[SCEV] Add URem support to SCEV

In LLVM IR the following code:

    %r = urem <ty> %t, %b

is equivalent to

    %q = udiv <ty> %t, %b
    %s = mul <ty> nuw %q, %b
    %r = sub <ty> nuw %t, %q ; (t / b) * b + (t % b) = t

As UDiv, Mul and Sub are already supported by SCEV, URem can be implemented
with minimal effort using that relation:

    %r --> (-%b * (%t /u %b)) + %t

We implement two special cases:

  - if %b is 1, the result is always 0
  - if %b is a power-of-two, we produce a zext/trunc based expression instead

That is, the following code:

    %r = urem i32 %t, 65536

Produces:

    %r --> (zext i16 (trunc i32 %a to i16) to i32)

Note that while this helps get a tighter bound on the range analysis and the
known-bits analysis, this exposes some normalization shortcoming of SCEVs:

    %div = udim i32 %a, 65536
    %mul = mul i32 %div, 65536
    %rem = urem i32 %a, 65536
    %add = add i32 %mul, %rem

Will usually not be reduced.

llvm-svn: 312329
This commit is contained in:
Alexandre Isoard 2017-09-01 14:59:59 +00:00
parent 65528f2991
commit 405728fd47
4 changed files with 87 additions and 0 deletions

View File

@ -1269,6 +1269,7 @@ public:
}
const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS);
const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L,
SCEV::NoWrapFlags Flags);
const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,

View File

@ -2981,6 +2981,34 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
return getOrCreateMulExpr(Ops, Flags);
}
/// Represents an unsigned remainder expression based on unsigned division.
const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
const SCEV *RHS) {
assert(getEffectiveSCEVType(LHS->getType()) ==
getEffectiveSCEVType(RHS->getType()) &&
"SCEVURemExpr operand types don't match!");
// Short-circuit easy cases
if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
// If constant is one, the result is trivial
if (RHSC->getValue()->isOne())
return getZero(LHS->getType()); // X urem 1 --> 0
// If constant is a power of two, fold into a zext(trunc(LHS)).
if (RHSC->getAPInt().isPowerOf2()) {
Type *FullTy = LHS->getType();
Type *TruncTy =
IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
}
}
// Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
const SCEV *UDiv = getUDivExpr(LHS, RHS);
const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
}
/// Get a canonical unsigned division expression, or something simpler if
/// possible.
const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
@ -4144,6 +4172,7 @@ static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
case Instruction::Sub:
case Instruction::Mul:
case Instruction::UDiv:
case Instruction::URem:
case Instruction::And:
case Instruction::Or:
case Instruction::AShr:
@ -5782,6 +5811,8 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
}
case Instruction::UDiv:
return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
case Instruction::URem:
return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
case Instruction::Sub: {
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
if (BO->Op)

View File

@ -0,0 +1,22 @@
; RUN: opt < %s -scalar-evolution -analyze | FileCheck %s
define void @foo([7 x i8]* %a) {
; CHECK-LABEL: @foo
entry:
br label %bb
bb:
%idx = phi i64 [ 0, %entry ], [ %idx.incr, %bb ]
%i = udiv i64 %idx, 7
%j = urem i64 %idx, 7
%a.ptr = getelementptr [7 x i8], [7 x i8]* %a, i64 %i, i64 %j
; CHECK: %a.ptr = getelementptr [7 x i8], [7 x i8]* %a, i64 %i, i64 %j
; CHECK-NEXT: --> {%a,+,1}<nw><%bb>
%val = load i8, i8* %a.ptr
%idx.incr = add i64 %idx, 1
%test = icmp ne i64 %idx.incr, 35
br i1 %test, label %bb, label %exit
exit:
ret void
}

View File

@ -0,0 +1,33 @@
; RUN: opt < %s -scalar-evolution -analyze | FileCheck %s
define i8 @foo(i8 %a) {
; CHECK-LABEL: @foo
%t0 = urem i8 %a, 27
; CHECK: %t0 = urem i8 %a, 27
; CHECK-NEXT: --> ((-27 * (%a /u 27)) + %a)
ret i8 %t0
}
define i8 @bar(i8 %a) {
; CHECK-LABEL: @bar
%t1 = urem i8 %a, 1
; CHECK: %t1 = urem i8 %a, 1
; CHECK-NEXT: --> 0
ret i8 %t1
}
define i8 @baz(i8 %a) {
; CHECK-LABEL: @baz
%t2 = urem i8 %a, 32
; CHECK: %t2 = urem i8 %a, 32
; CHECK-NEXT: --> (zext i5 (trunc i8 %a to i5) to i8)
ret i8 %t2
}
define i8 @qux(i8 %a) {
; CHECK-LABEL: @qux
%t3 = urem i8 %a, 2
; CHECK: %t3 = urem i8 %a, 2
; CHECK-NEXT: --> (zext i1 (trunc i8 %a to i1) to i8)
ret i8 %t3
}