[PM] Port SROA to the new pass manager.

In some ways this is a very boring port to the new pass manager as there
are no interesting analyses or dependencies or other oddities.

However, this does introduce the first good example of a transformation
pass with non-trivial state porting to the new pass manager. I've tried
to carve out patterns here to replicate elsewhere, and would appreciate
comments on whether folks like these patterns:

- A common need in the new pass manager is to effectively lift the pass
  class and some of its state into a public header file. Prior to this,
  LLVM used anonymous namespaces to provide "module private" types and
  utilities, but that doesn't scale to cases where a public header file
  is needed and the new pass manager will exacerbate that. The pattern
  I've adopted here is to use the namespace-cased-name of the core pass
  (what would be a module if we had them) as a module-private namespace.
  Then utility and other code can be declared and defined in this
  namespace. At some point in the future, we could even have
  (conditionally compiled) code that used modules features when
  available to do the same basic thing.

- I've split the actual pass run method in two in order to expose
  a private method usable by the old pass manager to wrap the new class
  with a minimum of duplicated code. I actually looked at a bunch of
  ways to automate or generate these, but they are all quite terrible
  IMO. The fundamental need is to extract the set of analyses which need
  to cross this interface boundary, and that will end up being too
  unpredictable to effectively encapsulate IMO. This is also
  a relatively small amount of boiler plate that will live a relatively
  short time, so I'm not too worried about the fact that it is boiler
  plate.

The rest of the patch is totally boring but results in a massive diff
(sorry). It just moves code around and removes or adds qualifiers to
reflect the new name and nesting structure.

Differential Revision: http://reviews.llvm.org/D12773

llvm-svn: 247501
This commit is contained in:
Chandler Carruth 2015-09-12 09:09:14 +00:00
parent 67cb9740f6
commit 29a18a4663
8 changed files with 477 additions and 410 deletions

View File

@ -239,7 +239,7 @@ void initializeRegionViewerPass(PassRegistry&);
void initializeRewriteStatepointsForGCPass(PassRegistry&);
void initializeSafeStackPass(PassRegistry&);
void initializeSCCPPass(PassRegistry&);
void initializeSROAPass(PassRegistry&);
void initializeSROALegacyPassPass(PassRegistry&);
void initializeSROA_DTPass(PassRegistry&);
void initializeSROA_SSAUpPass(PassRegistry&);
void initializeSCEVAAWrapperPassPass(PassRegistry&);

