Revert commit revision 226786

Need to add initialization of AtomicInfo::EvaluationKind field

llvm-svn: 226787
This commit is contained in:
Alexey Bataev 2015-01-22 06:09:48 +00:00
parent 92efdce503
commit 02e1ec6966
3 changed files with 67 additions and 595 deletions

View File

@ -13,7 +13,6 @@
#include "CodeGenFunction.h"
#include "CGCall.h"
#include "CGRecordLayout.h"
#include "CodeGenModule.h"
#include "clang/AST/ASTContext.h"
#include "clang/CodeGen/CGFunctionInfo.h"
@ -37,69 +36,34 @@ namespace {
CharUnits LValueAlign;
TypeEvaluationKind EvaluationKind;
bool UseLibcall;
LValue LVal;
CGBitFieldInfo BFI;
public:
AtomicInfo(CodeGenFunction &CGF, LValue &lvalue)
: CGF(CGF), AtomicSizeInBits(0), ValueSizeInBits(0), UseLibcall(true) {
assert(!lvalue.isGlobalReg());
AtomicInfo(CodeGenFunction &CGF, LValue &lvalue) : CGF(CGF) {
assert(lvalue.isSimple());
AtomicTy = lvalue.getType();
ValueTy = AtomicTy->castAs<AtomicType>()->getValueType();
EvaluationKind = CGF.getEvaluationKind(ValueTy);
ASTContext &C = CGF.getContext();
if (lvalue.isSimple()) {
AtomicTy = lvalue.getType();
if (auto *ATy = AtomicTy->getAs<AtomicType>())
ValueTy = ATy->getValueType();
else
ValueTy = AtomicTy;
EvaluationKind = CGF.getEvaluationKind(ValueTy);
uint64_t ValueAlignInBits;
uint64_t AtomicAlignInBits;
TypeInfo ValueTI = C.getTypeInfo(ValueTy);
ValueSizeInBits = ValueTI.Width;
ValueAlignInBits = ValueTI.Align;
uint64_t ValueAlignInBits;
uint64_t AtomicAlignInBits;
TypeInfo ValueTI = C.getTypeInfo(ValueTy);
ValueSizeInBits = ValueTI.Width;
ValueAlignInBits = ValueTI.Align;
TypeInfo AtomicTI = C.getTypeInfo(AtomicTy);
AtomicSizeInBits = AtomicTI.Width;
AtomicAlignInBits = AtomicTI.Align;
TypeInfo AtomicTI = C.getTypeInfo(AtomicTy);
AtomicSizeInBits = AtomicTI.Width;
AtomicAlignInBits = AtomicTI.Align;
assert(ValueSizeInBits <= AtomicSizeInBits);
assert(ValueAlignInBits <= AtomicAlignInBits);
assert(ValueSizeInBits <= AtomicSizeInBits);
assert(ValueAlignInBits <= AtomicAlignInBits);
AtomicAlign = C.toCharUnitsFromBits(AtomicAlignInBits);
ValueAlign = C.toCharUnitsFromBits(ValueAlignInBits);
if (lvalue.getAlignment().isZero())
lvalue.setAlignment(AtomicAlign);
AtomicAlign = C.toCharUnitsFromBits(AtomicAlignInBits);
ValueAlign = C.toCharUnitsFromBits(ValueAlignInBits);
if (lvalue.getAlignment().isZero())
lvalue.setAlignment(AtomicAlign);
LVal = lvalue;
} else if (lvalue.isBitField()) {
auto &OrigBFI = lvalue.getBitFieldInfo();
auto Offset = OrigBFI.Offset % C.toBits(lvalue.getAlignment());
AtomicSizeInBits = C.toBits(
C.toCharUnitsFromBits(Offset + OrigBFI.Size + C.getCharWidth() - 1)
.RoundUpToAlignment(lvalue.getAlignment()));
auto VoidPtrAddr = CGF.EmitCastToVoidPtr(lvalue.getBitFieldAddr());
auto OffsetInChars =
(C.toCharUnitsFromBits(OrigBFI.Offset) / lvalue.getAlignment()) *
lvalue.getAlignment();
VoidPtrAddr = CGF.Builder.CreateConstGEP1_64(
VoidPtrAddr, OffsetInChars.getQuantity());
auto Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
