Add the diagnose_if attribute to clang.

`diagnose_if` can be used to have clang emit either warnings or errors
for function calls that meet user-specified conditions. For example:

```
constexpr int foo(int a)
  __attribute__((diagnose_if(a > 10, "configurations with a > 10 are "
                                      "expensive.", "warning")));

int f1 = foo(9);
int f2 = foo(10); // warning: configuration with a > 10 are expensive.
int f3 = foo(f2);
```

It currently only emits diagnostics in cases where the condition is
guaranteed to always be true. So, the following code will emit no
warnings:

```
constexpr int bar(int a) {
  foo(a);
  return 0;
}

constexpr int i = bar(10);
```

We hope to support optionally emitting diagnostics for cases like that
(and emitting runtime checks) in the future.

Release notes will appear shortly. :)

Differential Revision: https://reviews.llvm.org/D27424

llvm-svn: 291418
This commit is contained in:
George Burgess IV 2017-01-09 04:12:14 +00:00
parent ff567a8ba2
commit 177399e227
17 changed files with 1282 additions and 169 deletions

View File

@ -651,7 +651,8 @@ public:
/// constant.
bool EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
const FunctionDecl *Callee,
ArrayRef<const Expr*> Args) const;
ArrayRef<const Expr*> Args,
const Expr *This = nullptr) const;
/// \brief If the current Expr is a pointer, this will try to statically
/// determine the number of bytes available where the pointer is pointing.

View File

@ -140,12 +140,15 @@ class Argument<string name, bit optional, bit fake = 0> {
bit Fake = fake;
}
class BoolArgument<string name, bit opt = 0> : Argument<name, opt>;
class BoolArgument<string name, bit opt = 0, bit fake = 0> : Argument<name, opt,
fake>;
class IdentifierArgument<string name, bit opt = 0> : Argument<name, opt>;
class IntArgument<string name, bit opt = 0> : Argument<name, opt>;
class StringArgument<string name, bit opt = 0> : Argument<name, opt>;
class ExprArgument<string name, bit opt = 0> : Argument<name, opt>;
class FunctionArgument<string name, bit opt = 0> : Argument<name, opt>;
class FunctionArgument<string name, bit opt = 0, bit fake = 0> : Argument<name,
opt,
fake>;
class TypeArgument<string name, bit opt = 0> : Argument<name, opt>;
class UnsignedArgument<string name, bit opt = 0> : Argument<name, opt>;
class VariadicUnsignedArgument<string name> : Argument<name, 1>;
@ -1591,6 +1594,26 @@ def Unavailable : InheritableAttr {
let Documentation = [Undocumented];
}
def DiagnoseIf : InheritableAttr {
let Spellings = [GNU<"diagnose_if">];
let Subjects = SubjectList<[Function]>;
let Args = [ExprArgument<"Cond">, StringArgument<"Message">,
EnumArgument<"DiagnosticType",
"DiagnosticType",
["error", "warning"],
["DT_Error", "DT_Warning"]>,
BoolArgument<"ArgDependent", 0, /*fake*/ 1>,
FunctionArgument<"Parent", 0, /*fake*/ 1>];
let DuplicatesAllowedWhileMerging = 1;
let LateParsed = 1;
let AdditionalMembers = [{
bool isError() const { return diagnosticType == DT_Error; }
bool isWarning() const { return diagnosticType == DT_Warning; }
}];
let TemplateDependent = 1;
let Documentation = [DiagnoseIfDocs];
}
def ArcWeakrefUnavailable : InheritableAttr {
let Spellings = [GNU<"objc_arc_weak_reference_unavailable">];
let Subjects = SubjectList<[ObjCInterface], ErrorDiag>;

View File

@ -378,6 +378,65 @@ template instantiation, so the value for ``T::number`` is known.
}];
}
def DiagnoseIfDocs : Documentation {
let Category = DocCatFunction;
let Content = [{
The ``diagnose_if`` attribute can be placed on function declarations to emit
warnings or errors at compile-time if calls to the attributed function meet
certain user-defined criteria. For example:
.. code-block:: c
void abs(int a)
__attribute__((diagnose_if(a >= 0, "Redundant abs call", "warning")));
void must_abs(int a)
__attribute__((diagnose_if(a >= 0, "Redundant abs call", "error")));
int val = abs(1); // warning: Redundant abs call
int val2 = must_abs(1); // error: Redundant abs call
int val3 = abs(val);
int val4 = must_abs(val); // Because run-time checks are not emitted for
// diagnose_if attributes, this executes without
// issue.
``diagnose_if`` is closely related to ``enable_if``, with a few key differences:
* Overload resolution is not aware of ``diagnose_if`` attributes: they're
considered only after we select the best candidate from a given candidate set.
* Function declarations that differ only in their ``diagnose_if`` attributes are
considered to be redeclarations of the same function (not overloads).
* If the condition provided to ``diagnose_if`` cannot be evaluated, no
diagnostic will be emitted.
Otherwise, ``diagnose_if`` is essentially the logical negation of ``enable_if``.
As a result of bullet number two, ``diagnose_if`` attributes will stack on the
same function. For example:
.. code-block:: c
int foo() __attribute__((diagnose_if(1, "diag1", "warning")));
int foo() __attribute__((diagnose_if(1, "diag2", "warning")));
int bar = foo(); // warning: diag1
// warning: diag2
int (*fooptr)(void) = foo; // warning: diag1
// warning: diag2
constexpr int supportsAPILevel(int N) { return N < 5; }
int baz(int a)
__attribute__((diagnose_if(!supportsAPILevel(10),
"Upgrade to API level 10 to use baz", "error")));
int baz(int a)
__attribute__((diagnose_if(!a, "0 is not recommended.", "warning")));
int (*bazptr)(int) = baz; // error: Upgrade to API level 10 to use baz
int v = baz(0); // error: Upgrade to API level 10 to use baz
Query for this feature with ``__has_attribute(diagnose_if)``.
}];
}
def PassObjectSizeDocs : Documentation {
let Category = DocCatVariable; // Technically it's a parameter doc, but eh.
let Content = [{

View File

@ -161,6 +161,8 @@ def ext_old_implicitly_unsigned_long_cxx : ExtWarn<
InGroup<CXX11Compat>;
def ext_clang_enable_if : Extension<"'enable_if' is a clang extension">,
InGroup<GccCompat>;
def ext_clang_diagnose_if : Extension<"'diagnose_if' is a clang extension">,
InGroup<GccCompat>;
// SEH
def err_seh_expected_handler : Error<

View File

@ -495,6 +495,7 @@ def UnusedPropertyIvar : DiagGroup<"unused-property-ivar">;
def UnusedGetterReturnValue : DiagGroup<"unused-getter-return-value">;
def UsedButMarkedUnused : DiagGroup<"used-but-marked-unused">;
def UserDefinedLiterals : DiagGroup<"user-defined-literals">;
def UserDefinedWarnings : DiagGroup<"user-defined-warnings">;
def Reorder : DiagGroup<"reorder">;
def UndeclaredSelector : DiagGroup<"undeclared-selector">;
def ImplicitAtomic : DiagGroup<"implicit-atomic-properties">;
@ -683,7 +684,8 @@ def Most : DiagGroup<"most", [
OverloadedVirtual,
PrivateExtern,
SelTypeCast,
ExternCCompat
ExternCCompat,
UserDefinedWarnings
]>;
// Thread Safety warnings

View File

@ -2141,8 +2141,11 @@ def err_constexpr_local_var_no_init : Error<
def ext_constexpr_function_never_constant_expr : ExtWarn<
"constexpr %select{function|constructor}0 never produces a "
"constant expression">, InGroup<DiagGroup<"invalid-constexpr">>, DefaultError;
def err_enable_if_never_constant_expr : Error<
"'enable_if' attribute expression never produces a constant expression">;
def err_attr_cond_never_constant_expr : Error<
"%0 attribute expression never produces a constant expression">;
def err_diagnose_if_invalid_diagnostic_type : Error<
"invalid diagnostic type for 'diagnose_if'; use \"error\" or \"warning\" "
"instead">;
def err_constexpr_body_no_return : Error<
"no return statement in constexpr function">;
def err_constexpr_return_missing_expr : Error<
@ -3369,7 +3372,9 @@ def note_ovl_candidate_disabled_by_enable_if : Note<
def note_ovl_candidate_has_pass_object_size_params: Note<
"candidate address cannot be taken because parameter %0 has "
"pass_object_size attribute">;
def note_ovl_candidate_disabled_by_enable_if_attr : Note<
def err_diagnose_if_succeeded : Error<"%0">;
def warn_diagnose_if_succeeded : Warning<"%0">, InGroup<UserDefinedWarnings>;
def note_ovl_candidate_disabled_by_function_cond_attr : Note<
"candidate disabled: %0">;
def note_ovl_candidate_disabled_by_extension : Note<
"candidate disabled due to OpenCL extension">;
@ -4398,6 +4403,7 @@ def note_not_found_by_two_phase_lookup : Note<"%0 should be declared prior to th
def err_undeclared_use : Error<"use of undeclared %0">;
def warn_deprecated : Warning<"%0 is deprecated">,
InGroup<DeprecatedDeclarations>;
def note_from_diagnose_if : Note<"from 'diagnose_if' attribute on %0:">;
def warn_property_method_deprecated :
Warning<"property access is using %0 method which is deprecated">,
InGroup<DeprecatedDeclarations>;

