First cut trivial re-materialization support.

llvm-svn: 35208
This commit is contained in:
Evan Cheng 2007-03-20 08:13:50 +00:00
parent 9e7b838469
commit 0e3278e505
5 changed files with 155 additions and 27 deletions

View File

@ -28,6 +28,7 @@
#include <cassert>
namespace llvm {
class MachineInstr;
class MRegisterInfo;
/// LiveRange structure - This represents a simple register range in the
@ -81,6 +82,7 @@ namespace llvm {
typedef SmallVector<LiveRange,4> Ranges;
unsigned reg; // the register of this interval
float weight; // weight of this interval
MachineInstr* remat; // definition if the definition rematerializable
Ranges ranges; // the ranges in which this register is live
private:
/// ValueNumberInfo - If this value number is not defined by a copy, this
@ -92,7 +94,7 @@ namespace llvm {
public:
LiveInterval(unsigned Reg, float Weight)
: reg(Reg), weight(Weight) {
: reg(Reg), weight(Weight), remat(NULL) {
}
typedef Ranges::iterator iterator;
@ -119,6 +121,7 @@ namespace llvm {
void swap(LiveInterval& other) {
std::swap(reg, other.reg);
std::swap(weight, other.weight);
std::swap(remat, other.remat);
std::swap(ranges, other.ranges);
std::swap(ValueNumberInfo, other.ValueNumberInfo);
}

View File

@ -50,6 +50,11 @@ namespace {
EnableJoining("join-liveintervals",
cl::desc("Coallesce copies (default=true)"),
cl::init(true));
static cl::opt<bool>
EnableReMat("enable-rematerialization",
cl::desc("Perform trivial re-materialization"),
cl::init(false));
}
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
@ -155,8 +160,7 @@ bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
RemoveMachineInstrFromMaps(mii);
mii = mbbi->erase(mii);
++numPeep;
}
else {
} else {
for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) {
const MachineOperand &mop = mii->getOperand(i);
if (mop.isRegister() && mop.getReg() &&
@ -165,9 +169,13 @@ bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
unsigned reg = rep(mop.getReg());
mii->getOperand(i).setReg(reg);
// If the definition instruction is re-materializable, its spill
// weight is zero.
LiveInterval &RegInt = getInterval(reg);
RegInt.weight +=
(mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth);
if (!RegInt.remat) {
RegInt.weight +=
(mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth);
}
}
}
++mii;
@ -300,7 +308,9 @@ addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
MachineOperand& mop = MI->getOperand(i);
if (mop.isRegister() && mop.getReg() == li.reg) {
if (MachineInstr *fmi = mri_->foldMemoryOperand(MI, i, slot)) {
MachineInstr *fmi = li.remat ? NULL
: mri_->foldMemoryOperand(MI, i, slot);
if (fmi) {
// Attempt to fold the memory reference into the instruction. If we
// can do this, we don't need to insert spill code.
if (lv_)
@ -345,8 +355,11 @@ addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
// create a new register for this spill
vrm.grow();
if (li.remat)
vrm.setVirtIsReMaterialized(NewVReg, li.remat);
vrm.assignVirt2StackSlot(NewVReg, slot);
LiveInterval &nI = getOrCreateInterval(NewVReg);
nI.remat = li.remat;
assert(nI.empty());
// the spill weight is now infinity as it
@ -422,6 +435,11 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
// done once for the vreg. We use an empty interval to detect the first
// time we see a vreg.
if (interval.empty()) {
// Remember if the definition can be rematerialized.
if (EnableReMat &&
vi.DefInst && tii_->isReMaterializable(vi.DefInst->getOpcode()))
interval.remat = vi.DefInst;
// Get the Idx of the defining instructions.
unsigned defIndex = getDefIndex(MIIdx);
@ -497,6 +515,9 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
}
} else {
// Can't safely assume definition is rematierializable anymore.
interval.remat = NULL;
// If this is the second time we see a virtual register definition, it
// must be due to phi elimination or two addr elimination. If this is
// the result of two address elimination, then the vreg is one of the