View File

@ -0,0 +1,129 @@
//===- SROA.h - Scalar Replacement Of Aggregates ----------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file provides the interface for LLVM's Scalar Replacement of
/// Aggregates pass. This pass provides both aggregate splitting and the
/// primary SSA formation used in the compiler.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_SCALAR_SROA_H
#define LLVM_TRANSFORMS_SCALAR_SROA_H
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/PassManager.h"
namespace llvm {
/// A private "module" namespace for types and utilities used by SROA. These
/// are implementation details and should not be used by clients.
namespace sroa {
class AllocaSliceRewriter;
class AllocaSlices;
class Partition;
class SROALegacyPass;
}
/// \brief An optimization pass providing Scalar Replacement of Aggregates.
///
/// This pass takes allocations which can be completely analyzed (that is, they
/// don't escape) and tries to turn them into scalar SSA values. There are
/// a few steps to this process.
///
/// 1) It takes allocations of aggregates and analyzes the ways in which they
/// are used to try to split them into smaller allocations, ideally of
/// a single scalar data type. It will split up memcpy and memset accesses
/// as necessary and try to isolate individual scalar accesses.
/// 2) It will transform accesses into forms which are suitable for SSA value
/// promotion. This can be replacing a memset with a scalar store of an
/// integer value, or it can involve speculating operations on a PHI or
/// select to be a PHI or select of the results.
/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
/// onto insert and extract operations on a vector value, and convert them to
/// this form. By doing so, it will enable promotion of vector aggregates to
/// SSA vector values.
class SROA {
LLVMContext *C;
DominatorTree *DT;
AssumptionCache *AC;
/// \brief Worklist of alloca instructions to simplify.
///
/// Each alloca in the function is added to this. Each new alloca formed gets
/// added to it as well to recursively simplify unless that alloca can be
/// directly promoted. Finally, each time we rewrite a use of an alloca other
/// the one being actively rewritten, we add it back onto the list if not
/// already present to ensure it is re-visited.
SetVector<AllocaInst *, SmallVector<AllocaInst *, 16>> Worklist;
/// \brief A collection of instructions to delete.
/// We try to batch deletions to simplify code and make things a bit more
/// efficient.
SetVector<Instruction *, SmallVector<Instruction *, 8>> DeadInsts;
/// \brief Post-promotion worklist.
///
/// Sometimes we discover an alloca which has a high probability of becoming
/// viable for SROA after a round of promotion takes place. In those cases,
/// the alloca is enqueued here for re-processing.
///
/// Note that we have to be very careful to clear allocas out of this list in
/// the event they are deleted.
SetVector<AllocaInst *, SmallVector<AllocaInst *, 16>> PostPromotionWorklist;
/// \brief A collection of alloca instructions we can directly promote.
std::vector<AllocaInst *> PromotableAllocas;
/// \brief A worklist of PHIs to speculate prior to promoting allocas.
///
/// All of these PHIs have been checked for the safety of speculation and by
/// being speculated will allow promoting allocas currently in the promotable
/// queue.
SetVector<PHINode *, SmallVector<PHINode *, 2>> SpeculatablePHIs;
/// \brief A worklist of select instructions to speculate prior to promoting
/// allocas.
///
/// All of these select instructions have been checked for the safety of
/// speculation and by being speculated will allow promoting allocas
/// currently in the promotable queue.
SetVector<SelectInst *, SmallVector<SelectInst *, 2>> SpeculatableSelects;
public:
SROA() : C(nullptr), DT(nullptr), AC(nullptr) {}
static StringRef name() { return "SROA"; }
/// \brief Run the pass over the function.
PreservedAnalyses run(Function &F, AnalysisManager<Function> *AM);
private:
friend class sroa::AllocaSliceRewriter;
friend class sroa::SROALegacyPass;
/// Helper used by both the public run method and by the legacy pass.
PreservedAnalyses runImpl(Function &F, DominatorTree &RunDT,
AssumptionCache &RunAC);
bool presplitLoadsAndStores(AllocaInst &AI, sroa::AllocaSlices &AS);
AllocaInst *rewritePartition(AllocaInst &AI, sroa::AllocaSlices &AS,
sroa::Partition &P);
bool splitAlloca(AllocaInst &AI, sroa::AllocaSlices &AS);
bool runOnAlloca(AllocaInst &AI);
void clobberUse(Use &U);
void deleteDeadInstructions(SmallPtrSetImpl<AllocaInst *> &DeletedAllocas);
bool promoteAllocas(Function &F);
};
}
#endif

View File

@ -103,7 +103,7 @@ void LTOCodeGenerator::initializeLTOPasses() {
initializeGlobalDCEPass(R);
initializeArgPromotionPass(R);
initializeJumpThreadingPass(R);
initializeSROAPass(R);
initializeSROALegacyPassPass(R);
initializeSROA_DTPass(R);
initializeSROA_SSAUpPass(R);
initializeFunctionAttrsPass(R);

View File

@ -33,6 +33,7 @@
#include "llvm/Transforms/Scalar/EarlyCSE.h"
#include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
#include "llvm/Transforms/Scalar/SimplifyCFG.h"
#include "llvm/Transforms/Scalar/SROA.h"
using namespace llvm;

View File

@ -74,6 +74,7 @@ FUNCTION_PASS("print<domtree>", DominatorTreePrinterPass(dbgs()))
FUNCTION_PASS("print<loops>", LoopPrinterPass(dbgs()))
FUNCTION_PASS("print<scalar-evolution>", ScalarEvolutionPrinterPass(dbgs()))
FUNCTION_PASS("simplify-cfg", SimplifyCFGPass())
FUNCTION_PASS("sroa", SROA())
FUNCTION_PASS("verify", VerifierPass())
FUNCTION_PASS("verify<domtree>", DominatorTreeVerifierPass())
#undef FUNCTION_PASS