VoidPtrAddr,
CGF.Builder.getIntNTy(AtomicSizeInBits)->getPointerTo(),
"atomic_bitfield_base");
BFI = OrigBFI;
BFI.Offset = Offset;
BFI.StorageSize = AtomicSizeInBits;
LVal = LValue::MakeBitfield(Addr, BFI, lvalue.getType(),
lvalue.getAlignment());
} else if (lvalue.isVectorElt()) {
AtomicSizeInBits = C.getTypeSize(lvalue.getType());
LVal = lvalue;
} else {
assert(lvalue.isExtVectorElt());
AtomicSizeInBits = C.getTypeSize(lvalue.getType());
LVal = lvalue;
}
UseLibcall = !C.getTargetInfo().hasBuiltinAtomic(
AtomicSizeInBits, C.toBits(lvalue.getAlignment()));
}
@ -112,7 +76,6 @@ namespace {
uint64_t getValueSizeInBits() const { return ValueSizeInBits; }
TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; }
bool shouldUseLibcall() const { return UseLibcall; }
const LValue &getAtomicLValue() const { return LVal; }
/// Is the atomic size larger than the underlying value type?
///
@ -124,7 +87,7 @@ namespace {
return (ValueSizeInBits != AtomicSizeInBits);
}
bool emitMemSetZeroIfNecessary() const;
bool emitMemSetZeroIfNecessary(LValue dest) const;
llvm::Value *getAtomicSizeValue() const {
CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits);
@ -147,17 +110,16 @@ namespace {
SourceLocation Loc) const;
/// Copy an atomic r-value into atomic-layout memory.
void emitCopyIntoMemory(RValue rvalue) const;
void emitCopyIntoMemory(RValue rvalue, LValue lvalue) const;
/// Project an l-value down to the value field.
LValue projectValue() const {
assert(LVal.isSimple());
llvm::Value *addr = LVal.getAddress();
LValue projectValue(LValue lvalue) const {
llvm::Value *addr = lvalue.getAddress();
if (hasPadding())
addr = CGF.Builder.CreateStructGEP(addr, 0);
return LValue::MakeAddr(addr, getValueType(), LVal.getAlignment(),
CGF.getContext(), LVal.getTBAAInfo());
return LValue::MakeAddr(addr, getValueType(), lvalue.getAlignment(),
CGF.getContext(), lvalue.getTBAAInfo());
}
/// Materialize an atomic r-value in atomic-layout memory.
@ -210,15 +172,14 @@ bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const {
llvm_unreachable("bad evaluation kind");
}
bool AtomicInfo::emitMemSetZeroIfNecessary() const {
assert(LVal.isSimple());
llvm::Value *addr = LVal.getAddress();
bool AtomicInfo::emitMemSetZeroIfNecessary(LValue dest) const {
llvm::Value *addr = dest.getAddress();
if (!requiresMemSetZero(addr->getType()->getPointerElementType()))
return false;
CGF.Builder.CreateMemSet(addr, llvm::ConstantInt::get(CGF.Int8Ty, 0),
AtomicSizeInBits / 8,
LVal.getAlignment().getQuantity());
dest.getAlignment().getQuantity());
return true;
}
@ -941,34 +902,21 @@ llvm::Value *AtomicInfo::emitCastToAtomicIntPointer(llvm::Value *addr) const {
RValue AtomicInfo::convertTempToRValue(llvm::Value *addr,
AggValueSlot resultSlot,
SourceLocation loc) const {
if (LVal.isSimple()) {
if (EvaluationKind == TEK_Aggregate)
return resultSlot.asRValue();
if (EvaluationKind == TEK_Aggregate)
return resultSlot.asRValue();
// Drill into the padding structure if we have one.