View File

@ -12,6 +12,7 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "PhysRegTracker.h"
#include "VirtRegMap.h"
@ -600,7 +601,12 @@ void RA::assignRegOrStackSlotAtInterval(LiveInterval* cur)
// linearscan.
if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
DOUT << "\t\t\tspilling(c): " << *cur << '\n';
int slot = vrm_->assignVirt2StackSlot(cur->reg);
// if the current interval is re-materializable, remember so and don't
// assign it a spill slot.
if (cur->remat)
vrm_->setVirtIsReMaterialized(cur->reg, cur->remat);
int slot = cur->remat ? vrm_->assignVirtReMatId(cur->reg)
: vrm_->assignVirt2StackSlot(cur->reg);
std::vector<LiveInterval*> added =
li_->addIntervalsForSpills(*cur, *vrm_, slot);
if (added.empty())
@ -627,7 +633,7 @@ void RA::assignRegOrStackSlotAtInterval(LiveInterval* cur)
std::vector<LiveInterval*> added;
assert(MRegisterInfo::isPhysicalRegister(minReg) &&
"did not choose a register to spill?");
std::vector<bool> toSpill(mri_->getNumRegs(), false);
BitVector toSpill(mri_->getNumRegs());
// We are going to spill minReg and all its aliases.
toSpill[minReg] = true;
@ -653,7 +659,10 @@ void RA::assignRegOrStackSlotAtInterval(LiveInterval* cur)
cur->overlapsFrom(*i->first, i->second)) {
DOUT << "\t\t\tspilling(a): " << *i->first << '\n';
earliestStart = std::min(earliestStart, i->first->beginNumber());
int slot = vrm_->assignVirt2StackSlot(i->first->reg);
if (i->first->remat)
vrm_->setVirtIsReMaterialized(reg, i->first->remat);
int slot = i->first->remat ? vrm_->assignVirtReMatId(reg)
: vrm_->assignVirt2StackSlot(reg);
std::vector<LiveInterval*> newIs =
li_->addIntervalsForSpills(*i->first, *vrm_, slot);
std::copy(newIs.begin(), newIs.end(), std::back_inserter(added));
@ -667,7 +676,10 @@ void RA::assignRegOrStackSlotAtInterval(LiveInterval* cur)
cur->overlapsFrom(*i->first, i->second-1)) {
DOUT << "\t\t\tspilling(i): " << *i->first << '\n';
earliestStart = std::min(earliestStart, i->first->beginNumber());
int slot = vrm_->assignVirt2StackSlot(reg);
if (i->first->remat)
vrm_->setVirtIsReMaterialized(reg, i->first->remat);
int slot = i->first->remat ? vrm_->assignVirtReMatId(reg)
: vrm_->assignVirt2StackSlot(reg);
std::vector<LiveInterval*> newIs =
li_->addIntervalsForSpills(*i->first, *vrm_, slot);
std::copy(newIs.begin(), newIs.end(), std::back_inserter(added));

