Rename Reduction variables/structures to Recurrence.

A reduction is a special kind of recurrence. In the loop vectorizer we currently
identify basic reductions. Future patches will extend this to identifying basic
recurrences.

llvm-svn: 239835
This commit is contained in:
Tyler Nowicki 2015-06-16 18:07:34 +00:00
parent 678d0cb146
commit 0a91310c7f
4 changed files with 150 additions and 137 deletions

View File

@ -43,12 +43,23 @@ struct LICMSafetyInfo {
{}
};
/// This POD struct holds information about a potential reduction operation.
class ReductionInstDesc {
/// The RecurrenceDescriptor is used to identify recurrences variables in a
/// loop. Reduction is a special case of recurrence that has uses of the
/// recurrence variable outside the loop. The method isReductionPHI identifies
/// reductions that are basic recurrences.
///
/// Basic recurrences are defined as the summation, product, OR, AND, XOR, min,
/// or max of a set of terms. For example: for(i=0; i<n; i++) { total +=
/// array[i]; } is a summation of array elements. Basic recurrences are a
/// special case of chains of recurrences (CR). See ScalarEvolution for CR
/// references.
/// This POD struct holds information about a potential recurrence operation.
class RecurrenceInstDesc {
public:
// This enum represents the kind of minmax reduction.
enum MinMaxReductionKind {
// This enum represents the kind of minmax recurrence.
enum MinMaxRecurrenceKind {
MRK_Invalid,
MRK_UIntMin,
MRK_UIntMax,
@ -57,35 +68,35 @@ public:
MRK_FloatMin,
MRK_FloatMax
};
ReductionInstDesc(bool IsRedux, Instruction *I)
: IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
RecurrenceInstDesc(bool IsRecur, Instruction *I)
: IsRecurrence(IsRecur), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
ReductionInstDesc(Instruction *I, MinMaxReductionKind K)
: IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
RecurrenceInstDesc(Instruction *I, MinMaxRecurrenceKind K)
: IsRecurrence(true), PatternLastInst(I), MinMaxKind(K) {}
bool isReduction() { return IsReduction; }
bool isRecurrence() { return IsRecurrence; }
MinMaxRecurrenceKind getMinMaxKind() { return MinMaxKind; }
MinMaxReductionKind getMinMaxKind() { return MinMaxKind; }
Instruction *getPatternInst() { return PatternLastInst; }
private:
// Is this instruction a reduction candidate.
bool IsReduction;
// Is this instruction a recurrence candidate.
bool IsRecurrence;
// The last instruction in a min/max pattern (select of the select(icmp())
// pattern), or the current reduction instruction otherwise.
// pattern), or the current recurrence instruction otherwise.
Instruction *PatternLastInst;
// If this is a min/max pattern the comparison predicate.
MinMaxReductionKind MinMaxKind;
MinMaxRecurrenceKind MinMaxKind;
};
/// This struct holds information about reduction variables.
class ReductionDescriptor {
/// This struct holds information about recurrence variables.
class RecurrenceDescriptor {
public:
/// This enum represents the kinds of reductions that we support.
enum ReductionKind {
RK_NoReduction, ///< Not a reduction.
/// This enum represents the kinds of recurrences that we support.
enum RecurrenceKind {
RK_NoRecurrence, ///< Not a recurrence.
RK_IntegerAdd, ///< Sum of integers.
RK_IntegerMult, ///< Product of integers.
RK_IntegerOr, ///< Bitwise or logical OR of numbers.
@ -97,22 +108,23 @@ public:
RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()).
};
ReductionDescriptor()
: StartValue(nullptr), LoopExitInstr(nullptr), Kind(RK_NoReduction),
MinMaxKind(ReductionInstDesc::MRK_Invalid) {}
RecurrenceDescriptor()
: StartValue(nullptr), LoopExitInstr(nullptr), Kind(RK_NoRecurrence),
MinMaxKind(RecurrenceInstDesc::MRK_Invalid) {}
ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
ReductionInstDesc::MinMaxReductionKind MK)
RecurrenceDescriptor(Value *Start, Instruction *Exit, RecurrenceKind K,
RecurrenceInstDesc::MinMaxRecurrenceKind MK)
: StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
/// Returns a struct describing if the instruction 'I' can be a reduction
/// variable of type 'Kind'. If the reduction is a min/max pattern of
/// Returns a struct describing if the instruction 'I' can be a recurrence
/// variable of type 'Kind'. If the recurrence is a min/max pattern of
/// select(icmp()) this function advances the instruction pointer 'I' from the
/// compare instruction to the select instruction and stores this pointer in
/// 'PatternLastInst' member of the returned struct.
static ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
ReductionInstDesc &Prev,
bool HasFunNoNaNAttr);
static RecurrenceInstDesc isRecurrenceInstr(Instruction *I,
RecurrenceKind Kind,
RecurrenceInstDesc &Prev,
bool HasFunNoNaNAttr);
/// Returns true if instuction I has multiple uses in Insts
static bool hasMultipleUsesOf(Instruction *I,
@ -124,51 +136,52 @@ public:
/// Returns a struct describing if the instruction if the instruction is a
/// Select(ICmp(X, Y), X, Y) instruction pattern corresponding to a min(X, Y)
/// or max(X, Y).
static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
ReductionInstDesc &Prev);
static RecurrenceInstDesc isMinMaxSelectCmpPattern(Instruction *I,
RecurrenceInstDesc &Prev);
/// Returns identity corresponding to the ReductionKind.
static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
/// Returns identity corresponding to the RecurrenceKind.
static Constant *getRecurrenceIdentity(RecurrenceKind K, Type *Tp);
/// Returns the opcode of binary operation corresponding to the ReductionKind.
static unsigned getReductionBinOp(ReductionKind Kind);
/// Returns the opcode of binary operation corresponding to the
/// RecurrenceKind.
static unsigned getRecurrenceBinOp(RecurrenceKind Kind);
/// Returns a Min/Max operation corresponding to MinMaxReductionKind.
/// Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
static Value *createMinMaxOp(IRBuilder<> &Builder,
ReductionInstDesc::MinMaxReductionKind RK,
RecurrenceInstDesc::MinMaxRecurrenceKind RK,
Value *Left, Value *Right);
/// Returns true if Phi is a reduction of type Kind and adds it to the
/// ReductionDescriptor.
static bool AddReductionVar(PHINode *Phi, ReductionKind Kind, Loop *TheLoop,
/// RecurrenceDescriptor.
static bool AddReductionVar(PHINode *Phi, RecurrenceKind Kind, Loop *TheLoop,
bool HasFunNoNaNAttr,
ReductionDescriptor &RedDes);
RecurrenceDescriptor &RedDes);
/// Returns true if Phi is a reduction in TheLoop. The ReductionDescriptor is
/// Returns true if Phi is a reduction in TheLoop. The RecurrenceDescriptor is
/// returned in RedDes.
static bool isReductionPHI(PHINode *Phi, Loop *TheLoop,
ReductionDescriptor &RedDes);
RecurrenceDescriptor &RedDes);
ReductionKind getReductionKind() { return Kind; }
RecurrenceKind getRecurrenceKind() { return Kind; }
ReductionInstDesc::MinMaxReductionKind getMinMaxReductionKind() {
RecurrenceInstDesc::MinMaxRecurrenceKind getMinMaxRecurrenceKind() {
return MinMaxKind;
}
TrackingVH<Value> getReductionStartValue() { return StartValue; }
TrackingVH<Value> getRecurrenceStartValue() { return StartValue; }
Instruction *getLoopExitInstr() { return LoopExitInstr; }
private:
// The starting value of the reduction.
// The starting value of the recurrence.
// It does not have to be zero!
TrackingVH<Value> StartValue;
// The instruction who's value is used outside the loop.
Instruction *LoopExitInstr;
// The kind of the reduction.
ReductionKind Kind;
// If this a min/max reduction the kind of reduction.
ReductionInstDesc::MinMaxReductionKind MinMaxKind;
// The kind of the recurrence.
RecurrenceKind Kind;
// If this a min/max recurrence the kind of recurrence.
