Converted MaximumSpanningTree algorithm to a generic template, this could go

into llvm/ADT.

llvm-svn: 81001
This commit is contained in:
Andreas Neustifter 2009-09-04 12:34:44 +00:00
parent 0c2477c26b
commit 18156bd75c
4 changed files with 64 additions and 138 deletions

View File

@ -1,7 +1,6 @@
add_llvm_library(LLVMInstrumentation
BlockProfiling.cpp
EdgeProfiling.cpp
MaximumSpanningTree.cpp
OptimalEdgeProfiling.cpp
ProfilingUtils.cpp
RSProfiling.cpp

View File

@ -1,119 +0,0 @@
//===- MaximumSpanningTree.cpp - LLVM Pass to estimate profile info -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This module privides means for calculating a maximum spanning tree for the
// CFG of a function according to a given profile. The tree does not contain
// leaf edges, since they are needed for optimal edge profiling.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "maximum-spanning-tree"
#include "MaximumSpanningTree.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
using namespace llvm;
namespace {
// compare two weighted edges
struct VISIBILITY_HIDDEN EdgeWeightCompare {
bool operator()(const ProfileInfo::EdgeWeight X,
const ProfileInfo::EdgeWeight Y) const {
if (X.second > Y.second) return true;
if (X.second < Y.second) return false;
// It would be enough to just compare the weights of the edges and be
// done. With edges of the same weight this may lead to a different MST
// each time the MST is created. To have more stable sorting (and thus
// more stable MSTs) furhter sort the edges.
if (X.first.first != 0 && Y.first.first == 0) return true;
if (X.first.first == 0 && Y.first.first != 0) return false;
if (X.first.first == 0 && Y.first.first == 0) return false;
if (X.first.first->size() > Y.first.first->size()) return true;
if (X.first.first->size() < Y.first.first->size()) return false;
if (X.first.second != 0 && Y.first.second == 0) return true;
if (X.first.second == 0 && Y.first.second != 0) return false;
if (X.first.second == 0 && Y.first.second == 0) return false;
if (X.first.second->size() > Y.first.second->size()) return true;
if (X.first.second->size() < Y.first.second->size()) return false;
return false;
}
};
}
static void inline printMSTEdge(ProfileInfo::EdgeWeight E,
const char *M) {
DEBUG(errs() << "--Edge " << E.first
<<" (Weight "<< format("%g",E.second) << ") "
<< (M) << "\n");
}
// MaximumSpanningTree() - Takes a function and returns a spanning tree
// according to the currently active profiling information, the leaf edges are
// NOT in the MST. MaximumSpanningTree uses the algorithm of Kruskal.
MaximumSpanningTree::MaximumSpanningTree(std::vector<ProfileInfo::EdgeWeight>
&EdgeVector) {
std::sort(EdgeVector.begin(), EdgeVector.end(), EdgeWeightCompare());
// Create spanning tree, Forest contains a special data structure
// that makes checking if two nodes are already in a common (sub-)tree
// fast and cheap.
EquivalenceClasses<const BasicBlock*> Forest;
for (std::vector<ProfileInfo::EdgeWeight>::iterator bbi = EdgeVector.begin(),
bbe = EdgeVector.end(); bbi != bbe; ++bbi) {
Forest.insert(bbi->first.first);
Forest.insert(bbi->first.second);
}
Forest.insert(0);
// Iterate over the sorted edges, biggest first.
for (std::vector<ProfileInfo::EdgeWeight>::iterator bbi = EdgeVector.begin(),
bbe = EdgeVector.end(); bbi != bbe; ++bbi) {
ProfileInfo::Edge e = (*bbi).first;
if (Forest.findLeader(e.first) != Forest.findLeader(e.second)) {
Forest.unionSets(e.first, e.second);
// So we know now that the edge is not already in a subtree (and not
// (0,entry)), so we push the edge to the MST if it has some successors.
MST.push_back(e);
printMSTEdge(*bbi,"in MST");
} else {
// This edge is either (0,entry) or (BB,0) or would create a circle in a
// subtree.
printMSTEdge(*bbi,"*not* in MST");
}
}
// Sort the MST edges.
std::stable_sort(MST.begin(),MST.end());
}
MaximumSpanningTree::MaxSpanTree::iterator MaximumSpanningTree::begin() {
return MST.begin();
}
MaximumSpanningTree::MaxSpanTree::iterator MaximumSpanningTree::end() {
return MST.end();
}
void MaximumSpanningTree::dump() {
errs()<<"{";
for ( MaxSpanTree::iterator ei = MST.begin(), ee = MST.end();
ei!=ee; ++ei ) {
errs()<<"("<<((*ei).first?(*ei).first->getNameStr():"0")<<",";
errs()<<(*ei).second->getNameStr()<<")";
}
errs()<<"}\n";
}