View File

@ -35,6 +35,7 @@
using namespace llvm;
STATISTIC(NumSpills, "Number of register spills");
STATISTIC(NumReMats, "Number of re-materialization");
STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads , "Number of loads added");
STATISTIC(NumReused, "Number of values reused");
@ -60,7 +61,8 @@ namespace {
VirtRegMap::VirtRegMap(MachineFunction &mf)
: TII(*mf.getTarget().getInstrInfo()), MF(mf),
Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT) {
Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
ReMatId(MAX_STACK_SLOT+1) {
grow();
}
@ -88,6 +90,15 @@ void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
Virt2StackSlotMap[virtReg] = frameIndex;
}
int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
assert(MRegisterInfo::isVirtualRegister(virtReg));
assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
"attempt to assign re-mat id to already spilled register");
Virt2StackSlotMap[virtReg] = ReMatId;
++NumReMats;
return ReMatId++;
}
void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
unsigned OpNo, MachineInstr *NewMI) {
// Move previous memory references folded to new instruction.
@ -227,13 +238,17 @@ namespace {
DOUT << "\n**** Local spiller rewriting function '"
<< MF.getFunction()->getName() << "':\n";
std::vector<MachineInstr *> ReMatedMIs;
for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
MBB != E; ++MBB)
RewriteMBB(*MBB, VRM);
RewriteMBB(*MBB, VRM, ReMatedMIs);
for (unsigned i = 0, e = ReMatedMIs.size(); i != e; ++i)
delete ReMatedMIs[i];
return true;
}
private:
void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
std::vector<MachineInstr*> &ReMatedMIs);
};
}
@ -338,8 +353,11 @@ public:
SpillSlotsAvailable[Slot] =
std::make_pair((Reg << 1) | (unsigned)CanClobber, DefUses);
DOUT << "Remembering SS#" << Slot << " in physreg "
<< MRI->getName(Reg) << "\n";
if (Slot > VirtRegMap::MAX_STACK_SLOT)
DOUT << "Remembering RM#" << Slot-VirtRegMap::MAX_STACK_SLOT-1;
else
DOUT << "Remembering SS#" << Slot;
DOUT << " in physreg " << MRI->getName(Reg) << "\n";
}
/// canClobberPhysReg - Return true if the spiller is allowed to change the
@ -405,7 +423,11 @@ void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
"Bidirectional map mismatch!");
SpillSlotsAvailable.erase(Slot);
DOUT << "PhysReg " << MRI->getName(PhysReg)
<< " clobbered, invalidating SS#" << Slot << "\n";
<< " clobbered, invalidating ";
if (Slot > VirtRegMap::MAX_STACK_SLOT)
DOUT << "RM#" << Slot-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
else
DOUT << "SS#" << Slot << "\n";
}
}
@ -599,7 +621,8 @@ namespace {
/// rewriteMBB - Keep track of which spills are available even after the
/// register allocator is done with them. If possible, avoid reloading vregs.
void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
std::vector<MachineInstr*> &ReMatedMIs) {
DOUT << MBB.getBasicBlock()->getName() << ":\n";
@ -629,6 +652,27 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
// Loop over all of the implicit defs, clearing them from our available
// sets.
const TargetInstrDescriptor *TID = MI.getInstrDescriptor();
// If this instruction is being rematerialized, just remove it!
if (TID->Flags & M_REMATERIALIZIBLE) {
bool Remove = true;
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (!MO.isRegister() || MO.getReg() == 0)
continue; // Ignore non-register operands.
if (MO.isDef() && !VRM.isReMaterialized(MO.getReg())) {
Remove = false;
break;
}
}
if (Remove) {
VRM.RemoveFromFoldedVirtMap(&MI);
ReMatedMIs.push_back(MI.removeFromParent());
MII = NextMII;
continue;
}
}
const unsigned *ImpDef = TID->ImplicitDefs;
if (ImpDef) {
for ( ; *ImpDef; ++ImpDef) {
@ -670,6 +714,7 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
if (!MO.isUse())
continue; // Handle defs in the loop below (handle use&def here though)
bool doReMat = VRM.isReMaterialized(VirtReg);
int StackSlot = VRM.getStackSlot(VirtReg);
unsigned PhysReg;
@ -695,7 +740,11 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
if (CanReuse) {
// If this stack slot value is already available, reuse it!
DOUT << "Reusing SS#" << StackSlot << " from physreg "
if (StackSlot > VirtRegMap::MAX_STACK_SLOT)
DOUT << "Reusing RM#" << StackSlot-VirtRegMap::MAX_STACK_SLOT-1;
else
DOUT << "Reusing SS#" << StackSlot;
DOUT << " from physreg "
<< MRI->getName(PhysReg) << " for vreg"
<< VirtReg <<" instead of reloading into physreg "
<< MRI->getName(VRM.getPhys(VirtReg)) << "\n";
@ -767,8 +816,11 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
// incoming, we don't need to inserted a dead copy.
if (DesignatedReg == PhysReg) {
// If this stack slot value is already available, reuse it!
DOUT << "Reusing SS#" << StackSlot << " from physreg "
<< MRI->getName(PhysReg) << " for vreg"
if (StackSlot > VirtRegMap::MAX_STACK_SLOT)
DOUT << "Reusing RM#" << StackSlot-VirtRegMap::MAX_STACK_SLOT-1;
else
DOUT << "Reusing SS#" << StackSlot;
DOUT << " from physreg " << MRI->getName(PhysReg) << " for vreg"
<< VirtReg
<< " instead of reloading into same physreg.\n";
MI.getOperand(i).setReg(PhysReg);
@ -828,12 +880,16 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
PhysRegsUsed[PhysReg] = true;
ReusedOperands.markClobbered(PhysReg);
MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
if (doReMat)
MRI->reMaterialize(MBB, &MI, PhysReg, VRM.getReMaterializedMI(VirtReg));
else
MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
// This invalidates PhysReg.
Spills.ClobberPhysReg(PhysReg);
// Any stores to this stack slot are not dead anymore.
MaybeDeadStores.erase(StackSlot);
if (!doReMat)
MaybeDeadStores.erase(StackSlot);
Spills.addAvailable(StackSlot, &MI, PhysReg);
// Assumes this is the last use. IsKill will be unset if reg is reused
// unless it's a two-address operand.

