On x86-64, for a varargs function, don't store the xmm registers to

the register save area if %al is 0. This avoids touching xmm
regsiters when they aren't actually used.

llvm-svn: 79061
This commit is contained in:
Dan Gohman 2009-08-15 01:38:56 +00:00
parent 08479ae7fe
commit 0700a56860
4 changed files with 146 additions and 18 deletions

View File

@ -1527,37 +1527,44 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
// Store the integer parameter registers. // Store the integer parameter registers.
SmallVector<SDValue, 8> MemOps; SmallVector<SDValue, 8> MemOps;
SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN, unsigned Offset = VarArgsGPOffset;
DAG.getIntPtrConstant(VarArgsGPOffset));
for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) { for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
DAG.getIntPtrConstant(Offset));
unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs], unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
X86::GR64RegisterClass); X86::GR64RegisterClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
SDValue Store = SDValue Store =
DAG.getStore(Val.getValue(1), dl, Val, FIN, DAG.getStore(Val.getValue(1), dl, Val, FIN,
PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0); PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
Offset);
MemOps.push_back(Store); MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN, Offset += 8;
DAG.getIntPtrConstant(8));
} }
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOps[0], MemOps.size());
// Now store the XMM (fp + vector) parameter registers. // Now store the XMM (fp + vector) parameter registers.
FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN, SmallVector<SDValue, 11> SaveXMMOps;
DAG.getIntPtrConstant(VarArgsFPOffset)); SaveXMMOps.push_back(Chain);
unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
SaveXMMOps.push_back(ALVal);
SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex));
SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset));
for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) { for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs], unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
X86::VR128RegisterClass); X86::VR128RegisterClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
SDValue Store = SaveXMMOps.push_back(Val);
DAG.getStore(Val.getValue(1), dl, Val, FIN,
PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
DAG.getIntPtrConstant(16));
} }
if (!MemOps.empty()) Chain = DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl, MVT::Other,
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &SaveXMMOps[0], SaveXMMOps.size());
&MemOps[0], MemOps.size());
} }
} }
@ -7090,6 +7097,7 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
case X86ISD::DEC: return "X86ISD::DEC"; case X86ISD::DEC: return "X86ISD::DEC";
case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM"; case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
case X86ISD::PTEST: return "X86ISD::PTEST"; case X86ISD::PTEST: return "X86ISD::PTEST";
case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
} }
} }
@ -7513,7 +7521,7 @@ X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
F->insert(MBBIter, newMBB); F->insert(MBBIter, newMBB);
F->insert(MBBIter, nextMBB); F->insert(MBBIter, nextMBB);
// Move all successors to thisMBB to nextMBB // Move all successors of thisMBB to nextMBB
nextMBB->transferSuccessors(thisMBB); nextMBB->transferSuccessors(thisMBB);
// Update thisMBB to fall through to newMBB // Update thisMBB to fall through to newMBB
@ -7585,6 +7593,73 @@ X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
return nextMBB; return nextMBB;
} }
MachineBasicBlock *
X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
MachineInstr *MI,
MachineBasicBlock *MBB) const {
// Emit code to save XMM registers to the stack. The ABI says that the
// number of registers to save is given in %al, so it's theoretically
// possible to do an indirect jump trick to avoid saving all of them,
// however this code takes a simpler approach and just executes all
// of the stores if %al is non-zero. It's less code, and it's probably
// easier on the hardware branch predictor, and stores aren't all that
// expensive anyway.
// Create the new basic blocks. One block contains all the XMM stores,
// and one block is the final destination regardless of whether any
// stores were performed.
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
MachineFunction *F = MBB->getParent();
MachineFunction::iterator MBBIter = MBB;
++MBBIter;
MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(MBBIter, XMMSaveMBB);
F->insert(MBBIter, EndMBB);
// Set up the CFG.
// Move any original successors of MBB to the end block.
EndMBB->transferSuccessors(MBB);
// The original block will now fall through to the XMM save block.
MBB->addSuccessor(XMMSaveMBB);
// The XMMSaveMBB will fall through to the end block.
XMMSaveMBB->addSuccessor(EndMBB);
// Now add the instructions.
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned CountReg = MI->getOperand(0).getReg();
int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
if (!Subtarget->isTargetWin64()) {
// If %al is 0, branch around the XMM save block.
BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
BuildMI(MBB, DL, TII->get(X86::JE)).addMBB(EndMBB);
MBB->addSuccessor(EndMBB);
}
// In the XMM save block, save all the XMM argument registers.
for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
.addFrameIndex(RegSaveFrameIndex)
.addImm(/*Scale=*/1)
.addReg(/*IndexReg=*/0)
.addImm(/*Disp=*/Offset)
.addReg(/*Segment=*/0)
.addReg(MI->getOperand(i).getReg())
.addMemOperand(MachineMemOperand(
PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
MachineMemOperand::MOStore, Offset,
/*Size=*/16, /*Align=*/16));
}
F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
return EndMBB;
}
MachineBasicBlock * MachineBasicBlock *
X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
@ -7888,6 +7963,8 @@ X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
X86::MOV32rr, X86::MOV32rr, X86::MOV32rr, X86::MOV32rr,
X86::MOV32ri, X86::MOV32ri, X86::MOV32ri, X86::MOV32ri,
false); false);
case X86::VASTART_SAVE_XMM_REGS:
return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
} }
} }