View File

@ -215,14 +215,14 @@ public:
/// \brief Create the initialization entity for a parameter.
static InitializedEntity InitializeParameter(ASTContext &Context,
ParmVarDecl *Parm) {
const ParmVarDecl *Parm) {
return InitializeParameter(Context, Parm, Parm->getType());
}
/// \brief Create the initialization entity for a parameter, but use
/// another type.
static InitializedEntity InitializeParameter(ASTContext &Context,
ParmVarDecl *Parm,
const ParmVarDecl *Parm,
QualType Type) {
bool Consumed = (Context.getLangOpts().ObjCAutoRefCount &&
Parm->hasAttr<NSConsumedAttr>());

View File

@ -668,6 +668,26 @@ namespace clang {
/// to be used while performing partial ordering of function templates.
unsigned ExplicitCallArguments;
/// The number of diagnose_if attributes that this overload triggered.
/// If any of the triggered attributes are errors, this won't count
/// diagnose_if warnings.
unsigned NumTriggeredDiagnoseIfs = 0;
/// Basically a TinyPtrVector<DiagnoseIfAttr *> that doesn't own the vector:
/// If NumTriggeredDiagnoseIfs is 0 or 1, this is a DiagnoseIfAttr *,
/// otherwise it's a pointer to an array of `NumTriggeredDiagnoseIfs`
/// DiagnoseIfAttr *s.
llvm::PointerUnion<DiagnoseIfAttr *, DiagnoseIfAttr **> DiagnoseIfInfo;
/// Gets an ArrayRef for the data at DiagnoseIfInfo. Note that this may give
/// you a pointer into DiagnoseIfInfo.
ArrayRef<DiagnoseIfAttr *> getDiagnoseIfInfo() const {
auto *Ptr = NumTriggeredDiagnoseIfs <= 1
? DiagnoseIfInfo.getAddrOfPtr1()
: DiagnoseIfInfo.get<DiagnoseIfAttr **>();
return {Ptr, NumTriggeredDiagnoseIfs};
}
union {
DeductionFailureInfo DeductionFailure;
@ -732,17 +752,42 @@ namespace clang {
SmallVector<OverloadCandidate, 16> Candidates;
llvm::SmallPtrSet<Decl *, 16> Functions;
// Allocator for OverloadCandidate::Conversions. We store the first few
// elements inline to avoid allocation for small sets.
llvm::BumpPtrAllocator ConversionSequenceAllocator;
// Allocator for OverloadCandidate::Conversions and DiagnoseIfAttr* arrays.
// We store the first few of each of these inline to avoid allocation for
// small sets.
llvm::BumpPtrAllocator SlabAllocator;
SourceLocation Loc;
CandidateSetKind Kind;
unsigned NumInlineSequences;
llvm::AlignedCharArray<alignof(ImplicitConversionSequence),
16 * sizeof(ImplicitConversionSequence)>
InlineSpace;
constexpr static unsigned NumInlineBytes =
24 * sizeof(ImplicitConversionSequence);
unsigned NumInlineBytesUsed;
llvm::AlignedCharArray<alignof(void *), NumInlineBytes> InlineSpace;
/// If we have space, allocates from inline storage. Otherwise, allocates
/// from the slab allocator.
/// FIXME: It would probably be nice to have a SmallBumpPtrAllocator
/// instead.
template <typename T>
T *slabAllocate(unsigned N) {
// It's simpler if this doesn't need to consider alignment.
static_assert(alignof(T) == alignof(void *),
"Only works for pointer-aligned types.");
static_assert(std::is_trivial<T>::value ||
std::is_same<ImplicitConversionSequence, T>::value,
"Add destruction logic to OverloadCandidateSet::clear().");
unsigned NBytes = sizeof(T) * N;
if (NBytes > NumInlineBytes - NumInlineBytesUsed)
return SlabAllocator.Allocate<T>(N);
char *FreeSpaceStart = InlineSpace.buffer + NumInlineBytesUsed;
assert(uintptr_t(FreeSpaceStart) % alignof(void *) == 0 &&
"Misaligned storage!");
NumInlineBytesUsed += NBytes;
return reinterpret_cast<T *>(FreeSpaceStart);
}
OverloadCandidateSet(const OverloadCandidateSet &) = delete;
void operator=(const OverloadCandidateSet &) = delete;
@ -751,12 +796,17 @@ namespace clang {
public:
OverloadCandidateSet(SourceLocation Loc, CandidateSetKind CSK)
: Loc(Loc), Kind(CSK), NumInlineSequences(0) {}
: Loc(Loc), Kind(CSK), NumInlineBytesUsed(0) {}
~OverloadCandidateSet() { destroyCandidates(); }
SourceLocation getLocation() const { return Loc; }
CandidateSetKind getKind() const { return Kind; }
/// Make a DiagnoseIfAttr* array in a block of memory that will live for
/// as long as this OverloadCandidateSet. Returns a pointer to the start
/// of that array.
DiagnoseIfAttr **addDiagnoseIfComplaints(ArrayRef<DiagnoseIfAttr *> CA);
/// \brief Determine when this overload candidate will be new to the
/// overload set.
bool isNewCandidate(Decl *F) {
@ -779,19 +829,7 @@ namespace clang {
Candidates.push_back(OverloadCandidate());
OverloadCandidate &C = Candidates.back();
// Assign space from the inline array if there are enough free slots
// available.
if (NumConversions + NumInlineSequences <= 16) {
ImplicitConversionSequence *I =
(ImplicitConversionSequence *)InlineSpace.buffer;
C.Conversions = &I[NumInlineSequences];
NumInlineSequences += NumConversions;
} else {
// Otherwise get memory from the allocator.
C.Conversions = ConversionSequenceAllocator
.Allocate<ImplicitConversionSequence>(NumConversions);
}
C.Conversions = slabAllocate<ImplicitConversionSequence>(NumConversions);
// Construct the new objects.
for (unsigned i = 0; i != NumConversions; ++i)
new (&C.Conversions[i]) ImplicitConversionSequence();

View File

@ -2531,14 +2531,14 @@ public:
void AddMethodCandidate(DeclAccessPair FoundDecl,
QualType ObjectType,
Expr::Classification ObjectClassification,
ArrayRef<Expr *> Args,
Expr *ThisArg, ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversion = false);
void AddMethodCandidate(CXXMethodDecl *Method,
DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext, QualType ObjectType,
Expr::Classification ObjectClassification,
ArrayRef<Expr *> Args,
Expr *ThisArg, ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions = false,
bool PartialOverloading = false);
@ -2548,6 +2548,7 @@ public:
TemplateArgumentListInfo *ExplicitTemplateArgs,
QualType ObjectType,
Expr::Classification ObjectClassification,
Expr *ThisArg,
ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions = false,
@ -2611,6 +2612,38 @@ public:
EnableIfAttr *CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
bool MissingImplicitThis = false);
/// Check the diagnose_if attributes on the given function. Returns the
/// first succesful fatal attribute, or null if calling Function(Args) isn't
/// an error.
///
/// This only considers ArgDependent DiagnoseIfAttrs.
///
/// This will populate Nonfatal with all non-error DiagnoseIfAttrs that
/// succeed. If this function returns non-null, the contents of Nonfatal are
/// unspecified.
DiagnoseIfAttr *
checkArgDependentDiagnoseIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
SmallVectorImpl<DiagnoseIfAttr *> &Nonfatal,
bool MissingImplicitThis = false,
Expr *ThisArg = nullptr);
/// Check the diagnose_if expressions on the given function. Returns the
/// first succesful fatal attribute, or null if using Function isn't
/// an error.
///
/// This ignores all ArgDependent DiagnoseIfAttrs.
///
/// This will populate Nonfatal with all non-error DiagnoseIfAttrs that
/// succeed. If this function returns non-null, the contents of Nonfatal are
/// unspecified.
DiagnoseIfAttr *
checkArgIndependentDiagnoseIf(FunctionDecl *Function,
SmallVectorImpl<DiagnoseIfAttr *> &Nonfatal);
/// Emits the diagnostic contained in the given DiagnoseIfAttr at Loc. Also
/// emits a note about the location of said attribute.
void emitDiagnoseIfDiagnostic(SourceLocation Loc, const DiagnoseIfAttr *DIA);
/// Returns whether the given function's address can be taken or not,
/// optionally emitting a diagnostic if the address can't be taken.
///

View File

@ -10410,10 +10410,25 @@ bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
const FunctionDecl *Callee,
ArrayRef<const Expr*> Args) const {
ArrayRef<const Expr*> Args,
const Expr *This) const {
Expr::EvalStatus Status;
EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
LValue ThisVal;
const LValue *ThisPtr = nullptr;
if (This) {
#ifndef NDEBUG
auto *MD = dyn_cast<CXXMethodDecl>(Callee);
assert(MD && "Don't provide `this` for non-methods.");
assert(!MD->isStatic() && "Don't provide `this` for static methods.");
#endif
if (EvaluateObjectArgument(Info, This, ThisVal))
ThisPtr = &ThisVal;
if (Info.EvalStatus.HasSideEffects)
return false;
}
ArgVector ArgValues(Args.size());
for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
I != E; ++I) {
@ -10426,7 +10441,7 @@ bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
}
// Build fake call to Callee.
CallStackFrame Frame(Info, Callee->getLocation(), Callee, /*This*/nullptr,
CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr,
ArgValues.data());
return Evaluate(Value, Info, this) && !Info.EvalStatus.HasSideEffects;
}