View File

@ -18,6 +18,7 @@
#define LLVM_CODEGEN_VIRTREGMAP_H
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/Support/Streams.h"
#include <map>
@ -28,6 +29,12 @@ namespace llvm {
class VirtRegMap {
public:
enum {
NO_PHYS_REG = 0,
NO_STACK_SLOT = ~0 >> 1,
MAX_STACK_SLOT = (1 << 18)-1
};
enum ModRef { isRef = 1, isMod = 2, isModRef = 3 };
typedef std::multimap<MachineInstr*,
std::pair<unsigned, ModRef> > MI2VirtMapTy;
@ -53,14 +60,20 @@ namespace llvm {
/// read/written by this instruction.
MI2VirtMapTy MI2VirtMap;
/// ReMatMap - This is irtual register to re-materialized instruction
/// mapping. Each virtual register whose definition is going to be
/// re-materialized has an entry in it.
std::map<unsigned, const MachineInstr*> ReMatMap;
/// ReMatId - Instead of assigning a stack slot to a to be rematerialized
/// virtaul register, an unique id is being assinged. This keeps track of
/// the highest id used so far. Note, this starts at (1<<18) to avoid
/// conflicts with stack slot numbers.
int ReMatId;
VirtRegMap(const VirtRegMap&); // DO NOT IMPLEMENT
void operator=(const VirtRegMap&); // DO NOT IMPLEMENT
enum {
NO_PHYS_REG = 0,
NO_STACK_SLOT = ~0 >> 1
};
public:
VirtRegMap(MachineFunction &mf);
@ -125,6 +138,29 @@ namespace llvm {
/// the specified stack slot
void assignVirt2StackSlot(unsigned virtReg, int frameIndex);
/// @brief assign an unique re-materialization id to the specified
/// virtual register.
int assignVirtReMatId(unsigned virtReg);
/// @brief returns true if the specified virtual register is being
/// re-materialized.
bool isReMaterialized(unsigned virtReg) const {
return ReMatMap.count(virtReg) != 0;
}
/// @brief returns the original machine instruction being re-issued
/// to re-materialize the specified virtual register.
const MachineInstr *getReMaterializedMI(unsigned virtReg) {
return ReMatMap[virtReg];
}
/// @brief records the specified virtual register will be
/// re-materialized and the original instruction which will be re-issed
/// for this purpose.
void setVirtIsReMaterialized(unsigned virtReg, MachineInstr *def) {
ReMatMap[virtReg] = def;
}
/// @brief Updates information about the specified virtual register's value
/// folded into newMI machine instruction. The OpNum argument indicates the
/// operand number of OldMI that is folded.