregs. Find the subreg info.
unsigned NumElts = 0;
int SubregIdx = 0;
EVT RegVT = VT;
if (!is64BitVector) {
RegVT = GetNEONSubregVT(VT);
NumElts = RegVT.getVectorNumElements();
SubregIdx = (Lane < NumElts) ? ARM::DSUBREG_0 : ARM::DSUBREG_1;
}
unsigned OpcodeIndex;
switch (VT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("unhandled vld lane type");
// Double-register operations:
case MVT::v8i8: OpcodeIndex = 0; break;
case MVT::v4i16: OpcodeIndex = 1; break;
case MVT::v2f32:
case MVT::v2i32: OpcodeIndex = 2; break;
// Quad-register operations:
case MVT::v8i16: OpcodeIndex = 0; break;
case MVT::v4f32:
case MVT::v4i32: OpcodeIndex = 1; break;
}
SmallVector<SDValue, 9> Ops;
Ops.push_back(MemAddr);
Ops.push_back(MemUpdate);
Ops.push_back(MemOpc);
unsigned Opc = 0;
if (is64BitVector) {
Opc = DOpcodes[OpcodeIndex];
for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
Ops.push_back(N->getOperand(Vec+3));
} else {
// Check if this is loading the even or odd subreg of a Q register.
if (Lane < NumElts) {
Opc = QOpcodes0[OpcodeIndex];
} else {
Lane -= NumElts;
Opc = QOpcodes1[OpcodeIndex];
}
// Extract the subregs of the input vector.
for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
Ops.push_back(CurDAG->getTargetExtractSubreg(SubregIdx, dl, RegVT,
N->getOperand(Vec+3)));
}
Ops.push_back(getI32Imm(Lane));
Ops.push_back(Chain);
std::vector<EVT> ResTys(NumVecs, RegVT);
ResTys.push_back(MVT::Other);
SDNode *VLdLn =
CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), NumVecs+5);
// For a 64-bit vector load to D registers, nothing more needs to be done.
if (is64BitVector)
return VLdLn;
// For 128-bit vectors, take the 64-bit results of the load and insert them
// as subregs into the result.
for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
SDValue QuadVec = CurDAG->getTargetInsertSubreg(SubregIdx, dl, VT,
N->getOperand(Vec+3),
SDValue(VLdLn, Vec));
ReplaceUses(SDValue(N, Vec), QuadVec);
}
Chain = SDValue(VLdLn, NumVecs);
ReplaceUses(SDValue(N, NumVecs), Chain);
return NULL;
}
SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDValue Op,
unsigned Opc) {
if (!Subtarget->hasV6T2Ops())
@ -1568,223 +1678,24 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
}
case Intrinsic::arm_neon_vld2lane: {
SDValue MemAddr, MemUpdate, MemOpc;
if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc))
return NULL;
SDValue Chain = N->getOperand(0);
unsigned Lane = cast<ConstantSDNode>(N->getOperand(5))->getZExtValue();
if (VT.is64BitVector()) {
switch (VT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("unhandled vld2lane type");
case MVT::v8i8: Opc = ARM::VLD2LNd8; break;
case MVT::v4i16: Opc = ARM::VLD2LNd16; break;
case MVT::v2f32:
case MVT::v2i32: Opc = ARM::VLD2LNd32; break;
}
const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc,
N->getOperand(3), N->getOperand(4),
getI32Imm(Lane), Chain };
return CurDAG->getMachineNode(Opc, dl, VT, VT, MVT::Other, Ops, 7);
}
// Quad registers are handled by extracting subregs, doing the load,
// and then inserting the results as subregs.