View File

@ -32,6 +32,7 @@
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/SemaInternal.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/MathExtras.h"
@ -890,34 +891,117 @@ static void handleLocksExcludedAttr(Sema &S, Decl *D,
Attr.getAttributeSpellingListIndex()));
}
static void handleEnableIfAttr(Sema &S, Decl *D, const AttributeList &Attr) {
S.Diag(Attr.getLoc(), diag::ext_clang_enable_if);
Expr *Cond = Attr.getArgAsExpr(0);
static bool checkFunctionConditionAttr(Sema &S, Decl *D,
const AttributeList &Attr,
Expr *&Cond, StringRef &Msg) {
Cond = Attr.getArgAsExpr(0);
if (!Cond->isTypeDependent()) {
ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
if (Converted.isInvalid())
return;
return false;
Cond = Converted.get();
}
StringRef Msg;
if (!S.checkStringLiteralArgumentAttr(Attr, 1, Msg))
return;
return false;
if (Msg.empty())
Msg = "<no message provided>";
SmallVector<PartialDiagnosticAt, 8> Diags;
if (!Cond->isValueDependent() &&
!Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
Diags)) {
S.Diag(Attr.getLoc(), diag::err_enable_if_never_constant_expr);
S.Diag(Attr.getLoc(), diag::err_attr_cond_never_constant_expr)
<< Attr.getName();
for (const PartialDiagnosticAt &PDiag : Diags)
S.Diag(PDiag.first, PDiag.second);
return false;
}
return true;
}
static void handleEnableIfAttr(Sema &S, Decl *D, const AttributeList &Attr) {
S.Diag(Attr.getLoc(), diag::ext_clang_enable_if);
Expr *Cond;
StringRef Msg;
if (checkFunctionConditionAttr(S, D, Attr, Cond, Msg))
D->addAttr(::new (S.Context)
EnableIfAttr(Attr.getRange(), S.Context, Cond, Msg,
Attr.getAttributeSpellingListIndex()));
}
namespace {
/// Determines if a given Expr references any of the given function's
/// ParmVarDecls, or the function's implicit `this` parameter (if applicable).
class ArgumentDependenceChecker
: public RecursiveASTVisitor<ArgumentDependenceChecker> {
#ifndef NDEBUG
const CXXRecordDecl *ClassType;
#endif
llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms;
bool Result;
public:
ArgumentDependenceChecker(const FunctionDecl *FD) {
#ifndef NDEBUG
if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
ClassType = MD->getParent();
else
ClassType = nullptr;
#endif
Parms.insert(FD->param_begin(), FD->param_end());
}
bool referencesArgs(Expr *E) {
Result = false;
TraverseStmt(E);
return Result;
}
bool VisitCXXThisExpr(CXXThisExpr *E) {
assert(E->getType()->getPointeeCXXRecordDecl() == ClassType &&
"`this` doesn't refer to the enclosing class?");
Result = true;
return false;
}
bool VisitDeclRefExpr(DeclRefExpr *DRE) {
if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
if (Parms.count(PVD)) {
Result = true;
return false;
}
return true;
}
};
}
static void handleDiagnoseIfAttr(Sema &S, Decl *D, const AttributeList &Attr) {
S.Diag(Attr.getLoc(), diag::ext_clang_diagnose_if);
Expr *Cond;
StringRef Msg;
if (!checkFunctionConditionAttr(S, D, Attr, Cond, Msg))
return;
StringRef DiagTypeStr;
if (!S.checkStringLiteralArgumentAttr(Attr, 2, DiagTypeStr))
return;
DiagnoseIfAttr::DiagnosticType DiagType;
if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) {
S.Diag(Attr.getArgAsExpr(2)->getLocStart(),
diag::err_diagnose_if_invalid_diagnostic_type);
return;
}
D->addAttr(::new (S.Context)
EnableIfAttr(Attr.getRange(), S.Context, Cond, Msg,
Attr.getAttributeSpellingListIndex()));
auto *FD = cast<FunctionDecl>(D);
bool ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond);
D->addAttr(::new (S.Context) DiagnoseIfAttr(
Attr.getRange(), S.Context, Cond, Msg, DiagType, ArgDependent, FD,
Attr.getAttributeSpellingListIndex()));
}
static void handlePassObjectSizeAttr(Sema &S, Decl *D,
@ -5682,6 +5766,9 @@ static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
case AttributeList::AT_EnableIf:
handleEnableIfAttr(S, D, Attr);
break;
case AttributeList::AT_DiagnoseIf:
handleDiagnoseIfAttr(S, D, Attr);
break;
case AttributeList::AT_ExtVectorType:
handleExtVectorTypeAttr(S, scope, D, Attr);
break;

View File

@ -342,6 +342,7 @@ bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
}
// See if this is a deleted function.
SmallVector<DiagnoseIfAttr *, 4> DiagnoseIfWarnings;
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
if (FD->isDeleted()) {
auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
@ -363,6 +364,12 @@ bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
return true;
if (const DiagnoseIfAttr *A =
checkArgIndependentDiagnoseIf(FD, DiagnoseIfWarnings)) {
emitDiagnoseIfDiagnostic(Loc, A);
return true;
}
}
// [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
@ -377,6 +384,10 @@ bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
Diag(D->getLocation(), diag::note_entity_declared_at) << D;
return true;
}
for (const auto *W : DiagnoseIfWarnings)
emitDiagnoseIfDiagnostic(Loc, W);
DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass,
ObjCPropertyAccess);
@ -5154,12 +5165,40 @@ static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
return OverloadDecl;
}
static bool isNumberOfArgsValidForCall(Sema &S, const FunctionDecl *Callee,
std::size_t NumArgs) {
if (S.TooManyArguments(Callee->getNumParams(), NumArgs,
/*PartialOverloading=*/false))
return Callee->isVariadic();
return Callee->getMinRequiredArguments() <= NumArgs;
static void checkDirectCallValidity(Sema &S, const Expr *Fn,
FunctionDecl *Callee,
MultiExprArg ArgExprs) {
// `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
// similar attributes) really don't like it when functions are called with an
// invalid number of args.
if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
/*PartialOverloading=*/false) &&
!Callee->isVariadic())
return;
if (Callee->getMinRequiredArguments() > ArgExprs.size())
return;
if (const EnableIfAttr *Attr = S.CheckEnableIf(Callee, ArgExprs, true)) {
S.Diag(Fn->getLocStart(),
isa<CXXMethodDecl>(Callee)
? diag::err_ovl_no_viable_member_function_in_call
: diag::err_ovl_no_viable_function_in_call)
<< Callee << Callee->getSourceRange();
S.Diag(Callee->getLocation(),
diag::note_ovl_candidate_disabled_by_function_cond_attr)
<< Attr->getCond()->getSourceRange() << Attr->getMessage();
return;
}
SmallVector<DiagnoseIfAttr *, 4> Nonfatal;
if (const DiagnoseIfAttr *Attr = S.checkArgDependentDiagnoseIf(
Callee, ArgExprs, Nonfatal, /*MissingImplicitThis=*/true)) {
S.emitDiagnoseIfDiagnostic(Fn->getLocStart(), Attr);
return;
}
for (const auto *W : Nonfatal)
S.emitDiagnoseIfDiagnostic(Fn->getLocStart(), W);
}
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
@ -5294,26 +5333,8 @@ ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
if (getLangOpts().OpenCL && checkOpenCLDisabledDecl(*FD, *Fn))
return ExprError();
// CheckEnableIf assumes that the we're passing in a sane number of args for
// FD, but that doesn't always hold true here. This is because, in some
// cases, we'll emit a diag about an ill-formed function call, but then
// we'll continue on as if the function call wasn't ill-formed. So, if the
// number of args looks incorrect, don't do enable_if checks; we should've
// already emitted an error about the bad call.
if (FD->hasAttr<EnableIfAttr>() &&
isNumberOfArgsValidForCall(*this, FD, ArgExprs.size())) {
if (const EnableIfAttr *Attr = CheckEnableIf(FD, ArgExprs, true)) {
Diag(Fn->getLocStart(),
isa<CXXMethodDecl>(FD)
? diag::err_ovl_no_viable_member_function_in_call
: diag::err_ovl_no_viable_function_in_call)
<< FD << FD->getSourceRange();
Diag(FD->getLocation(),
diag::note_ovl_candidate_disabled_by_enable_if_attr)
<< Attr->getCond()->getSourceRange() << Attr->getMessage();
}
}
checkDirectCallValidity(*this, Fn, FD, ArgExprs);
}
return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,

View File

@ -2960,6 +2960,7 @@ Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
/*ThisArg=*/nullptr,
llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
else if (CtorInfo)
AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
@ -2972,7 +2973,7 @@ Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
AddMethodTemplateCandidate(
Tmpl, Cand, RD, nullptr, ThisTy, Classification,
llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
/*ThisArg=*/nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
else if (CtorInfo)
AddTemplateOverloadCandidate(
CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,

