start the implementation of a new ConstantDataVector and ConstantDataArray

classes, per PR1324.  Not all of their helper functions are implemented,
nothing creates them, and the rest of the compiler doesn't handle them yet.

llvm-svn: 148741
This commit is contained in:
Chris Lattner 2012-01-23 22:57:10 +00:00
parent 11eeeff24f
commit 3756b91313
5 changed files with 319 additions and 3 deletions

View File

@ -34,6 +34,7 @@ class IntegerType;
class StructType;
class PointerType;
class VectorType;
class SequentialType;
template<class ConstantClass, class TypeClass, class ValType>
struct ConstantCreator;
@ -298,7 +299,6 @@ public:
/// ConstantAggregateZero - All zero aggregate value
///
class ConstantAggregateZero : public Constant {
friend struct ConstantCreator<ConstantAggregateZero, Type, char>;
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
ConstantAggregateZero(const ConstantAggregateZero &); // DO NOT IMPLEMENT
protected:
@ -503,7 +503,6 @@ DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantVector, Constant)
/// ConstantPointerNull - a constant pointer value that points to null
///
class ConstantPointerNull : public Constant {
friend struct ConstantCreator<ConstantPointerNull, PointerType, char>;
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
ConstantPointerNull(const ConstantPointerNull &); // DO NOT IMPLEMENT
protected:
@ -535,6 +534,166 @@ public:
return V->getValueID() == ConstantPointerNullVal;
}
};
//===----------------------------------------------------------------------===//
/// ConstantDataSequential - A vector or array of data that contains no
/// relocations, and whose element type is a simple 1/2/4/8-byte integer or
/// float/double. This is the common base class of ConstantDataArray and
/// ConstantDataVector.
///
class ConstantDataSequential : public Constant {
friend class LLVMContextImpl;
/// DataElements - A pointer to the bytes underlying this constant (which is
/// owned by the uniquing StringMap).
const char *DataElements;
/// Next - This forms a link list of ConstantDataSequential nodes that have
/// the same value but different type. For example, 0,0,0,1 could be a 4
/// element array of i8, or a 1-element array of i32. They'll both end up in
/// the same StringMap bucket, linked up.
ConstantDataSequential *Next;
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
ConstantDataSequential(const ConstantDataSequential &); // DO NOT IMPLEMENT
protected:
explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
: Constant(ty, VT, 0, 0), DataElements(Data) {}
~ConstantDataSequential() { delete Next; }
static Constant *getImpl(StringRef Bytes, Type *Ty);
protected:
// allocate space for exactly zero operands.
void *operator new(size_t s) {
return User::operator new(s, 0);
}
public:
virtual void destroyConstant();
/// getElementAsInteger - If this is a sequential container of integers (of
/// any size), return the specified element in the low bits of a uint64_t.
uint64_t getElementAsInteger(unsigned i) const;
/// getElementAsAPFloat - If this is a sequential container of floating point
/// type, return the specified element as an APFloat.
APFloat getElementAsAPFloat(unsigned i) const;
/// getElementAsFloat - If this is an sequential container of floats, return
/// the specified element as a float.
float getElementAsFloat(unsigned i) const;
/// getElementAsDouble - If this is an sequential container of doubles, return
/// the specified element as a float.
double getElementAsDouble(unsigned i) const;
/// getElementAsConstant - Return a Constant for a specified index's element.
/// Note that this has to compute a new constant to return, so it isn't as
/// efficient as getElementAsInteger/Float/Double.
Constant *getElementAsConstant(unsigned i) const;
/// getType - Specialize the getType() method to always return a
/// SequentialType, which reduces the amount of casting needed in parts of the
/// compiler.
inline SequentialType *getType() const {
return reinterpret_cast<SequentialType*>(Value::getType());
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
///
static bool classof(const ConstantDataSequential *) { return true; }