RecurrenceInstDesc::MinMaxRecurrenceKind MinMaxKind;
};
BasicBlock *InsertPreheaderForLoop(Loop *L, Pass *P);

View File

@ -598,8 +598,8 @@ struct LoopInterchange : public FunctionPass {
bool LoopInterchangeLegality::areAllUsesReductions(Instruction *Ins, Loop *L) {
return !std::any_of(Ins->user_begin(), Ins->user_end(), [=](User *U) -> bool {
PHINode *UserIns = dyn_cast<PHINode>(U);
ReductionDescriptor RD;
return !UserIns || !ReductionDescriptor::isReductionPHI(UserIns, L, RD);
RecurrenceDescriptor RD;
return !UserIns || !RecurrenceDescriptor::isReductionPHI(UserIns, L, RD);
});
}
@ -697,12 +697,12 @@ bool LoopInterchangeLegality::findInductionAndReductions(
if (!L->getLoopLatch() || !L->getLoopPredecessor())
return false;
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
ReductionDescriptor RD;
RecurrenceDescriptor RD;
PHINode *PHI = cast<PHINode>(I);
ConstantInt *StepValue = nullptr;
if (isInductionPHI(PHI, SE, StepValue))
Inductions.push_back(PHI);
else if (ReductionDescriptor::isReductionPHI(PHI, L, RD))
else if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
Reductions.push_back(PHI);
else {
DEBUG(

View File

@ -26,17 +26,17 @@ using namespace llvm::PatternMatch;
#define DEBUG_TYPE "loop-utils"
bool ReductionDescriptor::areAllUsesIn(Instruction *I,
SmallPtrSetImpl<Instruction *> &Set) {
bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
SmallPtrSetImpl<Instruction *> &Set) {
for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
if (!Set.count(dyn_cast<Instruction>(*Use)))
return false;
return true;
}
bool ReductionDescriptor::AddReductionVar(PHINode *Phi, ReductionKind Kind,
Loop *TheLoop, bool HasFunNoNaNAttr,
ReductionDescriptor &RedDes) {
bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
Loop *TheLoop, bool HasFunNoNaNAttr,
RecurrenceDescriptor &RedDes) {
if (Phi->getNumIncomingValues() != 2)
return false;
@ -66,7 +66,7 @@ bool ReductionDescriptor::AddReductionVar(PHINode *Phi, ReductionKind Kind,
// the number of instruction we saw from the recognized min/max pattern,
// to make sure we only see exactly the two instructions.
unsigned NumCmpSelectPatternInst = 0;
ReductionInstDesc ReduxDesc(false, nullptr);
RecurrenceInstDesc ReduxDesc(false, nullptr);
SmallPtrSet<Instruction *, 8> VisitedInsts;
SmallVector<Instruction *, 8> Worklist;
@ -111,8 +111,8 @@ bool ReductionDescriptor::AddReductionVar(PHINode *Phi, ReductionKind Kind,
return false;
// Any reduction instruction must be of one of the allowed kinds.
ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
if (!ReduxDesc.isReduction())
ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
if (!ReduxDesc.isRecurrence())
return false;
// A reduction operation must only have one use of the reduction value.
@ -164,7 +164,7 @@ bool ReductionDescriptor::AddReductionVar(PHINode *Phi, ReductionKind Kind,
// Process instructions only once (termination). Each reduction cycle
// value must only be used once, except by phi nodes and min/max
// reductions which are represented as a cmp followed by a select.
ReductionInstDesc IgnoredVal(false, nullptr);
RecurrenceInstDesc IgnoredVal(false, nullptr);
if (VisitedInsts.insert(UI).second) {
if (isa<PHINode>(UI))
PHIs.push_back(UI);
@ -173,7 +173,7 @@ bool ReductionDescriptor::AddReductionVar(PHINode *Phi, ReductionKind Kind,
} else if (!isa<PHINode>(UI) &&
((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
!isa<SelectInst>(UI)) ||
!isMinMaxSelectCmpPattern(UI, IgnoredVal).isReduction()))
!isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
return false;
// Remember that we completed the cycle.
@ -197,11 +197,11 @@ bool ReductionDescriptor::AddReductionVar(PHINode *Phi, ReductionKind Kind,
// only have a single instruction with out-of-loop users.
// The ExitInstruction(Instruction which is allowed to have out-of-loop users)
// is saved as part of the ReductionDescriptor.