View File

@ -29,6 +29,7 @@
#include "clang/Sema/Template.h"
#include "clang/Sema/TemplateDeduction.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
@ -830,12 +831,20 @@ void OverloadCandidateSet::destroyCandidates() {
void OverloadCandidateSet::clear() {
destroyCandidates();
ConversionSequenceAllocator.Reset();
NumInlineSequences = 0;
// DiagnoseIfAttrs are just pointers, so we don't need to destroy them.
SlabAllocator.Reset();
NumInlineBytesUsed = 0;
Candidates.clear();
Functions.clear();
}
DiagnoseIfAttr **
OverloadCandidateSet::addDiagnoseIfComplaints(ArrayRef<DiagnoseIfAttr *> CA) {
auto *DIA = slabAllocate<DiagnoseIfAttr *>(CA.size());
std::uninitialized_copy(CA.begin(), CA.end(), DIA);
return DIA;
}
namespace {
class UnbridgedCastsSet {
struct Entry {
@ -5814,6 +5823,28 @@ static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
return false;
}
static void initDiagnoseIfComplaint(Sema &S, OverloadCandidateSet &CandidateSet,
OverloadCandidate &Candidate,
FunctionDecl *Function,
ArrayRef<Expr *> Args,
bool MissingImplicitThis = false,
Expr *ExplicitThis = nullptr) {
SmallVector<DiagnoseIfAttr *, 8> Results;
if (DiagnoseIfAttr *DIA = S.checkArgDependentDiagnoseIf(
Function, Args, Results, MissingImplicitThis, ExplicitThis)) {
Results.clear();
Results.push_back(DIA);
}
Candidate.NumTriggeredDiagnoseIfs = Results.size();
if (Results.empty())
Candidate.DiagnoseIfInfo = nullptr;
else if (Results.size() == 1)
Candidate.DiagnoseIfInfo = Results[0];
else
Candidate.DiagnoseIfInfo = CandidateSet.addDiagnoseIfComplaints(Results);
}
/// AddOverloadCandidate - Adds the given function to the set of
/// candidate functions, using the given function call arguments. If
/// @p SuppressUserConversions, then don't allow user-defined
@ -5847,8 +5878,8 @@ Sema::AddOverloadCandidate(FunctionDecl *Function,
// is irrelevant.
AddMethodCandidate(Method, FoundDecl, Method->getParent(),
QualType(), Expr::Classification::makeSimpleLValue(),
Args, CandidateSet, SuppressUserConversions,
PartialOverloading);
/*ThisArg=*/nullptr, Args, CandidateSet,
SuppressUserConversions, PartialOverloading);
return;
}
// We treat a constructor like a non-member function, since its object
@ -6008,6 +6039,8 @@ Sema::AddOverloadCandidate(FunctionDecl *Function,
Candidate.FailureKind = ovl_fail_ext_disabled;
return;
}
initDiagnoseIfComplaint(*this, CandidateSet, Candidate, Function, Args);
}
ObjCMethodDecl *
@ -6120,66 +6153,87 @@ getOrderedEnableIfAttrs(const FunctionDecl *Function) {
return Result;
}
EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
bool MissingImplicitThis) {
auto EnableIfAttrs = getOrderedEnableIfAttrs(Function);
if (EnableIfAttrs.empty())
return nullptr;
SFINAETrap Trap(*this);
SmallVector<Expr *, 16> ConvertedArgs;
bool InitializationFailed = false;
static bool
convertArgsForAvailabilityChecks(Sema &S, FunctionDecl *Function, Expr *ThisArg,
ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap,
bool MissingImplicitThis, Expr *&ConvertedThis,
SmallVectorImpl<Expr *> &ConvertedArgs) {
if (ThisArg) {
CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
assert(!isa<CXXConstructorDecl>(Method) &&
"Shouldn't have `this` for ctors!");
assert(!Method->isStatic() && "Shouldn't have `this` for static methods!");
ExprResult R = S.PerformObjectArgumentInitialization(
ThisArg, /*Qualifier=*/nullptr, Method, Method);
if (R.isInvalid())
return false;
ConvertedThis = R.get();
} else {
if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) {
(void)MD;
assert((MissingImplicitThis || MD->isStatic() ||
isa<CXXConstructorDecl>(MD)) &&
"Expected `this` for non-ctor instance methods");
}
ConvertedThis = nullptr;
}
// Ignore any variadic arguments. Converting them is pointless, since the
// user can't refer to them in the enable_if condition.
// user can't refer to them in the function condition.
unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size());
// Convert the arguments.
for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) {
ExprResult R;
if (I == 0 && !MissingImplicitThis && isa<CXXMethodDecl>(Function) &&
!cast<CXXMethodDecl>(Function)->isStatic() &&
!isa<CXXConstructorDecl>(Function)) {
CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
R = PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
Method, Method);
} else {
R = PerformCopyInitialization(InitializedEntity::InitializeParameter(
Context, Function->getParamDecl(I)),
R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
S.Context, Function->getParamDecl(I)),
SourceLocation(), Args[I]);
}
if (R.isInvalid()) {
InitializationFailed = true;
break;
}
if (R.isInvalid())
return false;
ConvertedArgs.push_back(R.get());
}
if (InitializationFailed || Trap.hasErrorOccurred())
return EnableIfAttrs[0];
if (Trap.hasErrorOccurred())
return false;
// Push default arguments if needed.
if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
ParmVarDecl *P = Function->getParamDecl(i);
ExprResult R = PerformCopyInitialization(
InitializedEntity::InitializeParameter(Context,
ExprResult R = S.PerformCopyInitialization(
InitializedEntity::InitializeParameter(S.Context,
Function->getParamDecl(i)),
SourceLocation(),
P->hasUninstantiatedDefaultArg() ? P->getUninstantiatedDefaultArg()
: P->getDefaultArg());
if (R.isInvalid()) {
InitializationFailed = true;
break;
}
if (R.isInvalid())
return false;
ConvertedArgs.push_back(R.get());
}
if (InitializationFailed || Trap.hasErrorOccurred())
return EnableIfAttrs[0];
if (Trap.hasErrorOccurred())
return false;
}
return true;
}
EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
bool MissingImplicitThis) {
SmallVector<EnableIfAttr *, 4> EnableIfAttrs =
getOrderedEnableIfAttrs(Function);
if (EnableIfAttrs.empty())
return nullptr;
SFINAETrap Trap(*this);
SmallVector<Expr *, 16> ConvertedArgs;
// FIXME: We should look into making enable_if late-parsed.
Expr *DiscardedThis;
if (!convertArgsForAvailabilityChecks(
*this, Function, /*ThisArg=*/nullptr, Args, Trap,
/*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs))
return EnableIfAttrs[0];
for (auto *EIA : EnableIfAttrs) {
APValue Result;
@ -6195,6 +6249,87 @@ EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
return nullptr;
}
static bool gatherDiagnoseIfAttrs(FunctionDecl *Function, bool ArgDependent,
SmallVectorImpl<DiagnoseIfAttr *> &Errors,
SmallVectorImpl<DiagnoseIfAttr *> &Nonfatal) {
for (auto *DIA : Function->specific_attrs<DiagnoseIfAttr>())
if (ArgDependent == DIA->getArgDependent()) {
if (DIA->isError())
Errors.push_back(DIA);
else
Nonfatal.push_back(DIA);
}
return !Errors.empty() || !Nonfatal.empty();
}
template <typename CheckFn>
static DiagnoseIfAttr *
checkDiagnoseIfAttrsWith(const SmallVectorImpl<DiagnoseIfAttr *> &Errors,
SmallVectorImpl<DiagnoseIfAttr *> &Nonfatal,
CheckFn &&IsSuccessful) {
// Note that diagnose_if attributes are late-parsed, so they appear in the
// correct order (unlike enable_if attributes).
auto ErrAttr = llvm::find_if(Errors, IsSuccessful);
if (ErrAttr != Errors.end())
return *ErrAttr;
llvm::erase_if(Nonfatal, [&](DiagnoseIfAttr *A) { return !IsSuccessful(A); });
return nullptr;
}
DiagnoseIfAttr *
Sema::checkArgDependentDiagnoseIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
SmallVectorImpl<DiagnoseIfAttr *> &Nonfatal,
bool MissingImplicitThis,
Expr *ThisArg) {
SmallVector<DiagnoseIfAttr *, 4> Errors;
if (!gatherDiagnoseIfAttrs(Function, /*ArgDependent=*/true, Errors, Nonfatal))
return nullptr;
SFINAETrap Trap(*this);
SmallVector<Expr *, 16> ConvertedArgs;
Expr *ConvertedThis;
if (!convertArgsForAvailabilityChecks(*this, Function, ThisArg, Args, Trap,
MissingImplicitThis, ConvertedThis,
ConvertedArgs))
return nullptr;
return checkDiagnoseIfAttrsWith(Errors, Nonfatal, [&](DiagnoseIfAttr *DIA) {
APValue Result;
// It's sane to use the same ConvertedArgs for any redecl of this function,
// since EvaluateWithSubstitution only cares about the position of each
// argument in the arg list, not the ParmVarDecl* it maps to.
if (!DIA->getCond()->EvaluateWithSubstitution(
Result, Context, DIA->getParent(), ConvertedArgs, ConvertedThis))
return false;
return Result.isInt() && Result.getInt().getBoolValue();
});
}
DiagnoseIfAttr *Sema::checkArgIndependentDiagnoseIf(
FunctionDecl *Function, SmallVectorImpl<DiagnoseIfAttr *> &Nonfatal) {
SmallVector<DiagnoseIfAttr *, 4> Errors;
if (!gatherDiagnoseIfAttrs(Function, /*ArgDependent=*/false, Errors,
Nonfatal))
return nullptr;
return checkDiagnoseIfAttrsWith(Errors, Nonfatal, [&](DiagnoseIfAttr *DIA) {
bool Result;
return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) &&
Result;
});
}
void Sema::emitDiagnoseIfDiagnostic(SourceLocation Loc,
const DiagnoseIfAttr *DIA) {
auto Code = DIA->isError() ? diag::err_diagnose_if_succeeded
: diag::warn_diagnose_if_succeeded;
Diag(Loc, Code) << DIA->getMessage();
Diag(DIA->getLocation(), diag::note_from_diagnose_if)
<< DIA->getParent() << DIA->getCond()->getSourceRange();
}
/// \brief Add all of the function declarations in the given function set to
/// the overload candidate set.
void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
@ -6210,7 +6345,7 @@ void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
cast<CXXMethodDecl>(FD)->getParent(),
Args[0]->getType(), Args[0]->Classify(Context),
Args.slice(1), CandidateSet,
