x86_64 ABI: Retool classification to compute lo & hi classifications

in terms of where the type resides in the containing object. This is a
more clear embodiement of the spec & fixes a merging issue with
unions. Down to 3/1000 failures.

llvm-svn: 63455
This commit is contained in:
Daniel Dunbar 2009-01-31 00:06:58 +00:00
parent 31b50991cb
commit 34aa3ca8c4
1 changed files with 86 additions and 79 deletions

View File

@ -388,7 +388,7 @@ ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
}
namespace {
/// X86_32ABIInfo - The X86_64 ABI information.
/// X86_64ABIInfo - The X86_64 ABI information.
class X86_64ABIInfo : public ABIInfo {
enum Class {
Integer = 0,
@ -403,20 +403,25 @@ class X86_64ABIInfo : public ABIInfo {
/// merge - Implement the X86_64 ABI merging algorithm.
///
/// \param Offset - The offset of the current field.
/// \param FieldLo - The low classification of the current field.
/// \param FieldHi - The high classification of the current field.
/// \param Lo [in] [out] - The accumulated low classification.
/// \param Lo [in] [out] - The accumulated high classification.
void merge(uint64_t Offset, Class FieldLo, Class FieldHi,
Class &Lo, Class &Hi) const;
/// Merge an accumulating classification \arg Accum with a field
/// classification \arg Field.
///
/// \param Accum - The accumulating classification. This should
/// always be either NoClass or the result of a previous merge
/// call. In addition, this should never be Memory (the caller
/// should just return Memory for the aggregate).
Class merge(Class Accum, Class Field) const;
/// classify - Determine the x86_64 register classes in which the
/// given type T should be passed.
///
/// \param Lo - The classification for the low word of the type.
/// \param Hi - The classification for the high word of the type.
/// \param OffsetBase - The bit offset of the field in the
/// \param Lo - The classification for the parts of the type
/// residing in the low word of the containing object.
///
/// \param Hi - The classification for the parts of the type
/// residing in the high word of the containing object.
///
/// \param OffsetBase - The bit offset of this type in the
/// containing object. Some parameters are classified different
/// depending on whether they straddle an eightbyte boundary.
///
@ -430,7 +435,7 @@ class X86_64ABIInfo : public ABIInfo {
/// be NoClass.
void classify(QualType T, ASTContext &Context, uint64_t OffsetBase,
Class &Lo, Class &Hi) const;
public:
virtual ABIArgInfo classifyReturnType(QualType RetTy,
ASTContext &Context) const;
@ -440,18 +445,8 @@ public:
};
}
void X86_64ABIInfo::merge(uint64_t Offset, Class FieldLo, Class FieldHi,
Class &Lo, Class &Hi) const {
// Determine which half of the structure we are classifying.
//
// AMD64-ABI 3.2.3p2: Rule 3. f the size of the aggregate
// exceeds a single eightbyte, each is classified
// separately. Each eightbyte gets initialized to class
// NO_CLASS.
Class &Target = Offset < 64 ? Lo : Hi;
// Merge the lo field classifcation.
//
X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum,
Class Field) const {
// AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
// classified recursively so that always two fields are
// considered. The resulting class is calculated according to
@ -472,62 +467,59 @@ void X86_64ABIInfo::merge(uint64_t Offset, Class FieldLo, Class FieldHi,
// MEMORY is used as class.
//
// (f) Otherwise class SSE is used.
if (Target == FieldLo || FieldLo == NoClass) ;
else if (FieldLo == Memory)
Lo = Memory;
else if (Target == NoClass)
Target = FieldLo;
else if (Target == Integer || FieldLo == Integer)
Target = Integer;
else if (FieldLo == X87 || FieldLo == X87Up || FieldLo == ComplexX87)
Lo = Memory;
assert((Accum == NoClass || Accum == Integer ||
Accum == SSE || Accum == SSEUp) &&
"Invalid accumulated classification during merge.");
if (Accum == Field || Field == NoClass)
return Accum;
else if (Field == Memory)
return Memory;
else if (Accum == NoClass)
return Field;
else if (Accum == Integer || Field == Integer)
return Integer;
else if (Field == X87 || Field == X87Up || Field == ComplexX87)
return Memory;
else
Target = SSE;
// It isn't clear from the ABI spec what the role of the high
// classification is here, but since this should only happen
// when we have a struct with a two eightbyte member, we can
// just push the field high class into the overall high class.
if (FieldHi != NoClass)
Hi = FieldHi;
return SSE;
}
void X86_64ABIInfo::classify(QualType Ty,
ASTContext &Context,
uint64_t OffsetBase,
Class &Lo, Class &Hi) const {
Lo = Memory;
Hi = NoClass;
Lo = Hi = NoClass;
Class &Current = OffsetBase < 64 ? Lo : Hi;
Current = Memory;
if (const BuiltinType *BT = Ty->getAsBuiltinType()) {
BuiltinType::Kind k = BT->getKind();
if (k == BuiltinType::Void) {
Lo = NoClass;
Current = NoClass;
} else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
Lo = Integer;
Current = Integer;
} else if (k == BuiltinType::Float || k == BuiltinType::Double) {
Lo = SSE;
Current = SSE;
} else if (k == BuiltinType::LongDouble) {
Lo = X87;
Hi = X87Up;
}
// FIXME: _Decimal32 and _Decimal64 are SSE.
// FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
// FIXME: __int128 is (Integer, Integer).
} else if (Ty->isPointerLikeType() || Ty->isBlockPointerType() ||
Ty->isObjCQualifiedInterfaceType()) {
Lo = Integer;
Current = Integer;
} else if (const VectorType *VT = Ty->getAsVectorType()) {
uint64_t Size = Context.getTypeSize(VT);
if (Size == 64) {
// gcc passes <1 x double> in memory.
if (VT->getElementType() == Context.DoubleTy) {
Lo = Memory;
if (VT->getElementType() == Context.DoubleTy)
return;
}
Lo = SSE;
Current = SSE;
// If this type crosses an eightbyte boundary, it should be
// split.
@ -543,15 +535,15 @@ void X86_64ABIInfo::classify(QualType Ty,
uint64_t Size = Context.getTypeSize(Ty);
if (ET->isIntegerType()) {
if (Size <= 64)
Lo = Integer;
Current = Integer;
else if (Size <= 128)
Lo = Hi = Integer;
} else if (ET == Context.FloatTy)
Lo = SSE;
Current = SSE;
else if (ET == Context.DoubleTy)
Lo = Hi = SSE;
else if (ET == Context.LongDoubleTy)
Lo = ComplexX87;
Current = ComplexX87;
// If this complex type crosses an eightbyte boundary then it
// should be split.
@ -573,25 +565,27 @@ void X86_64ABIInfo::classify(QualType Ty,
// fields, it has class MEMORY.
//
// Only need to check alignment of array base.
if (OffsetBase % Context.getTypeAlign(AT->getElementType())) {
Lo = Memory;
if (OffsetBase % Context.getTypeAlign(AT->getElementType()))
return;
}
// Otherwise implement simplified merge. We could be smarter about
// this, but it isn't worth it and would be harder to verify.
Lo = NoClass;
Current = NoClass;
uint64_t EltSize = Context.getTypeSize(AT->getElementType());
uint64_t ArraySize = AT->getSize().getZExtValue();
for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
Class FieldLo, FieldHi;
classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi);
merge(Offset, FieldLo, FieldHi, Lo, Hi);
// Memory is never over-ridden, exit early if we see it.
if (Lo == Memory)
return;
Lo = merge(Lo, FieldLo);
Hi = merge(Hi, FieldHi);
if (Lo == Memory || Hi == Memory)
break;
}
// Do post merger cleanup (see below). Only case we worry about is Memory.
if (Hi == Memory)
Lo = Memory;
assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
} else if (const RecordType *RT = Ty->getAsRecordType()) {
uint64_t Size = Context.getTypeSize(Ty);
@ -609,7 +603,7 @@ void X86_64ABIInfo::classify(QualType Ty,
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
// Reset Lo class, this will be recomputed.
Lo = NoClass;
Current = NoClass;
unsigned idx = 0;
for (RecordDecl::field_iterator i = RD->field_begin(),
e = RD->field_end(); i != e; ++i, ++idx) {
@ -623,13 +617,17 @@ void X86_64ABIInfo::classify(QualType Ty,
}
// Classify this field.
//
// AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
// exceeds a single eightbyte, each is classified
// separately. Each eightbyte gets initialized to class
// NO_CLASS.
Class FieldLo, FieldHi;
classify(i->getType(), Context, Offset, FieldLo, FieldHi);
merge(Offset, FieldLo, FieldHi, Lo, Hi);
// Memory is never over-ridden, exit early if we see it.
if (Lo == Memory)
return;
Lo = merge(Lo, FieldLo);
Hi = merge(Hi, FieldHi);
if (Lo == Memory || Hi == Memory)
break;
}
// AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
@ -640,14 +638,18 @@ void X86_64ABIInfo::classify(QualType Ty,
// (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
// The first of these conditions is guaranteed by how we implement
// the merge (just bail). I don't believe the second is actually
// possible at all.
assert(Lo != Memory && "Unexpected memory classification.");
// the merge (just bail).
//
// The second condition occurs in the case of unions; for example
// union { _Complex double; unsigned; }.
if (Hi == Memory)
Lo = Memory;
if (Hi == SSEUp && Lo != SSE)
Hi = SSE;
Hi = SSE;
}
}
ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
ASTContext &Context) const {
// AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
@ -655,6 +657,11 @@ ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
X86_64ABIInfo::Class Lo, Hi;
classify(RetTy, Context, 0, Lo, Hi);
// Check some invariants.
assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
const llvm::Type *ResType = 0;
switch (Lo) {
case NoClass:
@ -664,8 +671,8 @@ ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
case X87Up:
assert(0 && "Invalid classification for lo word.");
// AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
// hidden argument, i.e. structret.
// AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
// hidden argument, i.e. structret.
case Memory:
return ABIArgInfo::getStructRet();
@ -684,9 +691,9 @@ ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
case X87:
ResType = llvm::Type::X86_FP80Ty; break;
// AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
// part of the value is returned in %st0 and the imaginary part in
// %st1.
// AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
// part of the value is returned in %st0 and the imaginary part in
// %st1.
case ComplexX87:
assert(Hi == NoClass && "Unexpected ComplexX87 classification.");
ResType = llvm::VectorType::get(llvm::Type::X86_FP80Ty, 2);