tsan: refactor atomic operations implementation

do the atomic operation under the sync object mutex
make acquire/release sync atomic with the operation itself
combine acquire and release into a single acq_rel operation

llvm-svn: 168682
This commit is contained in:
Dmitry Vyukov 2012-11-27 07:25:50 +00:00
parent 7c0f9a6461
commit 10362c46f1
1 changed files with 103 additions and 64 deletions

View File

@ -11,6 +11,14 @@
//
//===----------------------------------------------------------------------===//
// ThreadSanitizer atomic operations are based on C++11/C1x standards.
// For background see C++11 standard. A slightly older, publically
// available draft of the standard (not entirely up-to-date, but close enough
// for casual browsing) is available here:
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
// The following page contains more background information:
// http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
#include "sanitizer_common/sanitizer_placement_new.h"
#include "tsan_interface_atomic.h"
#include "tsan_flags.h"
@ -79,6 +87,10 @@ static bool IsAcquireOrder(morder mo) {
|| mo == mo_acq_rel || mo == mo_seq_cst;
}
static bool IsAcqRelOrder(morder mo) {
return mo == mo_acq_rel || mo == mo_seq_cst;
}
static morder ConvertOrder(morder mo) {
if (mo > (morder)100500) {
mo = morder(mo - 100500);
@ -100,6 +112,34 @@ static morder ConvertOrder(morder mo) {
return mo;
}
template<typename T> T func_xchg(T v, T op) {
return op;
}
template<typename T> T func_add(T v, T op) {
return v + op;
}
template<typename T> T func_sub(T v, T op) {
return v - op;
}
template<typename T> T func_and(T v, T op) {
return v & op;
}
template<typename T> T func_or(T v, T op) {
return v | op;
}
template<typename T> T func_xor(T v, T op) {
return v ^ op;
}
template<typename T> T func_nand(T v, T op) {
return ~v & op;
}
#define SCOPED_ATOMIC(func, ...) \
mo = ConvertOrder(mo); \
mo = flags()->force_seq_cst_atomics ? (morder)mo_seq_cst : mo; \
@ -115,9 +155,15 @@ template<typename T>
static T AtomicLoad(ThreadState *thr, uptr pc, const volatile T *a,
morder mo) {
CHECK(IsLoadOrder(mo));
// This fast-path is critical for performance.
// Assume the access is atomic.
if (!IsAcquireOrder(mo) && sizeof(T) <= sizeof(a))
return *a;
SyncVar *s = CTX()->synctab.GetAndLock(thr, pc, (uptr)a, false);
thr->clock.set(thr->tid, thr->fast_state.epoch());
thr->clock.acquire(&s->clock);
T v = *a;
if (IsAcquireOrder(mo))
Acquire(thr, pc, (uptr)a);
s->mtx.ReadUnlock();
return v;
}
@ -125,109 +171,101 @@ template<typename T>
static void AtomicStore(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
CHECK(IsStoreOrder(mo));
if (IsReleaseOrder(mo))
ReleaseStore(thr, pc, (uptr)a);
// This fast-path is critical for performance.
// Assume the access is atomic.
// Strictly saying even relaxed store cuts off release sequence,
// so must reset the clock.
if (!IsReleaseOrder(mo) && sizeof(T) <= sizeof(a)) {
*a = v;
return;
}
SyncVar *s = CTX()->synctab.GetAndLock(thr, pc, (uptr)a, true);
thr->clock.set(thr->tid, thr->fast_state.epoch());
thr->clock.ReleaseStore(&s->clock);
*a = v;
s->mtx.Unlock();
}
template<typename T, T (*F)(T v, T op)>
static T AtomicRMW(ThreadState *thr, uptr pc, volatile T *a, T v, morder mo) {
SyncVar *s = CTX()->synctab.GetAndLock(thr, pc, (uptr)a, true);
thr->clock.set(thr->tid, thr->fast_state.epoch());