EVT RegVT;
unsigned Opc2 = 0;
switch (VT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("unhandled vld2lane type");
case MVT::v8i16:
Opc = ARM::VLD2LNq16a;
Opc2 = ARM::VLD2LNq16b;
RegVT = MVT::v4i16;
break;
case MVT::v4f32:
Opc = ARM::VLD2LNq32a;
Opc2 = ARM::VLD2LNq32b;
RegVT = MVT::v2f32;
break;
case MVT::v4i32:
Opc = ARM::VLD2LNq32a;
Opc2 = ARM::VLD2LNq32b;
RegVT = MVT::v2i32;
break;
}
unsigned NumElts = RegVT.getVectorNumElements();
int SubregIdx = (Lane < NumElts) ? ARM::DSUBREG_0 : ARM::DSUBREG_1;
SDValue D0 = CurDAG->getTargetExtractSubreg(SubregIdx, dl, RegVT,
N->getOperand(3));
SDValue D1 = CurDAG->getTargetExtractSubreg(SubregIdx, dl, RegVT,
N->getOperand(4));
const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, D0, D1,
getI32Imm(Lane % NumElts), Chain };
SDNode *VLdLn = CurDAG->getMachineNode((Lane < NumElts) ? Opc : Opc2,
dl, RegVT, RegVT, MVT::Other,
Ops, 7);
SDValue Q0 = CurDAG->getTargetInsertSubreg(SubregIdx, dl, VT,
N->getOperand(3),
SDValue(VLdLn, 0));
SDValue Q1 = CurDAG->getTargetInsertSubreg(SubregIdx, dl, VT,
N->getOperand(4),
SDValue(VLdLn, 1));
Chain = SDValue(VLdLn, 2);
ReplaceUses(SDValue(N, 0), Q0);
ReplaceUses(SDValue(N, 1), Q1);
ReplaceUses(SDValue(N, 2), Chain);
return NULL;
unsigned DOpcodes[] = { ARM::VLD2LNd8, ARM::VLD2LNd16, ARM::VLD2LNd32 };
unsigned QOpcodes0[] = { ARM::VLD2LNq16a, ARM::VLD2LNq32a };
unsigned QOpcodes1[] = { ARM::VLD2LNq16b, ARM::VLD2LNq32b };
return SelectVLDLane(Op, 2, DOpcodes, QOpcodes0, QOpcodes1);
}
case Intrinsic::arm_neon_vld3lane: {
SDValue MemAddr, MemUpdate, MemOpc;
if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc))
return NULL;
SDValue Chain = N->getOperand(0);
unsigned Lane = cast<ConstantSDNode>(N->getOperand(6))->getZExtValue();
if (VT.is64BitVector()) {
switch (VT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("unhandled vld3lane type");
case MVT::v8i8: Opc = ARM::VLD3LNd8; break;
case MVT::v4i16: Opc = ARM::VLD3LNd16; break;
case MVT::v2f32:
case MVT::v2i32: Opc = ARM::VLD3LNd32; break;
}
const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc,
N->getOperand(3), N->getOperand(4),
N->getOperand(5), getI32Imm(Lane), Chain };
return CurDAG->getMachineNode(Opc, dl, VT, VT, VT, MVT::Other, Ops, 8);
}
// Quad registers are handled by extracting subregs, doing the load,
// and then inserting the results as subregs.
EVT RegVT;
unsigned Opc2 = 0;
switch (VT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("unhandled vld3lane type");
case MVT::v8i16:
Opc = ARM::VLD3LNq16a;
Opc2 = ARM::VLD3LNq16b;
RegVT = MVT::v4i16;
break;
case MVT::v4f32:
Opc = ARM::VLD3LNq32a;
Opc2 = ARM::VLD3LNq32b;
RegVT = MVT::v2f32;
break;
case MVT::v4i32:
Opc = ARM::VLD3LNq32a;
Opc2 = ARM::VLD3LNq32b;
RegVT = MVT::v2i32;
break;
}
unsigned NumElts = RegVT.getVectorNumElements();
int SubregIdx = (Lane < NumElts) ? ARM::DSUBREG_0 : ARM::DSUBREG_1;
SDValue D0 = CurDAG->getTargetExtractSubreg(SubregIdx, dl, RegVT,
N->getOperand(3));
SDValue D1 = CurDAG->getTargetExtractSubreg(SubregIdx, dl, RegVT,
N->getOperand(4));
SDValue D2 = CurDAG->getTargetExtractSubreg(SubregIdx, dl, RegVT,
N->getOperand(5));
const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, D0, D1, D2,
getI32Imm(Lane % NumElts), Chain };
SDNode *VLdLn = CurDAG->getMachineNode((Lane < NumElts) ? Opc : Opc2,
dl, RegVT, RegVT, RegVT,
MVT::Other, Ops, 8);
SDValue Q0 = CurDAG->getTargetInsertSubreg(SubregIdx, dl, VT,
N->getOperand(3),
SDValue(VLdLn, 0));
SDValue Q1 = CurDAG->getTargetInsertSubreg(SubregIdx, dl, VT,