View File

@ -243,7 +243,12 @@ namespace llvm {
MUL_IMM, MUL_IMM,
// PTEST - Vector bitwise comparisons // PTEST - Vector bitwise comparisons
PTEST PTEST,
// VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
// according to %al. An operator is needed so that this can be expanded
// with control flow.
VASTART_SAVE_XMM_REGS
}; };
} }
@ -715,6 +720,11 @@ namespace llvm {
MachineBasicBlock *BB, MachineBasicBlock *BB,
unsigned cmovOpc) const; unsigned cmovOpc) const;
/// Utility function to emit the xmm reg save portion of va_start.
MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
MachineInstr *BInstr,
MachineBasicBlock *BB) const;
/// Emit nodes that will be selected as "test Op0,Op0", or something /// Emit nodes that will be selected as "test Op0,Op0", or something
/// equivalent, for use with the given x86 condition code. /// equivalent, for use with the given x86 condition code.
SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG); SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG);

View File

@ -56,6 +56,10 @@ def SDT_X86CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>,
def SDT_X86Call : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>; def SDT_X86Call : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>;
def SDT_X86VASTART_SAVE_XMM_REGS : SDTypeProfile<0, -1, [SDTCisVT<0, i8>,
SDTCisVT<1, iPTR>,
SDTCisVT<2, iPTR>]>;
def SDTX86RepStr : SDTypeProfile<0, 1, [SDTCisVT<0, OtherVT>]>; def SDTX86RepStr : SDTypeProfile<0, 1, [SDTCisVT<0, OtherVT>]>;
def SDTX86RdTsc : SDTypeProfile<0, 0, []>; def SDTX86RdTsc : SDTypeProfile<0, 0, []>;
@ -114,6 +118,11 @@ def X86AtomSwap64 : SDNode<"X86ISD::ATOMSWAP64_DAG", SDTX86atomicBinary,
def X86retflag : SDNode<"X86ISD::RET_FLAG", SDTX86Ret, def X86retflag : SDNode<"X86ISD::RET_FLAG", SDTX86Ret,
[SDNPHasChain, SDNPOptInFlag]>; [SDNPHasChain, SDNPOptInFlag]>;
def X86vastart_save_xmm_regs :
SDNode<"X86ISD::VASTART_SAVE_XMM_REGS",
SDT_X86VASTART_SAVE_XMM_REGS,
[SDNPHasChain]>;
def X86callseq_start : def X86callseq_start :
SDNode<"ISD::CALLSEQ_START", SDT_X86CallSeqStart, SDNode<"ISD::CALLSEQ_START", SDT_X86CallSeqStart,
[SDNPHasChain, SDNPOutFlag]>; [SDNPHasChain, SDNPOutFlag]>;
@ -511,6 +520,18 @@ def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Requires<[In32BitMode]>; Requires<[In32BitMode]>;
} }
// x86-64 va_start lowering magic.
let usesCustomDAGSchedInserter = 1 in
def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
(outs),
(ins GR8:$al,
i64imm:$regsavefi, i64imm:$offset,
variable_ops),
"#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
[(X86vastart_save_xmm_regs GR8:$al,
imm:$regsavefi,
imm:$offset)]>;
// Nop // Nop
let neverHasSideEffects = 1 in { let neverHasSideEffects = 1 in {
def NOOP : I<0x90, RawFrm, (outs), (ins), "nop", []>; def NOOP : I<0x90, RawFrm, (outs), (ins), "nop", []>;

View File

@ -0,0 +1,20 @@
; RUN: llvm-as < %s | llc -march=x86-64 | grep {testb \[%\]al, \[%\]al}
%struct.__va_list_tag = type { i32, i32, i8*, i8* }
define void @foo(i32 %x, ...) nounwind {
entry:
%ap = alloca [1 x %struct.__va_list_tag], align 8; <[1 x %struct.__va_list_tag]*> [#uses=2]
%ap12 = bitcast [1 x %struct.__va_list_tag]* %ap to i8*; <i8*> [#uses=2]
call void @llvm.va_start(i8* %ap12)
%ap3 = getelementptr inbounds [1 x %struct.__va_list_tag]* %ap, i64 0, i64 0; <%struct.__va_list_tag*> [#uses=1]
call void @bar(%struct.__va_list_tag* %ap3) nounwind
call void @llvm.va_end(i8* %ap12)
ret void
}
declare void @llvm.va_start(i8*) nounwind
declare void @bar(%struct.__va_list_tag*)
declare void @llvm.va_end(i8*) nounwind