- CodeGenPrepare does not split loop back edges but it only knows about back edges of single block loops. It now does a DFS walk to find loop back edges.

- Use SplitBlockPredecessors to factor out common predecessors of the critical edge destination. This is disabled for now due to some regressions.

llvm-svn: 61248
This commit is contained in:
Evan Cheng 2008-12-19 18:03:11 +00:00
parent 8c036a3af4
commit 3b3de7c228
3 changed files with 185 additions and 45 deletions

View File

@ -30,6 +30,7 @@
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
@ -37,11 +38,18 @@
using namespace llvm;
using namespace llvm::PatternMatch;
static cl::opt<bool> FactorCommonPreds("split-critical-paths-tweak",
cl::init(false), cl::Hidden);
namespace {
class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass {
/// TLI - Keep a pointer of a TargetLowering to consult for determining
/// transformation profitability.
const TargetLowering *TLI;
/// BackEdges - Keep a set of all the loop back edges.
///
SmallSet<std::pair<BasicBlock*,BasicBlock*>, 8> BackEdges;
public:
static char ID; // Pass identification, replacement for typeid
explicit CodeGenPrepare(const TargetLowering *tli = 0)
@ -58,6 +66,7 @@ namespace {
bool OptimizeInlineAsmInst(Instruction *I, CallSite CS,
DenseMap<Value*,Value*> &SunkAddrs);
bool OptimizeExtUses(Instruction *I);
void findLoopBackEdges(Function &F);
};
}
@ -69,10 +78,55 @@ FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
return new CodeGenPrepare(TLI);
}
/// findLoopBackEdges - Do a DFS walk to find loop back edges.
///
void CodeGenPrepare::findLoopBackEdges(Function &F) {
SmallPtrSet<BasicBlock*, 8> Visited;
SmallVector<std::pair<BasicBlock*, succ_iterator>, 8> VisitStack;
SmallPtrSet<BasicBlock*, 8> InStack;
BasicBlock *BB = &F.getEntryBlock();
if (succ_begin(BB) == succ_end(BB))
return;
Visited.insert(BB);
VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
InStack.insert(BB);
do {
std::pair<BasicBlock*, succ_iterator> &Top = VisitStack.back();
BasicBlock *ParentBB = Top.first;
succ_iterator &I = Top.second;
bool FoundNew = false;
while (I != succ_end(ParentBB)) {
BB = *I++;
if (Visited.insert(BB)) {
FoundNew = true;
break;
}
// Successor is in VisitStack, it's a back edge.
if (InStack.count(BB))
BackEdges.insert(std::make_pair(ParentBB, BB));
}
if (FoundNew) {
// Go down one level if there is a unvisited successor.
InStack.insert(BB);
VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
} else {
// Go up one level.
std::pair<BasicBlock*, succ_iterator> &Pop = VisitStack.back();
InStack.erase(Pop.first);
VisitStack.pop_back();
}
} while (!VisitStack.empty());
}
bool CodeGenPrepare::runOnFunction(Function &F) {
bool EverMadeChange = false;
findLoopBackEdges(F);
// First pass, eliminate blocks that contain only PHI nodes and an
// unconditional branch.
EverMadeChange |= EliminateMostlyEmptyBlocks(F);
@ -262,7 +316,9 @@ void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
/// phi nodes (otherwise critical edges are ok). If there is already another
/// predecessor of the succ that is empty (and thus has no phi nodes), use it
/// instead of introducing a new block.
static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum,
SmallSet<std::pair<BasicBlock*,BasicBlock*>, 8> &BackEdges,
Pass *P) {
BasicBlock *TIBB = TI->getParent();
BasicBlock *Dest = TI->getSuccessor(SuccNum);
assert(isa<PHINode>(Dest->begin()) &&
@ -271,55 +327,90 @@ static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
// As a hack, never split backedges of loops. Even though the copy for any
// PHIs inserted on the backedge would be dead for exits from the loop, we
// assume that the cost of *splitting* the backedge would be too high.
if (Dest == TIBB)
if (BackEdges.count(std::make_pair(TIBB, Dest)))
return;
/// TIPHIValues - This array is lazily computed to determine the values of
/// PHIs in Dest that TI would provide.
SmallVector<Value*, 32> TIPHIValues;
if (!FactorCommonPreds) {
/// TIPHIValues - This array is lazily computed to determine the values of
/// PHIs in Dest that TI would provide.
SmallVector<Value*, 32> TIPHIValues;
// Check to see if Dest has any blocks that can be used as a split edge for
// this terminator.
for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
BasicBlock *Pred = *PI;