View File

@ -23,13 +23,12 @@
///
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/SROA.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/PtrUseVisitor.h"
#include "llvm/Analysis/ValueTracking.h"
@ -38,8 +37,6 @@
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Instructions.h"
@ -54,6 +51,7 @@
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TimeValue.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
@ -63,6 +61,7 @@
#endif
using namespace llvm;
using namespace llvm::sroa;
#define DEBUG_TYPE "sroa"
@ -200,7 +199,6 @@ template <typename T> struct isPodLike;
template <> struct isPodLike<Slice> { static const bool value = true; };
}
namespace {
/// \brief Representation of the alloca slices.
///
/// This class represents the slices of an alloca which are formed by its
@ -208,7 +206,7 @@ namespace {
/// for the slices used and we reflect that in this structure. The uses are
/// stored, sorted by increasing beginning offset and with unsplittable slices
/// starting at a particular offset before splittable slices.
class AllocaSlices {
class llvm::sroa::AllocaSlices {
public:
/// \brief Construct the slices of a particular alloca.
AllocaSlices(const DataLayout &DL, AllocaInst &AI);
@ -248,8 +246,77 @@ public:
std::inplace_merge(Slices.begin(), SliceI, Slices.end());
}
// Forward declare an iterator to befriend it.
// Forward declare the iterator and range accessor for walking the
// partitions.
class partition_iterator;
iterator_range<partition_iterator> partitions();
/// \brief Access the dead users for this alloca.
ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
/// \brief Access the dead operands referring to this alloca.
///
/// These are operands which have cannot actually be used to refer to the
/// alloca as they are outside its range and the user doesn't correct for
/// that. These mostly consist of PHI node inputs and the like which we just
/// need to replace with undef.
ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
void printSlice(raw_ostream &OS, const_iterator I,
StringRef Indent = " ") const;
void printUse(raw_ostream &OS, const_iterator I,
StringRef Indent = " ") const;
void print(raw_ostream &OS) const;
void dump(const_iterator I) const;
void dump() const;
#endif
private:
template <typename DerivedT, typename RetT = void> class BuilderBase;
class SliceBuilder;
friend class AllocaSlices::SliceBuilder;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// \brief Handle to alloca instruction to simplify method interfaces.
AllocaInst &AI;
#endif
/// \brief The instruction responsible for this alloca not having a known set
/// of slices.
///
/// When an instruction (potentially) escapes the pointer to the alloca, we
/// store a pointer to that here and abort trying to form slices of the
/// alloca. This will be null if the alloca slices are analyzed successfully.
Instruction *PointerEscapingInstr;
/// \brief The slices of the alloca.
///
/// We store a vector of the slices formed by uses of the alloca here. This
/// vector is sorted by increasing begin offset, and then the unsplittable
/// slices before the splittable ones. See the Slice inner class for more
/// details.
SmallVector<Slice, 8> Slices;
/// \brief Instructions which will become dead if we rewrite the alloca.
///
/// Note that these are not separated by slice. This is because we expect an
/// alloca to be completely rewritten or not rewritten at all. If rewritten,
/// all these instructions can simply be removed and replaced with undef as
/// they come from outside of the allocated space.
SmallVector<Instruction *, 8> DeadUsers;
/// \brief Operands which will become dead if we rewrite the alloca.
///
/// These are operands that in their particular use can be replaced with
/// undef when we rewrite the alloca. These show up in out-of-bounds inputs
/// to PHI nodes and the like. They aren't entirely dead (there might be
/// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
/// want to swap this particular input for undef to simplify the use lists of
/// the alloca.
SmallVector<Use *, 8> DeadOperands;
};
/// \brief A partition of the slices.
///
@ -260,11 +327,13 @@ public:
///
/// Objects of this type are produced by traversing the alloca's slices, but
/// are only ephemeral and not persistent.
class Partition {
class llvm::sroa::Partition {
private:
friend class AllocaSlices;
friend class AllocaSlices::partition_iterator;
typedef AllocaSlices::iterator iterator;
/// \brief The beginning and ending offsets of the alloca for this
/// partition.
uint64_t BeginOffset, EndOffset;