View File

@ -7,43 +7,87 @@
//
//===----------------------------------------------------------------------===//
//
// This module privides means for calculating a maximum spanning tree for the
// CFG of a function according to a given profile.
// This module privides means for calculating a maximum spanning tree for a
// given set of weighted edges. The type parameter T is the type of a node.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H
#define LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H
#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include <vector>
#include <algorithm>
namespace llvm {
class Function;
/// MaximumSpanningTree - A MST implementation.
/// The type parameter T determines the type of the nodes of the graph.
template <typename T>
class MaximumSpanningTree {
public:
typedef std::vector<ProfileInfo::Edge> MaxSpanTree;
// A comparing class for comparing weighted edges.
template <typename CT>
struct EdgeWeightCompare {
bool operator()(typename MaximumSpanningTree<CT>::EdgeWeight X,
typename MaximumSpanningTree<CT>::EdgeWeight Y) const {
if (X.second > Y.second) return true;
if (X.second < Y.second) return false;
return false;
}
};
public:
typedef std::pair<const T*, const T*> Edge;
typedef std::pair<Edge, double> EdgeWeight;
typedef std::vector<EdgeWeight> EdgeWeights;
protected:
typedef std::vector<Edge> MaxSpanTree;
MaxSpanTree MST;
public:
static char ID; // Class identification, replacement for typeinfo
// MaxSpanTree() - Calculates a MST for a function according to a profile.
// If inverted is true, all the edges *not* in the MST are returned. As a
// special also all leaf edges of the MST are not included, this makes it
// easier for the OptimalEdgeProfileInstrumentation to use this MST to do
// an optimal profiling.
MaximumSpanningTree(std::vector<ProfileInfo::EdgeWeight>&);
virtual ~MaximumSpanningTree() {}
/// MaximumSpanningTree() - Takes a vector of weighted edges and returns a
/// spanning tree.
MaximumSpanningTree(EdgeWeights &EdgeVector) {
virtual MaxSpanTree::iterator begin();
virtual MaxSpanTree::iterator end();
std::stable_sort(EdgeVector.begin(), EdgeVector.end(), EdgeWeightCompare<T>());
virtual void dump();
// Create spanning tree, Forest contains a special data structure
// that makes checking if two nodes are already in a common (sub-)tree
// fast and cheap.
EquivalenceClasses<const T*> Forest;
for (typename EdgeWeights::iterator EWi = EdgeVector.begin(),
EWe = EdgeVector.end(); EWi != EWe; ++EWi) {
Edge e = (*EWi).first;
Forest.insert(e.first);
Forest.insert(e.second);
}
// Iterate over the sorted edges, biggest first.
for (typename EdgeWeights::iterator EWi = EdgeVector.begin(),
EWe = EdgeVector.end(); EWi != EWe; ++EWi) {
Edge e = (*EWi).first;
if (Forest.findLeader(e.first) != Forest.findLeader(e.second)) {
Forest.unionSets(e.first, e.second);
// So we know now that the edge is not already in a subtree, so we push
// the edge to the MST.
MST.push_back(e);
}
}
}
typename MaxSpanTree::iterator begin() {
return MST.begin();
}
typename MaxSpanTree::iterator end() {
return MST.end();
}
};
} // End llvm namespace

View File

@ -17,6 +17,7 @@
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Debug.h"
@ -131,7 +132,8 @@ bool OptimalEdgeProfiler::runOnModule(Module &M) {
ProfileInfo::EdgeWeights ECs =
getAnalysisID<ProfileInfo>(ProfileEstimatorPassID, *F).getEdgeWeights(F);
std::vector<ProfileInfo::EdgeWeight> EdgeVector(ECs.begin(), ECs.end());
MaximumSpanningTree MST = MaximumSpanningTree(EdgeVector);
MaximumSpanningTree<BasicBlock> MST (EdgeVector);
std::stable_sort(MST.begin(),MST.end());
// Check if (0,entry) not in the MST. If not, instrument edge
// (IncrementCounterInBlock()) and set the counter initially to zero, if