Args[0], Args.slice(1), CandidateSet,
SuppressUserConversions, PartialOverloading);
else
AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
@ -6219,13 +6354,12 @@ void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
!cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
AddMethodTemplateCandidate(FunTmpl, F.getPair(),
cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
ExplicitTemplateArgs,
Args[0]->getType(),
Args[0]->Classify(Context), Args.slice(1),
CandidateSet, SuppressUserConversions,
PartialOverloading);
AddMethodTemplateCandidate(
FunTmpl, F.getPair(),
cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
ExplicitTemplateArgs, Args[0]->getType(),
Args[0]->Classify(Context), Args[0], Args.slice(1), CandidateSet,
SuppressUserConversions, PartialOverloading);
else
AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
ExplicitTemplateArgs, Args,
@ -6240,6 +6374,7 @@ void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
QualType ObjectType,
Expr::Classification ObjectClassification,
Expr *ThisArg,
ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions) {
@ -6255,12 +6390,12 @@ void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
/*ExplicitArgs*/ nullptr,
ObjectType, ObjectClassification,
Args, CandidateSet,
ThisArg, Args, CandidateSet,
SuppressUserConversions);
} else {
AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
ObjectType, ObjectClassification,
Args,
ThisArg, Args,
CandidateSet, SuppressUserConversions);
}
}
@ -6276,7 +6411,7 @@ void
Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext, QualType ObjectType,
Expr::Classification ObjectClassification,
ArrayRef<Expr *> Args,
Expr *ThisArg, ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet,
bool SuppressUserConversions,
bool PartialOverloading) {
@ -6393,6 +6528,9 @@ Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
Candidate.DeductionFailure.Data = FailedAttr;
return;
}
initDiagnoseIfComplaint(*this, CandidateSet, Candidate, Method, Args,
/*MissingImplicitThis=*/!ThisArg, ThisArg);
}
/// \brief Add a C++ member function template as a candidate to the candidate
@ -6405,6 +6543,7 @@ Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
TemplateArgumentListInfo *ExplicitTemplateArgs,
QualType ObjectType,
Expr::Classification ObjectClassification,
Expr *ThisArg,
ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions,
@ -6445,8 +6584,9 @@ Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
assert(isa<CXXMethodDecl>(Specialization) &&
"Specialization is not a member function?");
AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
ActingContext, ObjectType, ObjectClassification, Args,
CandidateSet, SuppressUserConversions, PartialOverloading);
ActingContext, ObjectType, ObjectClassification,
/*ThisArg=*/ThisArg, Args, CandidateSet,
SuppressUserConversions, PartialOverloading);
}
/// \brief Add a C++ function template specialization as a candidate
@ -6702,6 +6842,8 @@ Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
Candidate.DeductionFailure.Data = FailedAttr;
return;
}
initDiagnoseIfComplaint(*this, CandidateSet, Candidate, Conversion, None, false, From);
}
/// \brief Adds a conversion function template specialization
@ -6854,6 +6996,8 @@ void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
Candidate.DeductionFailure.Data = FailedAttr;
return;
}
initDiagnoseIfComplaint(*this, CandidateSet, Candidate, Conversion, None);
}
/// \brief Add overload candidates for overloaded operators that are
@ -6902,10 +7046,8 @@ void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
Oper != OperEnd;
++Oper)
AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
Args[0]->Classify(Context),
Args.slice(1),
CandidateSet,
/* SuppressUserConversions = */ false);
Args[0]->Classify(Context), Args[0], Args.slice(1),
CandidateSet, /*SuppressUserConversions=*/false);
}
}
@ -8936,6 +9078,17 @@ void Sema::diagnoseEquivalentInternalLinkageDeclarations(
}
}
static bool isCandidateUnavailableDueToDiagnoseIf(const OverloadCandidate &OC) {
ArrayRef<DiagnoseIfAttr *> Info = OC.getDiagnoseIfInfo();
if (!Info.empty() && Info[0]->isError())
return true;
assert(llvm::all_of(Info,
[](const DiagnoseIfAttr *A) { return !A->isError(); }) &&
"DiagnoseIf info shouldn't have mixed warnings and errors.");
return false;
}
/// \brief Computes the best viable function (C++ 13.3.3)
/// within an overload candidate set.
///
@ -9014,13 +9167,19 @@ OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
// Best is the best viable function.
if (Best->Function &&
(Best->Function->isDeleted() ||
S.isFunctionConsideredUnavailable(Best->Function)))
S.isFunctionConsideredUnavailable(Best->Function) ||
isCandidateUnavailableDueToDiagnoseIf(*Best)))
return OR_Deleted;
if (!EquivalentCands.empty())
S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
EquivalentCands);
for (const auto *W : Best->getDiagnoseIfInfo()) {
assert(W->isWarning() && "Errors should've been caught earlier!");
S.emitDiagnoseIfDiagnostic(Loc, W);
}
return OR_Success;
}
@ -9861,7 +10020,7 @@ static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
S.Diag(Callee->getLocation(),
diag::note_ovl_candidate_disabled_by_enable_if_attr)
diag::note_ovl_candidate_disabled_by_function_cond_attr)
<< Attr->getCond()->getSourceRange() << Attr->getMessage();
}
@ -9891,21 +10050,28 @@ static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
FunctionDecl *Fn = Cand->Function;
// Note deleted candidates, but only if they're viable.
if (Cand->Viable && (Fn->isDeleted() ||
S.isFunctionConsideredUnavailable(Fn))) {
std::string FnDesc;
OverloadCandidateKind FnKind =
if (Cand->Viable) {
if (Fn->isDeleted() || S.isFunctionConsideredUnavailable(Fn)) {
std::string FnDesc;
OverloadCandidateKind FnKind =
ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, FnDesc);
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
<< FnKind << FnDesc
<< (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
return;
}
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
<< FnKind << FnDesc
<< (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
return;
}
if (isCandidateUnavailableDueToDiagnoseIf(*Cand)) {
auto *A = Cand->DiagnoseIfInfo.get<DiagnoseIfAttr *>();
assert(A->isError() && "Non-error diagnose_if disables a candidate?");
S.Diag(Cand->Function->getLocation(),
diag::note_ovl_candidate_disabled_by_function_cond_attr)
<< A->getCond()->getSourceRange() << A->getMessage();
return;
}
// We don't really have anything else to say about viable candidates.
if (Cand->Viable) {
// We don't really have anything else to say about viable candidates.
S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
return;
}
@ -12460,6 +12626,16 @@ Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
TemplateArgs = &TemplateArgsBuffer;
}
// Poor-programmer's Lazy<Expr *>; isImplicitAccess requires stripping
// parens/casts, which would be nice to avoid potentially doing multiple
// times.
llvm::Optional<Expr *> UnresolvedBase;
auto GetUnresolvedBase = [&] {
if (!UnresolvedBase.hasValue())
UnresolvedBase =
UnresExpr->isImplicitAccess() ? nullptr : UnresExpr->getBase();
return *UnresolvedBase;
};
for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
E = UnresExpr->decls_end(); I != E; ++I) {
@ -12480,14 +12656,15 @@ Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
continue;
AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
ObjectClassification, Args, CandidateSet,
ObjectClassification,
/*ThisArg=*/GetUnresolvedBase(), Args, CandidateSet,
/*SuppressUserConversions=*/false);
} else {
AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
I.getPair(), ActingDC, TemplateArgs,
ObjectType, ObjectClassification,
Args, CandidateSet,
/*SuppressUsedConversions=*/false);
AddMethodTemplateCandidate(
cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC,
TemplateArgs, ObjectType, ObjectClassification,
/*ThisArg=*/GetUnresolvedBase(), Args, CandidateSet,
/*SuppressUsedConversions=*/false);
}
}
@ -12600,10 +12777,20 @@ Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
diag::err_ovl_no_viable_member_function_in_call)
<< Method << Method->getSourceRange();
Diag(Method->getLocation(),
diag::note_ovl_candidate_disabled_by_enable_if_attr)
diag::note_ovl_candidate_disabled_by_function_cond_attr)
<< Attr->getCond()->getSourceRange() << Attr->getMessage();
return ExprError();
}
SmallVector<DiagnoseIfAttr *, 4> Nonfatal;
if (const DiagnoseIfAttr *Attr = checkArgDependentDiagnoseIf(
Method, Args, Nonfatal, false, MemE->getBase())) {
emitDiagnoseIfDiagnostic(MemE->getMemberLoc(), Attr);
return ExprError();
}
for (const auto *Attr : Nonfatal)
emitDiagnoseIfDiagnostic(MemE->getMemberLoc(), Attr);
}
if ((isa<CXXConstructorDecl>(CurContext) ||
@ -12683,7 +12870,7 @@ Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
Oper != OperEnd; ++Oper) {
AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
Object.get()->Classify(Context),
Args, CandidateSet,
Object.get(), Args, CandidateSet,
/*SuppressUserConversions=*/ false);
}
@ -12959,7 +13146,8 @@ Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
Oper != OperEnd; ++Oper) {
AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
None, CandidateSet, /*SuppressUserConversions=*/false);
Base, None, CandidateSet,
/*SuppressUserConversions=*/false);
}
bool HadMultipleCandidates = (CandidateSet.size() > 1);