@ -332,9 +401,9 @@ public:
///
/// It is templated on the slice iterator type to use so that it can operate
/// with either const or non-const slice iterators.
class partition_iterator
: public iterator_facade_base<partition_iterator,
std::forward_iterator_tag, Partition> {
class AllocaSlices::partition_iterator
: public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
Partition> {
friend class AllocaSlices;
/// \brief Most of the state for walking the partitions is held in a class
@ -493,8 +562,7 @@ public:
// P.SI == SE, as the end iterator will additionally have an empty split
// slices list, but the prior may have the same P.SI and a tail of split
// slices.
if (P.SI == RHS.P.SI &&
P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
assert(P.SJ == RHS.P.SJ &&
"Same set of slices formed two different sized partitions!");
assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
@ -520,79 +588,11 @@ public:
/// offsets of the slices and the ability to split them. It will visit "empty"
/// partitions to cover regions of the alloca only accessed via split
/// slices.
iterator_range<partition_iterator> partitions() {
iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
return make_range(partition_iterator(begin(), end()),
partition_iterator(end(), end()));
}
/// \brief Access the dead users for this alloca.
ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
/// \brief Access the dead operands referring to this alloca.
///
/// These are operands which have cannot actually be used to refer to the
/// alloca as they are outside its range and the user doesn't correct for
/// that. These mostly consist of PHI node inputs and the like which we just
/// need to replace with undef.
ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
void printSlice(raw_ostream &OS, const_iterator I,
StringRef Indent = " ") const;
void printUse(raw_ostream &OS, const_iterator I,
StringRef Indent = " ") const;
void print(raw_ostream &OS) const;
void dump(const_iterator I) const;
void dump() const;
#endif
private:
template <typename DerivedT, typename RetT = void> class BuilderBase;
class SliceBuilder;
friend class AllocaSlices::SliceBuilder;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// \brief Handle to alloca instruction to simplify method interfaces.
AllocaInst &AI;
#endif
/// \brief The instruction responsible for this alloca not having a known set
/// of slices.
///
/// When an instruction (potentially) escapes the pointer to the alloca, we
/// store a pointer to that here and abort trying to form slices of the
/// alloca. This will be null if the alloca slices are analyzed successfully.
Instruction *PointerEscapingInstr;
/// \brief The slices of the alloca.
///
/// We store a vector of the slices formed by uses of the alloca here. This
/// vector is sorted by increasing begin offset, and then the unsplittable
/// slices before the splittable ones. See the Slice inner class for more
/// details.
SmallVector<Slice, 8> Slices;
/// \brief Instructions which will become dead if we rewrite the alloca.
///
/// Note that these are not separated by slice. This is because we expect an
/// alloca to be completely rewritten or not rewritten at all. If rewritten,
/// all these instructions can simply be removed and replaced with undef as
/// they come from outside of the allocated space.
SmallVector<Instruction *, 8> DeadUsers;
/// \brief Operands which will become dead if we rewrite the alloca.
///
/// These are operands that in their particular use can be replaced with
/// undef when we rewrite the alloca. These show up in out-of-bounds inputs
/// to PHI nodes and the like. They aren't entirely dead (there might be
/// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
/// want to swap this particular input for undef to simplify the use lists of
/// the alloca.
SmallVector<Use *, 8> DeadOperands;
};
}
static Value *foldSelectInst(SelectInst &SI) {
// If the condition being selected on is a constant or the same value is
// being selected between, fold the select. Yes this does (rarely) happen
@ -1068,110 +1068,6 @@ LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
namespace {
/// \brief An optimization pass providing Scalar Replacement of Aggregates.
///
/// This pass takes allocations which can be completely analyzed (that is, they
/// don't escape) and tries to turn them into scalar SSA values. There are
/// a few steps to this process.
///
/// 1) It takes allocations of aggregates and analyzes the ways in which they
/// are used to try to split them into smaller allocations, ideally of