// is saved as part of the RecurrenceDescriptor.
// Save the description of this reduction variable.
ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
ReduxDesc.getMinMaxKind());
RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind,
ReduxDesc.getMinMaxKind());
RedDes = RD;
@ -210,9 +210,9 @@ bool ReductionDescriptor::AddReductionVar(PHINode *Phi, ReductionKind Kind,
/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
/// pattern corresponding to a min(X, Y) or max(X, Y).
ReductionInstDesc
ReductionDescriptor::isMinMaxSelectCmpPattern(Instruction *I,
ReductionInstDesc &Prev) {
RecurrenceInstDesc
RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I,
RecurrenceInstDesc &Prev) {
assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
"Expect a select instruction");
@ -223,84 +223,84 @@ ReductionDescriptor::isMinMaxSelectCmpPattern(Instruction *I,
// select.
if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
return ReductionInstDesc(false, I);
return ReductionInstDesc(Select, Prev.getMinMaxKind());
return RecurrenceInstDesc(false, I);
return RecurrenceInstDesc(Select, Prev.getMinMaxKind());
}
// Only handle single use cases for now.
if (!(Select = dyn_cast<SelectInst>(I)))
return ReductionInstDesc(false, I);
return RecurrenceInstDesc(false, I);
if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
!(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
return ReductionInstDesc(false, I);
return RecurrenceInstDesc(false, I);
if (!Cmp->hasOneUse())
return ReductionInstDesc(false, I);
return RecurrenceInstDesc(false, I);
Value *CmpLeft;
Value *CmpRight;
// Look for a min/max pattern.
if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return ReductionInstDesc(Select, ReductionInstDesc::MRK_UIntMin);
return RecurrenceInstDesc(Select, RecurrenceInstDesc::MRK_UIntMin);
else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return ReductionInstDesc(Select, ReductionInstDesc::MRK_UIntMax);
return RecurrenceInstDesc(Select, RecurrenceInstDesc::MRK_UIntMax);
else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return ReductionInstDesc(Select, ReductionInstDesc::MRK_SIntMax);
return RecurrenceInstDesc(Select, RecurrenceInstDesc::MRK_SIntMax);
else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return ReductionInstDesc(Select, ReductionInstDesc::MRK_SIntMin);
return RecurrenceInstDesc(Select, RecurrenceInstDesc::MRK_SIntMin);
else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMin);
return RecurrenceInstDesc(Select, RecurrenceInstDesc::MRK_FloatMin);
else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMax);
return RecurrenceInstDesc(Select, RecurrenceInstDesc::MRK_FloatMax);
else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMin);
return RecurrenceInstDesc(Select, RecurrenceInstDesc::MRK_FloatMin);
else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMax);
return RecurrenceInstDesc(Select, RecurrenceInstDesc::MRK_FloatMax);
return ReductionInstDesc(false, I);
return RecurrenceInstDesc(false, I);
}
ReductionInstDesc ReductionDescriptor::isReductionInstr(Instruction *I,
ReductionKind Kind,
ReductionInstDesc &Prev,
bool HasFunNoNaNAttr) {
RecurrenceInstDesc
RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
RecurrenceInstDesc &Prev,
bool HasFunNoNaNAttr) {
bool FP = I->getType()->isFloatingPointTy();
bool FastMath = FP && I->hasUnsafeAlgebra();
switch (I->getOpcode()) {
default:
return ReductionInstDesc(false, I);
return RecurrenceInstDesc(false, I);
case Instruction::PHI:
if (FP &&
(Kind != RK_FloatMult && Kind != RK_FloatAdd && Kind != RK_FloatMinMax))
return ReductionInstDesc(false, I);
return ReductionInstDesc(I, Prev.getMinMaxKind());
return RecurrenceInstDesc(false, I);
return RecurrenceInstDesc(I, Prev.getMinMaxKind());
case Instruction::Sub:
case Instruction::Add:
return ReductionInstDesc(Kind == RK_IntegerAdd, I);
return RecurrenceInstDesc(Kind == RK_IntegerAdd, I);
case Instruction::Mul:
return ReductionInstDesc(Kind == RK_IntegerMult, I);
return RecurrenceInstDesc(Kind == RK_IntegerMult, I);
case Instruction::And:
return ReductionInstDesc(Kind == RK_IntegerAnd, I);
return RecurrenceInstDesc(Kind == RK_IntegerAnd, I);
case Instruction::Or:
return ReductionInstDesc(Kind == RK_IntegerOr, I);
return RecurrenceInstDesc(Kind == RK_IntegerOr, I);
case Instruction::Xor:
return ReductionInstDesc(Kind == RK_IntegerXor, I);
return RecurrenceInstDesc(Kind == RK_IntegerXor, I);
case Instruction::FMul:
return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
return RecurrenceInstDesc(Kind == RK_FloatMult && FastMath, I);
case Instruction::FSub:
case Instruction::FAdd:
return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
return RecurrenceInstDesc(Kind == RK_FloatAdd && FastMath, I);
case Instruction::FCmp:
case Instruction::ICmp:
case Instruction::Select:
if (Kind != RK_IntegerMinMax &&
(!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
return ReductionInstDesc(false, I);
return RecurrenceInstDesc(false, I);
return isMinMaxSelectCmpPattern(I, Prev);
}
}
bool ReductionDescriptor::hasMultipleUsesOf(
bool RecurrenceDescriptor::hasMultipleUsesOf(
Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
unsigned NumUses = 0;
for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
@ -313,8 +313,8 @@ bool ReductionDescriptor::hasMultipleUsesOf(
return false;
}
bool ReductionDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
ReductionDescriptor &RedDes) {
bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
RecurrenceDescriptor &RedDes) {
bool HasFunNoNaNAttr = false;
BasicBlock *Header = TheLoop->getHeader();
@ -366,7 +366,8 @@ bool ReductionDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
/// This function returns the identity element (or neutral element) for
/// the operation K.
Constant *ReductionDescriptor::getReductionIdentity(ReductionKind K, Type *Tp) {
Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
Type *Tp) {
switch (K) {
case RK_IntegerXor:
case RK_IntegerAdd:
@ -386,12 +387,12 @@ Constant *ReductionDescriptor::getReductionIdentity(ReductionKind K, Type *Tp) {
// Adding zero to a number does not change it.
return ConstantFP::get(Tp, 0.0L);
default:
llvm_unreachable("Unknown reduction kind");
llvm_unreachable("Unknown recurrence kind");
}
}
/// This function translates the reduction kind to an LLVM binary operator.
unsigned ReductionDescriptor::getReductionBinOp(ReductionKind Kind) {
/// This function translates the recurrence kind to an LLVM binary operator.
unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
switch (Kind) {
case RK_IntegerAdd:
return Instruction::Add;
@ -412,41 +413,40 @@ unsigned ReductionDescriptor::getReductionBinOp(ReductionKind Kind) {
case RK_FloatMinMax:
return Instruction::FCmp;
default:
llvm_unreachable("Unknown reduction operation");
llvm_unreachable("Unknown recurrence operation");
}
}
Value *
ReductionDescriptor::createMinMaxOp(IRBuilder<> &Builder,
ReductionInstDesc::MinMaxReductionKind RK,
Value *Left, Value *Right) {
Value *RecurrenceDescriptor::createMinMaxOp(
IRBuilder<> &Builder, RecurrenceInstDesc::MinMaxRecurrenceKind RK,
Value *Left, Value *Right) {
CmpInst::Predicate P = CmpInst::ICMP_NE;
switch (RK) {
default:
llvm_unreachable("Unknown min/max reduction kind");
case ReductionInstDesc::MRK_UIntMin:
llvm_unreachable("Unknown min/max recurrence kind");
case RecurrenceInstDesc::MRK_UIntMin:
P = CmpInst::ICMP_ULT;
break;
case ReductionInstDesc::MRK_UIntMax:
case RecurrenceInstDesc::MRK_UIntMax:
P = CmpInst::ICMP_UGT;
break;
case ReductionInstDesc::MRK_SIntMin:
case RecurrenceInstDesc::MRK_SIntMin:
P = CmpInst::ICMP_SLT;
break;
case ReductionInstDesc::MRK_SIntMax:
case RecurrenceInstDesc::MRK_SIntMax:
P = CmpInst::ICMP_SGT;
break;
case ReductionInstDesc::MRK_FloatMin:
case RecurrenceInstDesc::MRK_FloatMin:
P = CmpInst::FCMP_OLT;
break;
case ReductionInstDesc::MRK_FloatMax:
case RecurrenceInstDesc::MRK_FloatMax:
P = CmpInst::FCMP_OGT;
break;
}
Value *Cmp;
if (RK == ReductionInstDesc::MRK_FloatMin ||
RK == ReductionInstDesc::MRK_FloatMax)
if (RK == RecurrenceInstDesc::MRK_FloatMin ||
RK == RecurrenceInstDesc::MRK_FloatMax)
Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
else
Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");

View File

@ -872,7 +872,7 @@ public:
/// ReductionList contains the reduction descriptors for all
/// of the reductions that were found in the loop.
typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList;
/// InductionList saves induction variables and maps them to the
/// induction descriptor.
@ -3093,13 +3093,13 @@ void InnerLoopVectorizer::vectorizeLoop() {
// Find the reduction variable descriptor.
assert(Legal->getReductionVars()->count(RdxPhi) &&
"Unable to find the reduction variable");
ReductionDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi];
RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi];
ReductionDescriptor::ReductionKind RK = RdxDesc.getReductionKind();
TrackingVH<Value> ReductionStartValue = RdxDesc.getReductionStartValue();
RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
ReductionInstDesc::MinMaxReductionKind MinMaxKind =
RdxDesc.getMinMaxReductionKind();
RecurrenceInstDesc::MinMaxRecurrenceKind MinMaxKind =
RdxDesc.getMinMaxRecurrenceKind();
setDebugLocFromInst(Builder, ReductionStartValue);
// We need to generate a reduction vector from the incoming scalar.
@ -3116,8 +3116,8 @@ void InnerLoopVectorizer::vectorizeLoop() {
// one for multiplication, -1 for And.
Value *Identity;
Value *VectorStart;
if (RK == ReductionDescriptor::RK_IntegerMinMax ||
RK == ReductionDescriptor::RK_FloatMinMax) {
if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
RK == RecurrenceDescriptor::RK_FloatMinMax) {
// MinMax reduction have the start value as their identify.
if (VF == 1) {
VectorStart = Identity = ReductionStartValue;
@ -3127,8 +3127,8 @@ void InnerLoopVectorizer::vectorizeLoop() {
}
} else {
// Handle other reduction kinds:
Constant *Iden =
ReductionDescriptor::getReductionIdentity(RK, VecTy->getScalarType());
Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
RK, VecTy->getScalarType());
if (VF == 1) {
Identity = Iden;
// This vector is the Identity vector where the first element is the
@ -3185,7 +3185,7 @@ void InnerLoopVectorizer::vectorizeLoop() {
// Reduce all of the unrolled parts into a single vector.
Value *ReducedPartRdx = RdxParts[0];
unsigned Op = ReductionDescriptor::getReductionBinOp(RK);
unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
setDebugLocFromInst(Builder, ReducedPartRdx);
for (unsigned part = 1; part < UF; ++part) {
if (Op != Instruction::ICmp && Op != Instruction::FCmp)
@ -3194,7 +3194,7 @@ void InnerLoopVectorizer::vectorizeLoop() {
Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
ReducedPartRdx, "bin.rdx"));
else
ReducedPartRdx = ReductionDescriptor::createMinMaxOp(
ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp(
Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]);
}
@ -3226,8 +3226,8 @@ void InnerLoopVectorizer::vectorizeLoop() {
TmpVec = addFastMathFlag(Builder.CreateBinOp(
(Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
else
TmpVec = ReductionDescriptor::createMinMaxOp(Builder, MinMaxKind,
TmpVec, Shuf);
TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind,
TmpVec, Shuf);
}
// The result is in the first element of the vector.
@ -4040,8 +4040,8 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
continue;
}
if (ReductionDescriptor::isReductionPHI(Phi, TheLoop,
Reductions[Phi])) {
if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop,
Reductions[Phi])) {
AllowedExit.insert(Reductions[Phi].getLoopExitInstr());
continue;
}