if (hasPadding())
addr = CGF.Builder.CreateStructGEP(addr, 0);
// Drill into the padding structure if we have one.
if (hasPadding())
addr = CGF.Builder.CreateStructGEP(addr, 0);
// Otherwise, just convert the temporary to an r-value using the
// normal conversion routine.
return CGF.convertTempToRValue(addr, getValueType(), loc);
} else if (LVal.isBitField())
return CGF.EmitLoadOfBitfieldLValue(LValue::MakeBitfield(
addr, LVal.getBitFieldInfo(), LVal.getType(), LVal.getAlignment()));
else if (LVal.isVectorElt())
return CGF.EmitLoadOfLValue(LValue::MakeVectorElt(addr, LVal.getVectorIdx(),
LVal.getType(),
LVal.getAlignment()),
loc);
assert(LVal.isExtVectorElt());
return CGF.EmitLoadOfExtVectorElementLValue(LValue::MakeExtVectorElt(
addr, LVal.getExtVectorElts(), LVal.getType(), LVal.getAlignment()));
// Otherwise, just convert the temporary to an r-value using the
// normal conversion routine.
return CGF.convertTempToRValue(addr, getValueType(), loc);
}
RValue AtomicInfo::convertIntToValue(llvm::Value *IntVal,
AggValueSlot ResultSlot,
SourceLocation Loc) const {
assert(LVal.isSimple());
// Try not to in some easy cases.
assert(IntVal->getType()->isIntegerTy() && "Expected integer value");
if (getEvaluationKind() == TEK_Scalar && !hasPadding()) {
@ -1010,43 +958,25 @@ RValue AtomicInfo::convertIntToValue(llvm::Value *IntVal,
RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc,
AggValueSlot resultSlot) {
AtomicInfo atomics(*this, src);
LValue LVal = atomics.getAtomicLValue();
llvm::Value *SrcAddr = nullptr;
llvm::AllocaInst *NonSimpleTempAlloca = nullptr;
if (LVal.isSimple())
SrcAddr = LVal.getAddress();
else {
if (LVal.isBitField())
SrcAddr = LVal.getBitFieldAddr();
else if (LVal.isVectorElt())
SrcAddr = LVal.getVectorAddr();
else {
assert(LVal.isExtVectorElt());
SrcAddr = LVal.getExtVectorAddr();
}
NonSimpleTempAlloca = CreateTempAlloca(
SrcAddr->getType()->getPointerElementType(), "atomic-load-temp");
NonSimpleTempAlloca->setAlignment(getContext().toBits(src.getAlignment()));
}
// Check whether we should use a library call.
if (atomics.shouldUseLibcall()) {
llvm::Value *tempAddr;
if (LVal.isSimple()) {
if (!resultSlot.isIgnored()) {
assert(atomics.getEvaluationKind() == TEK_Aggregate);
tempAddr = resultSlot.getAddr();
} else
tempAddr = CreateMemTemp(atomics.getAtomicType(), "atomic-load-temp");
} else
tempAddr = NonSimpleTempAlloca;
if (!resultSlot.isIgnored()) {
assert(atomics.getEvaluationKind() == TEK_Aggregate);
tempAddr = resultSlot.getAddr();
} else {
tempAddr = CreateMemTemp(atomics.getAtomicType(), "atomic-load-temp");
}
// void __atomic_load(size_t size, void *mem, void *return, int order);
CallArgList args;
args.add(RValue::get(atomics.getAtomicSizeValue()),
getContext().getSizeType());
args.add(RValue::get(EmitCastToVoidPtr(SrcAddr)), getContext().VoidPtrTy);
args.add(RValue::get(EmitCastToVoidPtr(tempAddr)), getContext().VoidPtrTy);
args.add(RValue::get(EmitCastToVoidPtr(src.getAddress())),
getContext().VoidPtrTy);
args.add(RValue::get(EmitCastToVoidPtr(tempAddr)),
getContext().VoidPtrTy);
args.add(RValue::get(llvm::ConstantInt::get(
IntTy, AtomicExpr::AO_ABI_memory_order_seq_cst)),
getContext().IntTy);
@ -1057,7 +987,7 @@ RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc,
}
// Okay, we're doing this natively.