/// a single scalar data type. It will split up memcpy and memset accesses
/// as necessary and try to isolate individual scalar accesses.
/// 2) It will transform accesses into forms which are suitable for SSA value
/// promotion. This can be replacing a memset with a scalar store of an
/// integer value, or it can involve speculating operations on a PHI or
/// select to be a PHI or select of the results.
/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
/// onto insert and extract operations on a vector value, and convert them to
/// this form. By doing so, it will enable promotion of vector aggregates to
/// SSA vector values.
class SROA : public FunctionPass {
LLVMContext *C;
DominatorTree *DT;
AssumptionCache *AC;
/// \brief Worklist of alloca instructions to simplify.
///
/// Each alloca in the function is added to this. Each new alloca formed gets
/// added to it as well to recursively simplify unless that alloca can be
/// directly promoted. Finally, each time we rewrite a use of an alloca other
/// the one being actively rewritten, we add it back onto the list if not
/// already present to ensure it is re-visited.
SetVector<AllocaInst *, SmallVector<AllocaInst *, 16>> Worklist;
/// \brief A collection of instructions to delete.
/// We try to batch deletions to simplify code and make things a bit more
/// efficient.
SetVector<Instruction *, SmallVector<Instruction *, 8>> DeadInsts;
/// \brief Post-promotion worklist.
///
/// Sometimes we discover an alloca which has a high probability of becoming
/// viable for SROA after a round of promotion takes place. In those cases,
/// the alloca is enqueued here for re-processing.
///
/// Note that we have to be very careful to clear allocas out of this list in
/// the event they are deleted.
SetVector<AllocaInst *, SmallVector<AllocaInst *, 16>> PostPromotionWorklist;
/// \brief A collection of alloca instructions we can directly promote.
std::vector<AllocaInst *> PromotableAllocas;
/// \brief A worklist of PHIs to speculate prior to promoting allocas.
///
/// All of these PHIs have been checked for the safety of speculation and by
/// being speculated will allow promoting allocas currently in the promotable
/// queue.
SetVector<PHINode *, SmallVector<PHINode *, 2>> SpeculatablePHIs;
/// \brief A worklist of select instructions to speculate prior to promoting
/// allocas.
///
/// All of these select instructions have been checked for the safety of
/// speculation and by being speculated will allow promoting allocas
/// currently in the promotable queue.
SetVector<SelectInst *, SmallVector<SelectInst *, 2>> SpeculatableSelects;
public:
SROA() : FunctionPass(ID), C(nullptr), DT(nullptr) {
initializeSROAPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
const char *getPassName() const override { return "SROA"; }
static char ID;
private:
friend class PHIOrSelectSpeculator;
friend class AllocaSliceRewriter;
bool presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS);
AllocaInst *rewritePartition(AllocaInst &AI, AllocaSlices &AS,
AllocaSlices::Partition &P);
bool splitAlloca(AllocaInst &AI, AllocaSlices &AS);
bool runOnAlloca(AllocaInst &AI);
void clobberUse(Use &U);
void deleteDeadInstructions(SmallPtrSetImpl<AllocaInst *> &DeletedAllocas);
bool promoteAllocas(Function &F);
};
}
char SROA::ID = 0;
FunctionPass *llvm::createSROAPass() {
return new SROA();
}
INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates", false,
false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates", false,
false)
/// Walk the range of a partitioning looking for a common type to cover this
/// sequence of slices.
static Type *findCommonType(AllocaSlices::const_iterator B,
@ -1825,8 +1721,8 @@ static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
///
/// This function is called to test each entry in a partition which is slated
/// for a single slice.
static bool isVectorPromotionViableForSlice(AllocaSlices::Partition &P,
const Slice &S, VectorType *Ty,
static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
VectorType *Ty,
uint64_t ElementSize,
const DataLayout &DL) {
// First validate the slice offsets.
@ -1901,8 +1797,7 @@ static bool isVectorPromotionViableForSlice(AllocaSlices::Partition &P,
/// SSA value. We only can ensure this for a limited set of operations, and we
/// don't want to do the rewrites unless we are confident that the result will
/// be promotable, so we have an early test here.
static VectorType *isVectorPromotionViable(AllocaSlices::Partition &P,
const DataLayout &DL) {
static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