View File

@ -168,40 +168,59 @@ static void instantiateDependentAlignValueAttr(
Aligned->getSpellingListIndex());
}
static void instantiateDependentEnableIfAttr(
static Expr *instantiateDependentFunctionAttrCondition(
Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
const EnableIfAttr *A, const Decl *Tmpl, Decl *New) {
const Attr *A, Expr *OldCond, const Decl *Tmpl, FunctionDecl *New) {
Expr *Cond = nullptr;
{
Sema::ContextRAII SwitchContext(S, cast<FunctionDecl>(New));
Sema::ContextRAII SwitchContext(S, New);
EnterExpressionEvaluationContext Unevaluated(S, Sema::ConstantEvaluated);
ExprResult Result = S.SubstExpr(A->getCond(), TemplateArgs);
ExprResult Result = S.SubstExpr(OldCond, TemplateArgs);
if (Result.isInvalid())
return;
return nullptr;
Cond = Result.getAs<Expr>();
}
if (!Cond->isTypeDependent()) {
ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
if (Converted.isInvalid())
return;
return nullptr;
Cond = Converted.get();
}
SmallVector<PartialDiagnosticAt, 8> Diags;
if (A->getCond()->isValueDependent() && !Cond->isValueDependent() &&
!Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(New),
Diags)) {
S.Diag(A->getLocation(), diag::err_enable_if_never_constant_expr);
for (int I = 0, N = Diags.size(); I != N; ++I)
S.Diag(Diags[I].first, Diags[I].second);
return;
if (OldCond->isValueDependent() && !Cond->isValueDependent() &&
!Expr::isPotentialConstantExprUnevaluated(Cond, New, Diags)) {
S.Diag(A->getLocation(), diag::err_attr_cond_never_constant_expr) << A;
for (const auto &P : Diags)
S.Diag(P.first, P.second);
return nullptr;
}
return Cond;
}
EnableIfAttr *EIA = new (S.getASTContext())
EnableIfAttr(A->getLocation(), S.getASTContext(), Cond,
A->getMessage(),
A->getSpellingListIndex());
New->addAttr(EIA);
static void instantiateDependentEnableIfAttr(
Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
const EnableIfAttr *EIA, const Decl *Tmpl, FunctionDecl *New) {
Expr *Cond = instantiateDependentFunctionAttrCondition(
S, TemplateArgs, EIA, EIA->getCond(), Tmpl, New);
if (Cond)
New->addAttr(new (S.getASTContext()) EnableIfAttr(
EIA->getLocation(), S.getASTContext(), Cond, EIA->getMessage(),
EIA->getSpellingListIndex()));
}
static void instantiateDependentDiagnoseIfAttr(
Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
const DiagnoseIfAttr *DIA, const Decl *Tmpl, FunctionDecl *New) {
Expr *Cond = instantiateDependentFunctionAttrCondition(
S, TemplateArgs, DIA, DIA->getCond(), Tmpl, New);
if (Cond)
New->addAttr(new (S.getASTContext()) DiagnoseIfAttr(
DIA->getLocation(), S.getASTContext(), Cond, DIA->getMessage(),
DIA->getDiagnosticType(), DIA->getArgDependent(), New,
DIA->getSpellingListIndex()));
}
// Constructs and adds to New a new instance of CUDALaunchBoundsAttr using
@ -335,7 +354,13 @@ void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
if (const auto *EnableIf = dyn_cast<EnableIfAttr>(TmplAttr)) {
instantiateDependentEnableIfAttr(*this, TemplateArgs, EnableIf, Tmpl,
New);
cast<FunctionDecl>(New));
continue;
}
if (const auto *DiagnoseIf = dyn_cast<DiagnoseIfAttr>(TmplAttr)) {
instantiateDependentDiagnoseIfAttr(*this, TemplateArgs, DiagnoseIf, Tmpl,
cast<FunctionDecl>(New));
continue;
}

View File

@ -0,0 +1,152 @@
// RUN: %clang_cc1 %s -verify -fno-builtin
#define _diagnose_if(...) __attribute__((diagnose_if(__VA_ARGS__)))
void failure() _diagnose_if(); // expected-error{{exactly 3 arguments}}
void failure() _diagnose_if(0); // expected-error{{exactly 3 arguments}}
void failure() _diagnose_if(0, ""); // expected-error{{exactly 3 arguments}}
void failure() _diagnose_if(0, "", "error", 1); // expected-error{{exactly 3 arguments}}
void failure() _diagnose_if(0, 0, "error"); // expected-error{{requires a string}}
void failure() _diagnose_if(0, "", "invalid"); // expected-error{{invalid diagnostic type for 'diagnose_if'; use "error" or "warning" instead}}
void failure() _diagnose_if(0, "", "ERROR"); // expected-error{{invalid diagnostic type}}
void failure(int a) _diagnose_if(a, "", ""); // expected-error{{invalid diagnostic type}}
void failure() _diagnose_if(a, "", ""); // expected-error{{undeclared identifier 'a'}}
int globalVar;
void never_constant() _diagnose_if(globalVar, "", "error"); // expected-error{{'diagnose_if' attribute expression never produces a constant expression}} expected-note{{subexpression not valid}}
void never_constant() _diagnose_if(globalVar, "", "warning"); // expected-error{{'diagnose_if' attribute expression never produces a constant expression}} expected-note{{subexpression not valid}}
int alwaysok(int q) _diagnose_if(0, "", "error");
int neverok(int q) _diagnose_if(1, "oh no", "error"); // expected-note 5{{from 'diagnose_if' attribute on 'neverok'}}
int alwayswarn(int q) _diagnose_if(1, "oh no", "warning"); // expected-note 5{{from 'diagnose_if' attribute}}
int neverwarn(int q) _diagnose_if(0, "", "warning");
void runConstant() {
int m;
alwaysok(0);
alwaysok(1);
alwaysok(m);
{
int (*pok)(int) = alwaysok;
pok = &alwaysok;
}
neverok(0); // expected-error{{oh no}}
neverok(1); // expected-error{{oh no}}
neverok(m); // expected-error{{oh no}}
{
int (*pok)(int) = neverok; // expected-error{{oh no}}
pok = &neverok; // expected-error{{oh no}}
}
alwayswarn(0); // expected-warning{{oh no}}
alwayswarn(1); // expected-warning{{oh no}}
alwayswarn(m); // expected-warning{{oh no}}
{
int (*pok)(int) = alwayswarn; // expected-warning{{oh no}}
pok = &alwayswarn; // expected-warning{{oh no}}
}
neverwarn(0);
neverwarn(1);
neverwarn(m);
{
int (*pok)(int) = neverwarn;
pok = &neverwarn;
}
}
int abs(int q) _diagnose_if(q >= 0, "redundant abs call", "error"); //expected-note{{from 'diagnose_if'}}
void runVariable() {
int m;
abs(-1);
abs(1); // expected-error{{redundant abs call}}
abs(m);
int (*pabs)(int) = abs;
pabs = &abs;
}
#define _overloadable __attribute__((overloadable))
int ovl1(const char *n) _overloadable _diagnose_if(n, "oh no", "error"); // expected-note{{oh no}}
int ovl1(void *m) _overloadable; // expected-note{{candidate function}}
int ovl2(const char *n) _overloadable _diagnose_if(n, "oh no", "error"); // expected-note{{candidate function}}
int ovl2(char *m) _overloadable; // expected-note{{candidate function}}
void overloadsYay() {
ovl1((void *)0);
ovl1(""); // expected-error{{call to unavailable function}}
ovl2((void *)0); // expected-error{{ambiguous}}
}
void errorWarnDiagnose1() _diagnose_if(1, "oh no", "error") // expected-note{{from 'diagnose_if'}}
_diagnose_if(1, "nop", "warning");
void errorWarnDiagnose2() _diagnose_if(1, "oh no", "error") // expected-note{{from 'diagnose_if'}}
_diagnose_if(1, "nop", "error");
void errorWarnDiagnose3() _diagnose_if(1, "nop", "warning")
_diagnose_if(1, "oh no", "error"); // expected-note{{from 'diagnose_if'}}
void errorWarnDiagnoseArg1(int a) _diagnose_if(a == 1, "oh no", "error") // expected-note{{from 'diagnose_if'}}
_diagnose_if(a == 1, "nop", "warning");
void errorWarnDiagnoseArg2(int a) _diagnose_if(a == 1, "oh no", "error") // expected-note{{from 'diagnose_if'}}
_diagnose_if(a == 1, "nop", "error");
void errorWarnDiagnoseArg3(int a) _diagnose_if(a == 1, "nop", "warning")
_diagnose_if(a == 1, "oh no", "error"); // expected-note{{from 'diagnose_if'}}
void runErrorWarnDiagnose() {
errorWarnDiagnose1(); // expected-error{{oh no}}
errorWarnDiagnose2(); // expected-error{{oh no}}
errorWarnDiagnose3(); // expected-error{{oh no}}
errorWarnDiagnoseArg1(1); // expected-error{{oh no}}
errorWarnDiagnoseArg2(1); // expected-error{{oh no}}
errorWarnDiagnoseArg3(1); // expected-error{{oh no}}
}
void warnWarnDiagnose() _diagnose_if(1, "oh no!", "warning") _diagnose_if(1, "foo", "warning"); // expected-note 2{{from 'diagnose_if'}}
void runWarnWarnDiagnose() {
warnWarnDiagnose(); // expected-warning{{oh no!}} expected-warning{{foo}}
}
void declsStackErr1(int a) _diagnose_if(a & 1, "decl1", "error"); // expected-note 2{{from 'diagnose_if'}}
void declsStackErr1(int a) _diagnose_if(a & 2, "decl2", "error"); // expected-note{{from 'diagnose_if'}}
void declsStackErr2();
void declsStackErr2() _diagnose_if(1, "complaint", "error"); // expected-note{{from 'diagnose_if'}}
void declsStackErr3() _diagnose_if(1, "complaint", "error"); // expected-note{{from 'diagnose_if'}}
void declsStackErr3();
void runDeclsStackErr() {
declsStackErr1(0);
declsStackErr1(1); // expected-error{{decl1}}
declsStackErr1(2); // expected-error{{decl2}}
declsStackErr1(3); // expected-error{{decl1}}
declsStackErr2(); // expected-error{{complaint}}
declsStackErr3(); // expected-error{{complaint}}
}
void declsStackWarn1(int a) _diagnose_if(a & 1, "decl1", "warning"); // expected-note 2{{from 'diagnose_if'}}
void declsStackWarn1(int a) _diagnose_if(a & 2, "decl2", "warning"); // expected-note 2{{from 'diagnose_if'}}
void declsStackWarn2();
void declsStackWarn2() _diagnose_if(1, "complaint", "warning"); // expected-note{{from 'diagnose_if'}}
void declsStackWarn3() _diagnose_if(1, "complaint", "warning"); // expected-note{{from 'diagnose_if'}}
void declsStackWarn3();
void runDeclsStackWarn() {
declsStackWarn1(0);
declsStackWarn1(1); // expected-warning{{decl1}}
declsStackWarn1(2); // expected-warning{{decl2}}
declsStackWarn1(3); // expected-warning{{decl1}} expected-warning{{decl2}}
declsStackWarn2(); // expected-warning{{complaint}}
declsStackWarn3(); // expected-warning{{complaint}}
}
void noMsg(int n) _diagnose_if(n, "", "warning"); // expected-note{{from 'diagnose_if'}}
void runNoMsg() {
noMsg(1); // expected-warning{{<no message provided>}}
}
void alwaysWarnWithArg(int a) _diagnose_if(1 || a, "alwaysWarn", "warning"); // expected-note{{from 'diagnose_if'}}
void runAlwaysWarnWithArg(int a) {
alwaysWarnWithArg(a); // expected-warning{{alwaysWarn}}
}