N->getOperand(4),
SDValue(VLdLn, 1));
SDValue Q2 = CurDAG->getTargetInsertSubreg(SubregIdx, dl, VT,
N->getOperand(5),
SDValue(VLdLn, 2));
Chain = SDValue(VLdLn, 3);
ReplaceUses(SDValue(N, 0), Q0);
ReplaceUses(SDValue(N, 1), Q1);
ReplaceUses(SDValue(N, 2), Q2);
ReplaceUses(SDValue(N, 3), Chain);
return NULL;
unsigned DOpcodes[] = { ARM::VLD3LNd8, ARM::VLD3LNd16, ARM::VLD3LNd32 };
unsigned QOpcodes0[] = { ARM::VLD3LNq16a, ARM::VLD3LNq32a };
unsigned QOpcodes1[] = { ARM::VLD3LNq16b, ARM::VLD3LNq32b };
return SelectVLDLane(Op, 3, DOpcodes, QOpcodes0, QOpcodes1);
}
case Intrinsic::arm_neon_vld4lane: {
SDValue MemAddr, MemUpdate, MemOpc;
if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc))
return NULL;
SDValue Chain = N->getOperand(0);
unsigned Lane = cast<ConstantSDNode>(N->getOperand(7))->getZExtValue();
if (VT.is64BitVector()) {
switch (VT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("unhandled vld4lane type");
case MVT::v8i8: Opc = ARM::VLD4LNd8; break;
case MVT::v4i16: Opc = ARM::VLD4LNd16; break;
case MVT::v2f32:
case MVT::v2i32: Opc = ARM::VLD4LNd32; break;
}
const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc,
N->getOperand(3), N->getOperand(4),
N->getOperand(5), N->getOperand(6),
getI32Imm(Lane), Chain };
std::vector<EVT> ResTys(4, VT);
ResTys.push_back(MVT::Other);
return CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 9);
}
// Quad registers are handled by extracting subregs, doing the load,
// and then inserting the results as subregs.
EVT RegVT;
unsigned Opc2 = 0;
switch (VT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("unhandled vld4lane type");
case MVT::v8i16:
Opc = ARM::VLD4LNq16a;
Opc2 = ARM::VLD4LNq16b;
RegVT = MVT::v4i16;
break;
case MVT::v4f32:
Opc = ARM::VLD4LNq32a;
Opc2 = ARM::VLD4LNq32b;
RegVT = MVT::v2f32;
break;
case MVT::v4i32:
Opc = ARM::VLD4LNq32a;
Opc2 = ARM::VLD4LNq32b;
RegVT = MVT::v2i32;
break;
}
unsigned NumElts = RegVT.getVectorNumElements();
int SubregIdx = (Lane < NumElts) ? ARM::DSUBREG_0 : ARM::DSUBREG_1;
SDValue D0 = CurDAG->getTargetExtractSubreg(SubregIdx, dl, RegVT,
N->getOperand(3));
SDValue D1 = CurDAG->getTargetExtractSubreg(SubregIdx, dl, RegVT,
N->getOperand(4));
SDValue D2 = CurDAG->getTargetExtractSubreg(SubregIdx, dl, RegVT,
N->getOperand(5));
SDValue D3 = CurDAG->getTargetExtractSubreg(SubregIdx, dl, RegVT,
N->getOperand(6));
const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, D0, D1, D2, D3,
getI32Imm(Lane % NumElts), Chain };
std::vector<EVT> ResTys(4, RegVT);
ResTys.push_back(MVT::Other);
SDNode *VLdLn = CurDAG->getMachineNode((Lane < NumElts) ? Opc : Opc2,
dl, ResTys, Ops, 9);
SDValue Q0 = CurDAG->getTargetInsertSubreg(SubregIdx, dl, VT,
N->getOperand(3),
SDValue(VLdLn, 0));
SDValue Q1 = CurDAG->getTargetInsertSubreg(SubregIdx, dl, VT,
N->getOperand(4),
SDValue(VLdLn, 1));
SDValue Q2 = CurDAG->getTargetInsertSubreg(SubregIdx, dl, VT,
N->getOperand(5),
SDValue(VLdLn, 2));
SDValue Q3 = CurDAG->getTargetInsertSubreg(SubregIdx, dl, VT,
N->getOperand(6),
SDValue(VLdLn, 3));
Chain = SDValue(VLdLn, 4);
ReplaceUses(SDValue(N, 0), Q0);
ReplaceUses(SDValue(N, 1), Q1);
ReplaceUses(SDValue(N, 2), Q2);
ReplaceUses(SDValue(N, 3), Q3);
ReplaceUses(SDValue(N, 4), Chain);
return NULL;
unsigned DOpcodes[] = { ARM::VLD4LNd8, ARM::VLD4LNd16, ARM::VLD4LNd32 };
unsigned QOpcodes0[] = { ARM::VLD4LNq16a, ARM::VLD4LNq32a };
unsigned QOpcodes1[] = { ARM::VLD4LNq16b, ARM::VLD4LNq32b };
return SelectVLDLane(Op, 4, DOpcodes, QOpcodes0, QOpcodes1);
}
case Intrinsic::arm_neon_vst2: {