if (IsAcqRelOrder(mo))
thr->clock.acq_rel(&s->clock);
else if (IsReleaseOrder(mo))
thr->clock.release(&s->clock);
else if (IsAcquireOrder(mo))
thr->clock.acquire(&s->clock);
T c = *a;
*a = F(c, v);
s->mtx.Unlock();
return c;
}
template<typename T>
static T AtomicExchange(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
if (IsReleaseOrder(mo))
Release(thr, pc, (uptr)a);
v = __sync_lock_test_and_set(a, v);
if (IsAcquireOrder(mo))
Acquire(thr, pc, (uptr)a);
return v;
return AtomicRMW<T, func_xchg>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchAdd(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
if (IsReleaseOrder(mo))
Release(thr, pc, (uptr)a);
v = __sync_fetch_and_add(a, v);
if (IsAcquireOrder(mo))
Acquire(thr, pc, (uptr)a);
return v;
return AtomicRMW<T, func_add>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchSub(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
if (IsReleaseOrder(mo))
Release(thr, pc, (uptr)a);
v = __sync_fetch_and_sub(a, v);
if (IsAcquireOrder(mo))
Acquire(thr, pc, (uptr)a);
return v;
return AtomicRMW<T, func_sub>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchAnd(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
if (IsReleaseOrder(mo))
Release(thr, pc, (uptr)a);
v = __sync_fetch_and_and(a, v);
if (IsAcquireOrder(mo))
Acquire(thr, pc, (uptr)a);
return v;
return AtomicRMW<T, func_and>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchOr(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
if (IsReleaseOrder(mo))
Release(thr, pc, (uptr)a);
v = __sync_fetch_and_or(a, v);
if (IsAcquireOrder(mo))
Acquire(thr, pc, (uptr)a);
return v;
return AtomicRMW<T, func_or>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchXor(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
if (IsReleaseOrder(mo))
Release(thr, pc, (uptr)a);
v = __sync_fetch_and_xor(a, v);
if (IsAcquireOrder(mo))
Acquire(thr, pc, (uptr)a);
return v;
return AtomicRMW<T, func_xor>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchNand(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
if (IsReleaseOrder(mo))
Release(thr, pc, (uptr)a);
T cmp = *a;
for (;;) {
T xch = ~cmp & v;
T cur = __sync_val_compare_and_swap(a, cmp, xch);
if (cmp == cur)
break;
cmp = cur;
}
if (IsAcquireOrder(mo))
Acquire(thr, pc, (uptr)a);
return v;
return AtomicRMW<T, func_nand>(thr, pc, a, v, mo);
}
template<typename T>
static bool AtomicCAS(ThreadState *thr, uptr pc,
volatile T *a, T *c, T v, morder mo, morder fmo) {
(void)fmo;
if (IsReleaseOrder(mo))
Release(thr, pc, (uptr)a);
T cc = *c;
T pr = __sync_val_compare_and_swap(a, cc, v);
if (IsAcquireOrder(mo))
Acquire(thr, pc, (uptr)a);
if (pr == cc)
return true;
*c = pr;
return false;
(void)fmo; // Unused because llvm does not pass it yet.
SyncVar *s = CTX()->synctab.GetAndLock(thr, pc, (uptr)a, true);
thr->clock.set(thr->tid, thr->fast_state.epoch());
if (IsAcqRelOrder(mo))
thr->clock.acq_rel(&s->clock);
else if (IsReleaseOrder(mo))
thr->clock.release(&s->clock);
else if (IsAcquireOrder(mo))
thr->clock.acquire(&s->clock);
T cur = *a;
bool res = false;
if (cur == *c) {
*a = v;
res = true;
} else {
*c = cur;
}
s->mtx.Unlock();
return res;
}
template<typename T>
@ -238,6 +276,7 @@ static T AtomicCAS(ThreadState *thr, uptr pc,
}
static void AtomicFence(ThreadState *thr, uptr pc, morder mo) {
// FIXME(dvyukov): not implemented.
__sync_synchronize();
}