View File

@ -0,0 +1,460 @@
// RUN: %clang_cc1 %s -verify -fno-builtin -std=c++14
#define _diagnose_if(...) __attribute__((diagnose_if(__VA_ARGS__)))
namespace type_dependent {
template <typename T>
void neverok() _diagnose_if(!T(), "oh no", "error") {} // expected-note 4{{from 'diagnose_if'}}
template <typename T>
void alwaysok() _diagnose_if(T(), "oh no", "error") {}
template <typename T>
void alwayswarn() _diagnose_if(!T(), "oh no", "warning") {} // expected-note 4{{from 'diagnose_if'}}
template <typename T>
void neverwarn() _diagnose_if(T(), "oh no", "warning") {}
void runAll() {
alwaysok<int>();
alwaysok<int>();
{
void (*pok)() = alwaysok<int>;
pok = &alwaysok<int>;
}
neverok<int>(); // expected-error{{oh no}}
neverok<short>(); // expected-error{{oh no}}
{
void (*pok)() = neverok<int>; // expected-error{{oh no}}
}
{
void (*pok)();
pok = &neverok<int>; // expected-error{{oh no}}
}
alwayswarn<int>(); // expected-warning{{oh no}}
alwayswarn<short>(); // expected-warning{{oh no}}
{
void (*pok)() = alwayswarn<int>; // expected-warning{{oh no}}
pok = &alwayswarn<int>; // expected-warning{{oh no}}
}
neverwarn<int>();
neverwarn<short>();
{
void (*pok)() = neverwarn<int>;
pok = &neverwarn<int>;
}
}
template <typename T>
void errorIf(T a) _diagnose_if(T() != a, "oh no", "error") {} // expected-note {{candidate disabled: oh no}}
template <typename T>
void warnIf(T a) _diagnose_if(T() != a, "oh no", "warning") {} // expected-note {{from 'diagnose_if'}}
void runIf() {
errorIf(0);
errorIf(1); // expected-error{{call to unavailable function}}
warnIf(0);
warnIf(1); // expected-warning{{oh no}}
}
}
namespace value_dependent {
template <int N>
void neverok() _diagnose_if(N == 0 || N != 0, "oh no", "error") {} // expected-note 4{{from 'diagnose_if'}}
template <int N>
void alwaysok() _diagnose_if(N == 0 && N != 0, "oh no", "error") {}
template <int N>
void alwayswarn() _diagnose_if(N == 0 || N != 0, "oh no", "warning") {} // expected-note 4{{from 'diagnose_if'}}
template <int N>
void neverwarn() _diagnose_if(N == 0 && N != 0, "oh no", "warning") {}
void runAll() {
alwaysok<0>();
alwaysok<1>();
{
void (*pok)() = alwaysok<0>;
pok = &alwaysok<0>;
}
neverok<0>(); // expected-error{{oh no}}
neverok<1>(); // expected-error{{oh no}}
{
void (*pok)() = neverok<0>; // expected-error{{oh no}}
}
{
void (*pok)();
pok = &neverok<0>; // expected-error{{oh no}}
}
alwayswarn<0>(); // expected-warning{{oh no}}
alwayswarn<1>(); // expected-warning{{oh no}}
{
void (*pok)() = alwayswarn<0>; // expected-warning{{oh no}}
pok = &alwayswarn<0>; // expected-warning{{oh no}}
}
neverwarn<0>();
neverwarn<1>();
{
void (*pok)() = neverwarn<0>;
pok = &neverwarn<0>;
}
}
template <int N>
void errorIf(int a) _diagnose_if(N != a, "oh no", "error") {} // expected-note {{candidate disabled: oh no}}
template <int N>
void warnIf(int a) _diagnose_if(N != a, "oh no", "warning") {} // expected-note {{from 'diagnose_if'}}
void runIf() {
errorIf<0>(0);
errorIf<0>(1); // expected-error{{call to unavailable function}}
warnIf<0>(0);
warnIf<0>(1); // expected-warning{{oh no}}
}
}
namespace no_overload_interaction {
void foo(int) _diagnose_if(1, "oh no", "error"); // expected-note{{from 'diagnose_if'}}
void foo(short);
void bar(int);
void bar(short) _diagnose_if(1, "oh no", "error");
void fooArg(int a) _diagnose_if(a, "oh no", "error"); // expected-note{{candidate disabled: oh no}}
void fooArg(short); // expected-note{{candidate function}}
void barArg(int);
void barArg(short a) _diagnose_if(a, "oh no", "error");
void runAll() {
foo(1); // expected-error{{oh no}}
bar(1);
fooArg(1); // expected-error{{call to unavailable function}}
barArg(1);
auto p = foo; // expected-error{{incompatible initializer of type '<overloaded function type>'}}
}
}
namespace with_default_args {
void foo(int a = 0) _diagnose_if(a, "oh no", "warning"); // expected-note 1{{from 'diagnose_if'}}
void bar(int a = 1) _diagnose_if(a, "oh no", "warning"); // expected-note 2{{from 'diagnose_if'}}
void runAll() {
foo();
foo(0);
foo(1); // expected-warning{{oh no}}
bar(); // expected-warning{{oh no}}
bar(0);
bar(1); // expected-warning{{oh no}}
}
}
namespace naked_mem_expr {
struct Foo {
void foo(int a) _diagnose_if(a, "should warn", "warning"); // expected-note{{from 'diagnose_if'}}
void bar(int a) _diagnose_if(a, "oh no", "error"); // expected-note{{from 'diagnose_if'}}
};
void runFoo() {
Foo().foo(0);
Foo().foo(1); // expected-warning{{should warn}}
Foo().bar(0);
Foo().bar(1); // expected-error{{oh no}}
}
}
namespace class_template {
template <typename T>
struct Errors {
void foo(int i) _diagnose_if(i, "bad i", "error"); // expected-note{{from 'diagnose_if'}}
void bar(int i) _diagnose_if(i != T(), "bad i", "error"); // expected-note{{from 'diagnose_if'}}
void fooOvl(int i) _diagnose_if(i, "int bad i", "error"); // expected-note 2{{int bad i}}
void fooOvl(short i) _diagnose_if(i, "short bad i", "error"); // expected-note 2{{short bad i}}
void barOvl(int i) _diagnose_if(i != T(), "int bad i", "error"); // expected-note 2{{int bad i}}
void barOvl(short i) _diagnose_if(i != T(), "short bad i", "error"); // expected-note 2{{short bad i}}
};
void runErrors() {
Errors<int>().foo(0);
Errors<int>().foo(1); // expected-error{{bad i}}
Errors<int>().bar(0);
Errors<int>().bar(1); // expected-error{{bad i}}
Errors<int>().fooOvl(0);
Errors<int>().fooOvl(1); // expected-error{{call to unavailable}}
Errors<int>().fooOvl(short(0));
Errors<int>().fooOvl(short(1)); // expected-error{{call to unavailable}}
Errors<int>().barOvl(0);
Errors<int>().barOvl(1); // expected-error{{call to unavailable}}
Errors<int>().barOvl(short(0));
Errors<int>().barOvl(short(1)); // expected-error{{call to unavailable}}
}
template <typename T>
struct Warnings {
void foo(int i) _diagnose_if(i, "bad i", "warning"); // expected-note{{from 'diagnose_if'}}
void bar(int i) _diagnose_if(i != T(), "bad i", "warning"); // expected-note{{from 'diagnose_if'}}
void fooOvl(int i) _diagnose_if(i, "int bad i", "warning"); // expected-note{{from 'diagnose_if'}}
void fooOvl(short i) _diagnose_if(i, "short bad i", "warning"); // expected-note{{from 'diagnose_if'}}
void barOvl(int i) _diagnose_if(i != T(), "int bad i", "warning"); // expected-note{{from 'diagnose_if'}}
void barOvl(short i) _diagnose_if(i != T(), "short bad i", "warning"); // expected-note{{from 'diagnose_if'}}