static bool classof(const Value *V) {
return V->getValueID() == ConstantDataArrayVal ||
V->getValueID() == ConstantDataVectorVal;
}
};
//===----------------------------------------------------------------------===//
/// ConstantDataArray - An array of data that contains no relocations, and whose
/// element type is a simple 1/2/4/8-byte integer or float/double.
///
class ConstantDataArray : public ConstantDataSequential {
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
ConstantDataArray(const ConstantDataArray &); // DO NOT IMPLEMENT
virtual void anchor();
friend class ConstantDataSequential;
explicit ConstantDataArray(Type *ty, const char *Data)
: ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
protected:
// allocate space for exactly zero operands.
void *operator new(size_t s) {
return User::operator new(s, 0);
}
public:
/// get() constructors - Return a constant with array type with an element
/// count and element type matching the ArrayRef passed in. Note that this
/// can return a ConstantAggregateZero object.
static Constant *get(ArrayRef<uint8_t> Elts, LLVMContext &Context);
static Constant *get(ArrayRef<uint16_t> Elts, LLVMContext &Context);
static Constant *get(ArrayRef<uint32_t> Elts, LLVMContext &Context);
static Constant *get(ArrayRef<uint64_t> Elts, LLVMContext &Context);
static Constant *get(ArrayRef<float> Elts, LLVMContext &Context);
static Constant *get(ArrayRef<double> Elts, LLVMContext &Context);
/// getType - Specialize the getType() method to always return an ArrayType,
/// which reduces the amount of casting needed in parts of the compiler.
///
inline ArrayType *getType() const {
return reinterpret_cast<ArrayType*>(Value::getType());
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
///
static bool classof(const ConstantDataArray *) { return true; }
static bool classof(const Value *V) {
return V->getValueID() == ConstantDataArrayVal;
}
};
//===----------------------------------------------------------------------===//
/// ConstantDataVector - A vector of data that contains no relocations, and
/// whose element type is a simple 1/2/4/8-byte integer or float/double.
///
class ConstantDataVector : public ConstantDataSequential {
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
ConstantDataVector(const ConstantDataVector &); // DO NOT IMPLEMENT
virtual void anchor();
friend class ConstantDataSequential;
explicit ConstantDataVector(Type *ty, const char *Data)
: ConstantDataSequential(ty, ConstantDataVectorVal, Data) {}
protected:
// allocate space for exactly zero operands.
void *operator new(size_t s) {
return User::operator new(s, 0);
}
public:
/// get() constructors - Return a constant with vector type with an element
/// count and element type matching the ArrayRef passed in. Note that this
/// can return a ConstantAggregateZero object.
static Constant *get(ArrayRef<uint8_t> Elts, LLVMContext &Context);
static Constant *get(ArrayRef<uint16_t> Elts, LLVMContext &Context);
static Constant *get(ArrayRef<uint32_t> Elts, LLVMContext &Context);
static Constant *get(ArrayRef<uint64_t> Elts, LLVMContext &Context);
static Constant *get(ArrayRef<float> Elts, LLVMContext &Context);
static Constant *get(ArrayRef<double> Elts, LLVMContext &Context);
/// getType - Specialize the getType() method to always return a VectorType,
/// which reduces the amount of casting needed in parts of the compiler.
///
inline VectorType *getType() const {
return reinterpret_cast<VectorType*>(Value::getType());
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
///
static bool classof(const ConstantDataVector *) { return true; }
static bool classof(const Value *V) {
return V->getValueID() == ConstantDataVectorVal;
}
};
/// BlockAddress - The address of a basic block.
///
@ -893,7 +1052,6 @@ DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
/// LangRef.html#undefvalues for details.
///
class UndefValue : public Constant {
friend struct ConstantCreator<UndefValue, Type, char>;
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
UndefValue(const UndefValue &); // DO NOT IMPLEMENT
protected:

View File

@ -193,6 +193,8 @@ public:
BlockAddressVal, // This is an instance of BlockAddress
ConstantExprVal, // This is an instance of ConstantExpr
ConstantAggregateZeroVal, // This is an instance of ConstantAggregateZero
ConstantDataArrayVal, // This is an instance of ConstantDataArray
ConstantDataVectorVal, // This is an instance of ConstantDataVector
ConstantIntVal, // This is an instance of ConstantInt
ConstantFPVal, // This is an instance of ConstantFP
ConstantArrayVal, // This is an instance of ConstantArray

View File

@ -1913,6 +1913,154 @@ GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
OperandList[i+1] = IdxList[i];
}
//===----------------------------------------------------------------------===//
// ConstantData* implementations
void ConstantDataArray::anchor() {}
void ConstantDataVector::anchor() {}
/// isAllZeros - return true if the array is empty or all zeros.
static bool isAllZeros(StringRef Arr) {
for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
if (*I != 0)
return false;
return true;
}
/// getImpl - This is the underlying implementation of all of the
/// ConstantDataSequential::get methods. They all thunk down to here, providing
/// the correct element type. We take the bytes in as an StringRef because
/// we *want* an underlying "char*" to avoid TBAA type punning violations.
Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
// If the elements are all zero, return a CAZ, which is more dense.
if (isAllZeros(Elements))
return ConstantAggregateZero::get(Ty);
// Do a lookup to see if we have already formed one of these.
StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
// The bucket can point to a linked list of different CDS's that have the same
// body but different types. For example, 0,0,0,1 could be a 4 element array
// of i8, or a 1-element array of i32. They'll both end up in the same
/// StringMap bucket, linked up by their Next pointers. Walk the list.
ConstantDataSequential **Entry = &Slot.getValue();
for (ConstantDataSequential *Node = *Entry; Node != 0;
Entry = &Node->Next, Node = *Entry)
if (Node->getType() == Ty)
return Node;
// Okay, we didn't get a hit. Create a node of the right class, link it in,
// and return it.
if (isa<ArrayType>(Ty))
return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
assert(isa<VectorType>(Ty));
return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
}
void ConstantDataSequential::destroyConstant() {
uint64_t ByteSize =
getType()->getElementType()->getPrimitiveSizeInBits()/8 *
getType()->getElementType()->getNumElements();
// Remove the constant from the StringMap.
StringMap<ConstantDataSequential*> &CDSConstants =
getType()->getContext().pImpl->CDSConstants;
StringMap<ConstantDataSequential*>::iterator Slot =
CDSConstants.find(StringRef(DataElements, ByteSize));
assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
ConstantDataSequential **Entry = &Slot->getValue();
// Remove the entry from the hash table.
if ((*Entry)->Next == 0) {
// If there is only one value in the bucket (common case) it must be this
// entry, and removing the entry should remove the bucket completely.
assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
getContext().pImpl->CDSConstants.erase(Slot);
} else {
// Otherwise, there are multiple entries linked off the bucket, unlink the
// node we care about but keep the bucket around.
for (ConstantDataSequential *Node = *Entry; ;
Entry = &Node->Next, Node = *Entry) {
assert(Node && "Didn't find entry in its uniquing hash table!");
// If we found our entry, unlink it from the list and we're done.
if (Node == this) {
*Entry = Node->Next;
break;
}
}
}
// If we were part of a list, make sure that we don't delete the list that is
// still owned by the uniquing map.
Next = 0;
// Finally, actually delete it.
destroyConstantImpl();
}
/// get() constructors - Return a constant with array type with an element
/// count and element type matching the ArrayRef passed in. Note that this
/// can return a ConstantAggregateZero object.
Constant *ConstantDataArray::get(ArrayRef<uint8_t> Elts, LLVMContext &Context) {
Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
return getImpl(StringRef((char*)Elts.data(), Elts.size()*1), Ty);
}
Constant *ConstantDataArray::get(ArrayRef<uint16_t> Elts, LLVMContext &Context){
Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
return getImpl(StringRef((char*)Elts.data(), Elts.size()*2), Ty);
}
Constant *ConstantDataArray::get(ArrayRef<uint32_t> Elts, LLVMContext &Context){
Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
return getImpl(StringRef((char*)Elts.data(), Elts.size()*4), Ty);
}
Constant *ConstantDataArray::get(ArrayRef<uint64_t> Elts, LLVMContext &Context){
Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
return getImpl(StringRef((char*)Elts.data(), Elts.size()*8), Ty);
}
Constant *ConstantDataArray::get(ArrayRef<float> Elts, LLVMContext &Context) {
Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
return getImpl(StringRef((char*)Elts.data(), Elts.size()*4), Ty);
}
Constant *ConstantDataArray::get(ArrayRef<double> Elts, LLVMContext &Context) {
Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
return getImpl(StringRef((char*)Elts.data(), Elts.size()*8), Ty);
}
/// get() constructors - Return a constant with vector type with an element
/// count and element type matching the ArrayRef passed in. Note that this
/// can return a ConstantAggregateZero object.
Constant *ConstantDataVector::get(ArrayRef<uint8_t> Elts, LLVMContext &Context) {
Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
return getImpl(StringRef((char*)Elts.data(), Elts.size()*1), Ty);
}
Constant *ConstantDataVector::get(ArrayRef<uint16_t> Elts, LLVMContext &Context){
Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
return getImpl(StringRef((char*)Elts.data(), Elts.size()*2), Ty);
}
Constant *ConstantDataVector::get(ArrayRef<uint32_t> Elts, LLVMContext &Context){
Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
return getImpl(StringRef((char*)Elts.data(), Elts.size()*4), Ty);
}
Constant *ConstantDataVector::get(ArrayRef<uint64_t> Elts, LLVMContext &Context){
Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
return getImpl(StringRef((char*)Elts.data(), Elts.size()*8), Ty);
}
Constant *ConstantDataVector::get(ArrayRef<float> Elts, LLVMContext &Context) {
Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
return getImpl(StringRef((char*)Elts.data(), Elts.size()*4), Ty);
}
Constant *ConstantDataVector::get(ArrayRef<double> Elts, LLVMContext &Context) {
Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
return getImpl(StringRef((char*)Elts.data(), Elts.size()*8), Ty);
}
//===----------------------------------------------------------------------===//
// replaceUsesOfWithOnConstant implementations

View File

@ -79,6 +79,11 @@ LLVMContextImpl::~LLVMContextImpl() {
DeleteContainerSeconds(IntConstants);
DeleteContainerSeconds(FPConstants);
for (StringMap<ConstantDataSequential*>::iterator I = CDSConstants.begin(),
E = CDSConstants.end(); I != E; ++I)
delete I->second;
CDSConstants.clear();
// Destroy MDNodes. ~MDNode can move and remove nodes between the MDNodeSet
// and the NonUniquedMDNodes sets, so copy the values out first.
SmallVector<MDNode*, 8> MDNodes;

View File

@ -156,6 +156,9 @@ public:
DenseMap<Type*, UndefValue*> UVConstants;
StringMap<ConstantDataSequential*> CDSConstants;
DenseMap<std::pair<Function*, BasicBlock*> , BlockAddress*> BlockAddresses;
ConstantUniqueMap<ExprMapKeyType, const ExprMapKeyType&, Type, ConstantExpr>
ExprConstants;