llvm::Value *addr = atomics.emitCastToAtomicIntPointer(SrcAddr);
llvm::Value *addr = atomics.emitCastToAtomicIntPointer(src.getAddress());
llvm::LoadInst *load = Builder.CreateLoad(addr, "atomic-load");
load->setAtomic(llvm::SequentiallyConsistent);
@ -1073,46 +1003,40 @@ RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc,
return RValue::getAggregate(nullptr, false);
// Okay, turn that back into the original value type.
if (src.isSimple())
return atomics.convertIntToValue(load, resultSlot, loc);
auto *IntAddr = atomics.emitCastToAtomicIntPointer(NonSimpleTempAlloca);
Builder.CreateAlignedStore(load, IntAddr, src.getAlignment().getQuantity());
return atomics.convertTempToRValue(NonSimpleTempAlloca, resultSlot, loc);
return atomics.convertIntToValue(load, resultSlot, loc);
}
/// Copy an r-value into memory as part of storing to an atomic type.
/// This needs to create a bit-pattern suitable for atomic operations.
void AtomicInfo::emitCopyIntoMemory(RValue rvalue) const {
assert(LVal.isSimple());
void AtomicInfo::emitCopyIntoMemory(RValue rvalue, LValue dest) const {
// If we have an r-value, the rvalue should be of the atomic type,
// which means that the caller is responsible for having zeroed
// any padding. Just do an aggregate copy of that type.
if (rvalue.isAggregate()) {
CGF.EmitAggregateCopy(LVal.getAddress(),
CGF.EmitAggregateCopy(dest.getAddress(),
rvalue.getAggregateAddr(),
getAtomicType(),
(rvalue.isVolatileQualified()
|| LVal.isVolatileQualified()),
LVal.getAlignment());
|| dest.isVolatileQualified()),
dest.getAlignment());
return;
}
// Okay, otherwise we're copying stuff.
// Zero out the buffer if necessary.
emitMemSetZeroIfNecessary();
emitMemSetZeroIfNecessary(dest);
// Drill past the padding if present.
LValue TempLVal = projectValue();
dest = projectValue(dest);
// Okay, store the rvalue in.
if (rvalue.isScalar()) {
CGF.EmitStoreOfScalar(rvalue.getScalarVal(), TempLVal, /*init*/ true);
CGF.EmitStoreOfScalar(rvalue.getScalarVal(), dest, /*init*/ true);
} else {
CGF.EmitStoreOfComplex(rvalue.getComplexVal(), TempLVal, /*init*/ true);
CGF.EmitStoreOfComplex(rvalue.getComplexVal(), dest, /*init*/ true);
}
}
@ -1127,10 +1051,8 @@ llvm::Value *AtomicInfo::materializeRValue(RValue rvalue) const {
// Otherwise, make a temporary and materialize into it.
llvm::Value *temp = CGF.CreateMemTemp(getAtomicType(), "atomic-store-temp");
LValue tempLV =
CGF.MakeAddrLValue(temp, getAtomicType(), getAtomicAlignment());
AtomicInfo Atomics(CGF, tempLV);
Atomics.emitCopyIntoMemory(rvalue);
LValue tempLV = CGF.MakeAddrLValue(temp, getAtomicType(), getAtomicAlignment());
emitCopyIntoMemory(rvalue, tempLV);
return temp;
}
@ -1176,7 +1098,7 @@ void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest, bool isInit) {
// If this is an initialization, just put the value there normally.