};
void runWarnings() {
Warnings<int>().foo(0);
Warnings<int>().foo(1); // expected-warning{{bad i}}
Warnings<int>().bar(0);
Warnings<int>().bar(1); // expected-warning{{bad i}}
Warnings<int>().fooOvl(0);
Warnings<int>().fooOvl(1); // expected-warning{{int bad i}}
Warnings<int>().fooOvl(short(0));
Warnings<int>().fooOvl(short(1)); // expected-warning{{short bad i}}
Warnings<int>().barOvl(0);
Warnings<int>().barOvl(1); // expected-warning{{int bad i}}
Warnings<int>().barOvl(short(0));
Warnings<int>().barOvl(short(1)); // expected-warning{{short bad i}}
}
}
namespace template_specialization {
template <typename T>
struct Foo {
void foo() _diagnose_if(1, "override me", "error"); // expected-note{{from 'diagnose_if'}}
void bar(int i) _diagnose_if(i, "bad i", "error"); // expected-note{{from 'diagnose_if'}}
void baz(int i);
};
template <>
struct Foo<int> {
void foo();
void bar(int i);
void baz(int i) _diagnose_if(i, "bad i", "error"); // expected-note{{from 'diagnose_if'}}
};
void runAll() {
Foo<double>().foo(); // expected-error{{override me}}
Foo<int>().foo();
Foo<double>().bar(1); // expected-error{{bad i}}
Foo<int>().bar(1);
Foo<double>().baz(1);
Foo<int>().baz(1); // expected-error{{bad i}}
}
}
namespace late_constexpr {
constexpr int foo();
constexpr int foo(int a);
void bar() _diagnose_if(foo(), "bad foo", "error"); // expected-note{{from 'diagnose_if'}} expected-note{{not viable: requires 0 arguments}}
void bar(int a) _diagnose_if(foo(a), "bad foo", "error"); // expected-note{{bad foo}}
void early() {
bar();
bar(0);
bar(1);
}
constexpr int foo() { return 1; }
constexpr int foo(int a) { return a; }
void late() {
bar(); // expected-error{{bad foo}}
bar(0);
bar(1); // expected-error{{call to unavailable function}}
}
}
namespace late_parsed {
struct Foo {
int i;
constexpr Foo(int i): i(i) {}
constexpr bool isFooable() const { return i; }
void go() const _diagnose_if(isFooable(), "oh no", "error") {} // expected-note{{from 'diagnose_if'}}
operator int() const _diagnose_if(isFooable(), "oh no", "error") { return 1; } // expected-note{{oh no}}
void go2() const _diagnose_if(isFooable(), "oh no", "error") // expected-note{{oh no}}
__attribute__((enable_if(true, ""))) {}
void go2() const _diagnose_if(isFooable(), "oh no", "error") {} // expected-note{{oh no}}
constexpr int go3() const _diagnose_if(isFooable(), "oh no", "error")
__attribute__((enable_if(true, ""))) {
return 1;
}
constexpr int go4() const _diagnose_if(isFooable(), "oh no", "error") {
return 1;
}
constexpr int go4() const _diagnose_if(isFooable(), "oh no", "error")
__attribute__((enable_if(true, ""))) {
return 1;
}
// We hope to support emitting these errors in the future. For now, though...
constexpr int runGo() const {
return go3() + go4();
}
};
void go(const Foo &f) _diagnose_if(f.isFooable(), "oh no", "error") {} // expected-note{{oh no}}
void run() {
Foo(0).go();
Foo(1).go(); // expected-error{{oh no}}
(void)int(Foo(0));
(void)int(Foo(1)); // expected-error{{uses deleted function}}
Foo(0).go2();
Foo(1).go2(); // expected-error{{call to unavailable member function}}
go(Foo(0));
go(Foo(1)); // expected-error{{call to unavailable function}}
}
}
namespace member_templates {
struct Foo {
int i;
constexpr Foo(int i): i(i) {}
constexpr bool bad() const { return i; }
template <typename T> T getVal() _diagnose_if(bad(), "oh no", "error") { // expected-note{{oh no}}
return T();
}
template <typename T>
constexpr T getVal2() const _diagnose_if(bad(), "oh no", "error") { // expected-note{{oh no}}
return T();
}
template <typename T>
constexpr operator T() const _diagnose_if(bad(), "oh no", "error") { // expected-note{{oh no}}
return T();
}
// We hope to support emitting these errors in the future.
int run() { return getVal<int>() + getVal2<int>() + int(*this); }
};
void run() {
Foo(0).getVal<int>();
Foo(1).getVal<int>(); // expected-error{{call to unavailable member function}}
Foo(0).getVal2<int>();
Foo(1).getVal2<int>(); // expected-error{{call to unavailable member function}}
(void)int(Foo(0));
(void)int(Foo(1)); // expected-error{{uses deleted function}}
}
}
namespace special_member_operators {
struct Bar { int j; };
struct Foo {
int i;
constexpr Foo(int i): i(i) {}
constexpr bool bad() const { return i; }
const Bar *operator->() const _diagnose_if(bad(), "oh no", "error") { // expected-note{{oh no}}
return nullptr;
}
void operator()() const _diagnose_if(bad(), "oh no", "error") {} // expected-note{{oh no}}
};
struct ParenOverload {
int i;
constexpr ParenOverload(int i): i(i) {}
constexpr bool bad() const { return i; }
void operator()(double) const _diagnose_if(bad(), "oh no", "error") {} // expected-note 2{{oh no}}
void operator()(int) const _diagnose_if(bad(), "oh no", "error") {} // expected-note 2{{oh no}}
};
struct ParenTemplate {
int i;
constexpr ParenTemplate(int i): i(i) {}
constexpr bool bad() const { return i; }
template <typename T>
void operator()(T) const _diagnose_if(bad(), "oh no", "error") {} // expected-note 2{{oh no}}
};
void run() {
(void)Foo(0)->j;
(void)Foo(1)->j; // expected-error{{selected unavailable operator '->'}}
Foo(0)();
Foo(1)(); // expected-error{{unavailable function call operator}}
ParenOverload(0)(1);
ParenOverload(0)(1.);
ParenOverload(1)(1); // expected-error{{unavailable function call operator}}
ParenOverload(1)(1.); // expected-error{{unavailable function call operator}}
ParenTemplate(0)(1);
ParenTemplate(0)(1.);
ParenTemplate(1)(1); // expected-error{{unavailable function call operator}}
ParenTemplate(1)(1.); // expected-error{{unavailable function call operator}}
}
void runLambda() {
auto L1 = [](int i) _diagnose_if(i, "oh no", "error") {}; // expected-note{{oh no}} expected-note{{conversion candidate}}
L1(0);
L1(1); // expected-error{{call to unavailable function call}}
}
}
namespace ctors {
struct Foo {
int I;
constexpr Foo(int I): I(I) {}
constexpr const Foo &operator=(const Foo &) const // expected-note 2{{disabled: oh no}}
_diagnose_if(I, "oh no", "error") {
return *this;
}
constexpr const Foo &operator=(const Foo &&) const // expected-note{{disabled: oh no}} expected-note{{no known conversion}}
_diagnose_if(I, "oh no", "error") {
return *this;
}
};
void run() {
constexpr Foo F{0};
constexpr Foo F2{1};
F2 = F; // expected-error{{selected unavailable operator}}
F2 = Foo{2}; // expected-error{{selected unavailable operator}}
}
}