// Collect the candidate types for vector-based promotion. Also track whether
// we have different element types.
SmallVector<VectorType *, 4> CandidateTys;
@ -2088,7 +1983,7 @@ static bool isIntegerWideningViableForSlice(const Slice &S,
/// This is a quick test to check whether we can rewrite the integer loads and
/// stores to a particular alloca into wider loads and stores and be able to
/// promote the resulting alloca.
static bool isIntegerWideningViable(AllocaSlices::Partition &P, Type *AllocaTy,
static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
const DataLayout &DL) {
uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
// Don't create integer types larger than the maximum bitwidth.
@ -2257,14 +2152,14 @@ static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
return V;
}
namespace {
/// \brief Visitor to rewrite instructions using p particular slice of an alloca
/// to use a new alloca.
///
/// Also implements the rewriting to vector-based accesses when the partition
/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
/// lives here.
class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> {
class llvm::sroa::AllocaSliceRewriter
: public InstVisitor<AllocaSliceRewriter, bool> {
// Befriend the base class so it can delegate to private visit methods.
friend class llvm::InstVisitor<AllocaSliceRewriter, bool>;
typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base;
@ -3068,7 +2963,6 @@ private:
return true;
}
};
}
namespace {
/// \brief Visitor to rewrite aggregate loads and stores as scalar.
@ -3923,7 +3817,7 @@ bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
/// at enabling promotion and if it was successful queues the alloca to be
/// promoted.
AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
AllocaSlices::Partition &P) {
Partition &P) {
// Try to compute a friendly type for this partition of the alloca. This
// won't always succeed, in which case we fall back to a legal integer type
// or an i8 array of an appropriate size.
@ -4304,14 +4198,12 @@ bool SROA::promoteAllocas(Function &F) {
return true;
}
bool SROA::runOnFunction(Function &F) {
if (skipOptnoneFunction(F))
return false;
PreservedAnalyses SROA::runImpl(Function &F, DominatorTree &RunDT,
AssumptionCache &RunAC) {
DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
C = &F.getContext();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
DT = &RunDT;
AC = &RunAC;
BasicBlock &EntryBB = F.getEntryBlock();
for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
@ -4350,12 +4242,55 @@ bool SROA::runOnFunction(Function &F) {
PostPromotionWorklist.clear();
} while (!Worklist.empty());
return Changed;
// FIXME: Even when promoting allocas we should preserve some abstract set of
// CFG-specific analyses.
return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
}
void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
PreservedAnalyses SROA::run(Function &F, AnalysisManager<Function> *AM) {
return runImpl(F, AM->getResult<DominatorTreeAnalysis>(F),
AM->getResult<AssumptionAnalysis>(F));
}
/// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
///
/// This is in the llvm namespace purely to allow it to be a friend of the \c
/// SROA pass.
class llvm::sroa::SROALegacyPass : public FunctionPass {
/// The SROA implementation.
SROA Impl;
public:
SROALegacyPass() : FunctionPass(ID) {
initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
if (skipOptnoneFunction(F))
return false;
auto PA = Impl.runImpl(
F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
return !PA.areAllPreserved();
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.setPreservesCFG();
}
const char *getPassName() const override { return "SROA"; }
static char ID;
};
char SROALegacyPass::ID = 0;
FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); }
INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",
"Scalar Replacement Of Aggregates", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",
false, false)

View File

@ -68,7 +68,7 @@ void llvm::initializeScalarOpts(PassRegistry &Registry) {
initializeRewriteStatepointsForGCPass(Registry);
initializeSCCPPass(Registry);
initializeIPSCCPPass(Registry);
initializeSROAPass(Registry);
initializeSROALegacyPassPass(Registry);
initializeSROA_DTPass(Registry);
initializeSROA_SSAUpPass(Registry);
initializeCFGSimplifyPassPass(Registry);

View File

@ -1,4 +1,5 @@
; RUN: opt < %s -sroa -S | FileCheck %s
; RUN: opt < %s -passes=sroa -S | FileCheck %s
target datalayout = "e-p:64:64:64-p1:16:16:16-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64"