// To be usable, the pred has to end with an uncond branch to the dest.
BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
if (!PredBr || !PredBr->isUnconditional() ||
// Must be empty other than the branch.
&Pred->front() != PredBr ||
// Cannot be the entry block; its label does not get emitted.
Pred == &(Dest->getParent()->getEntryBlock()))
continue;
// Check to see if Dest has any blocks that can be used as a split edge for
// this terminator.
for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
BasicBlock *Pred = *PI;
// To be usable, the pred has to end with an uncond branch to the dest.
BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
if (!PredBr || !PredBr->isUnconditional() ||
// Must be empty other than the branch.
&Pred->front() != PredBr ||
// Cannot be the entry block; its label does not get emitted.
Pred == &(Dest->getParent()->getEntryBlock()))
continue;
// Finally, since we know that Dest has phi nodes in it, we have to make
// sure that jumping to Pred will have the same affect as going to Dest in
// terms of PHI values.
PHINode *PN;
unsigned PHINo = 0;
bool FoundMatch = true;
for (BasicBlock::iterator I = Dest->begin();
(PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
if (PHINo == TIPHIValues.size())
TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
// Finally, since we know that Dest has phi nodes in it, we have to make
// sure that jumping to Pred will have the same affect as going to Dest in
// terms of PHI values.
PHINode *PN;
unsigned PHINo = 0;
bool FoundMatch = true;
for (BasicBlock::iterator I = Dest->begin();
(PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
if (PHINo == TIPHIValues.size())
TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
// If the PHI entry doesn't work, we can't use this pred.
if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
FoundMatch = false;
break;
// If the PHI entry doesn't work, we can't use this pred.
if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
FoundMatch = false;
break;
}
}
// If we found a workable predecessor, change TI to branch to Succ.
if (FoundMatch) {
Dest->removePredecessor(TIBB);
TI->setSuccessor(SuccNum, Pred);
return;
}
}
// If we found a workable predecessor, change TI to branch to Succ.
if (FoundMatch) {
Dest->removePredecessor(TIBB);
TI->setSuccessor(SuccNum, Pred);
return;
SplitCriticalEdge(TI, SuccNum, P, true);
return;
}
PHINode *PN;
SmallVector<Value*, 8> TIPHIValues;
for (BasicBlock::iterator I = Dest->begin();
(PN = dyn_cast<PHINode>(I)); ++I)
TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
SmallVector<BasicBlock*, 8> IdenticalPreds;
for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
BasicBlock *Pred = *PI;
if (BackEdges.count(std::make_pair(Pred, Dest)))
continue;
if (PI == TIBB)
IdenticalPreds.push_back(Pred);
else {
bool Identical = true;
unsigned PHINo = 0;
for (BasicBlock::iterator I = Dest->begin();
(PN = dyn_cast<PHINode>(I)); ++I, ++PHINo)
if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
Identical = false;
break;
}
if (Identical)
IdenticalPreds.push_back(Pred);
}
}
SplitCriticalEdge(TI, SuccNum, P, true);
assert(!IdenticalPreds.empty());
SplitBlockPredecessors(Dest, &IdenticalPreds[0], IdenticalPreds.size(),
".critedge", P);
}
/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
/// copy (e.g. it's casting from one pointer type to another, int->uint, or
/// int->sbyte on PPC), sink it into user blocks to reduce the number of virtual
@ -1350,17 +1441,16 @@ bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
bool MadeChange = false;
// Split all critical edges where the dest block has a PHI and where the phi
// has shared immediate operands.
// Split all critical edges where the dest block has a PHI.
TerminatorInst *BBTI = BB.getTerminator();
if (BBTI->getNumSuccessors() > 1) {
for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
isCriticalEdge(BBTI, i, true))
SplitEdgeNicely(BBTI, i, this);
for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i) {
BasicBlock *SuccBB = BBTI->getSuccessor(i);
if (isa<PHINode>(SuccBB->begin()) && isCriticalEdge(BBTI, i, true))
SplitEdgeNicely(BBTI, i, BackEdges, this);
}
}
// Keep track of non-local addresses that have been sunk into this block.
// This allows us to avoid inserting duplicate code for blocks with multiple
// load/stores of the same address.

View File

@ -0,0 +1,50 @@
; RUN: llvm-as < %s | llc -mtriple=i386-apple-darwin -stats -info-output-file - | grep asm-printer | grep 31
%CC = type { %Register }
%II = type { %"struct.XX::II::$_74" }
%JITFunction = type %YYValue* (%CC*, %YYValue**)
%YYValue = type { i32 (...)** }
%Register = type { %"struct.XX::ByteCodeFeatures" }
%"struct.XX::ByteCodeFeatures" = type { i32 }
%"struct.XX::II::$_74" = type { i8* }
@llvm.used = appending global [1 x i8*] [ i8* bitcast (%JITFunction* @loop to i8*) ], section "llvm.metadata" ; <[1 x i8*]*> [#uses=0]
define %YYValue* @loop(%CC*, %YYValue**) nounwind {
; <label>:2
%3 = getelementptr %CC* %0, i32 -9 ; <%CC*> [#uses=1]
%4 = bitcast %CC* %3 to %YYValue** ; <%YYValue**> [#uses=2]
%5 = load %YYValue** %4 ; <%YYValue*> [#uses=3]
%unique_1.i = ptrtoint %YYValue* %5 to i1 ; <i1> [#uses=1]
br i1 %unique_1.i, label %loop, label %11
loop: ; preds = %6, %2
%.1 = phi %YYValue* [ inttoptr (i32 1 to %YYValue*), %2 ], [ %intAddValue, %6 ] ; <%YYValue*> [#uses=3]
%immediateCmp = icmp slt %YYValue* %.1, %5 ; <i1> [#uses=1]
br i1 %immediateCmp, label %6, label %8
; <label>:6 ; preds = %loop
%lhsInt = ptrtoint %YYValue* %.1 to i32 ; <i32> [#uses=1]
%7 = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %lhsInt, i32 2) ; <{ i32, i1 }> [#uses=2]
%intAdd = extractvalue { i32, i1 } %7, 0 ; <i32> [#uses=1]
%intAddValue = inttoptr i32 %intAdd to %YYValue* ; <%YYValue*> [#uses=1]
%intAddOverflow = extractvalue { i32, i1 } %7, 1 ; <i1> [#uses=1]
br i1 %intAddOverflow, label %.loopexit, label %loop
; <label>:8 ; preds = %loop
ret %YYValue* inttoptr (i32 10 to %YYValue*)
.loopexit: ; preds = %6
%9 = bitcast %CC* %0 to %YYValue** ; <%YYValue**> [#uses=1]
store %YYValue* %.1, %YYValue** %9
store %YYValue* %5, %YYValue** %4
%10 = call fastcc %YYValue* @foobar(%II* inttoptr (i32 3431104 to %II*), %CC* %0, %YYValue** %1) ; <%YYValue*> [#uses=1]
ret %YYValue* %10
; <label>:11 ; preds = %2
%12 = call fastcc %YYValue* @foobar(%II* inttoptr (i32 3431080 to %II*), %CC* %0, %YYValue** %1) ; <%YYValue*> [#uses=1]
ret %YYValue* %12
}
declare fastcc %YYValue* @foobar(%II*, %CC*, %YYValue**) nounwind
declare { i32, i1 } @llvm.sadd.with.overflow.i32(i32, i32) nounwind

View File

@ -1,4 +1,4 @@
; RUN: llvm-as < %s | llc -march=x86 | grep xor | count 2
; RUN: llvm-as < %s | llc -march=x86 | grep xor | count 1
%struct.FILE = type { i8*, i32, i32, i16, i16, %struct.__sbuf, i32, i8*, i32 (i8*)*, i32 (i8*, i8*, i32)*, i64 (i8*, i64, i32)*, i32 (i8*, i8*, i32)*, %struct.__sbuf, %struct.__sFILEX*, i32, [3 x i8], [1 x i8], %struct.__sbuf, i32, i64 }
%struct.ImgT = type { i8, i8*, i8*, %struct.FILE*, i32, i32, i32, i32, i8*, double*, float*, float*, float*, i32*, double, double, i32*, double*, i32*, i32* }