if (isInit) {
atomics.emitCopyIntoMemory(rvalue);
atomics.emitCopyIntoMemory(rvalue, dest);
return;
}
@ -1292,13 +1214,13 @@ void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) {
switch (atomics.getEvaluationKind()) {
case TEK_Scalar: {
llvm::Value *value = EmitScalarExpr(init);
atomics.emitCopyIntoMemory(RValue::get(value));
atomics.emitCopyIntoMemory(RValue::get(value), dest);
return;
}
case TEK_Complex: {
ComplexPairTy value = EmitComplexExpr(init);
atomics.emitCopyIntoMemory(RValue::getComplex(value));
atomics.emitCopyIntoMemory(RValue::getComplex(value), dest);
return;
}
@ -1307,8 +1229,8 @@ void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) {
// of atomic type.
bool Zeroed = false;
if (!init->getType()->isAtomicType()) {
Zeroed = atomics.emitMemSetZeroIfNecessary();
dest = atomics.projectValue();
Zeroed = atomics.emitMemSetZeroIfNecessary(dest);
dest = atomics.projectValue(dest);
}
// Evaluate the expression directly into the destination.

View File

@ -691,125 +691,8 @@ void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &) {
llvm_unreachable("CodeGen for 'omp ordered' is not supported yet.");
}
static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
QualType SrcType, QualType DestType) {
assert(CGF.hasScalarEvaluationKind(DestType) &&
"DestType must have scalar evaluation kind.");
assert(!Val.isAggregate() && "Must be a scalar or complex.");
return Val.isScalar()
? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType)
: CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType,
DestType);
}
static CodeGenFunction::ComplexPairTy
convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
QualType DestType) {
assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
"DestType must have complex evaluation kind.");
CodeGenFunction::ComplexPairTy ComplexVal;
if (Val.isScalar()) {
// Convert the input element to the element type of the complex.
auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
auto ScalarVal =
CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestElementType);
ComplexVal = CodeGenFunction::ComplexPairTy(
ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
} else {
assert(Val.isComplex() && "Must be a scalar or complex.");
auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
ComplexVal.first = CGF.EmitScalarConversion(
Val.getComplexVal().first, SrcElementType, DestElementType);
ComplexVal.second = CGF.EmitScalarConversion(
Val.getComplexVal().second, SrcElementType, DestElementType);
}
return ComplexVal;
}
static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
const Expr *X, const Expr *V,
SourceLocation Loc) {
// v = x;
assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
LValue XLValue = CGF.EmitLValue(X);
LValue VLValue = CGF.EmitLValue(V);
RValue Res = XLValue.isGlobalReg() ? CGF.EmitLoadOfLValue(XLValue, Loc)
: CGF.EmitAtomicLoad(XLValue, Loc);
// OpenMP, 2.12.6, atomic Construct
// Any atomic construct with a seq_cst clause forces the atomically
// performed operation to include an implicit flush operation without a
// list.
if (IsSeqCst)
CGF.CGM.getOpenMPRuntime().EmitOMPFlush(CGF, llvm::None, Loc);
switch (CGF.getEvaluationKind(V->getType())) {
case TEK_Scalar:
CGF.EmitStoreOfScalar(
convertToScalarValue(CGF, Res, X->getType(), V->getType()), VLValue);
break;
case TEK_Complex:
CGF.EmitStoreOfComplex(
convertToComplexValue(CGF, Res, X->getType(), V->getType()), VLValue,
/*isInit=*/false);
break;
case TEK_Aggregate:
llvm_unreachable("Must be a scalar or complex.");
}
}
static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
bool IsSeqCst, const Expr *X, const Expr *V,
const Expr *, SourceLocation Loc) {
switch (Kind) {
case OMPC_read:
EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
break;
case OMPC_write:
case OMPC_update:
case OMPC_capture:
llvm_unreachable("CodeGen for 'omp atomic clause' is not supported yet.");
case OMPC_if:
case OMPC_final:
case OMPC_num_threads:
case OMPC_private:
case OMPC_firstprivate:
case OMPC_lastprivate:
case OMPC_reduction:
case OMPC_safelen:
case OMPC_collapse:
case OMPC_default:
case OMPC_seq_cst:
case OMPC_shared:
case OMPC_linear:
case OMPC_aligned:
case OMPC_copyin:
case OMPC_copyprivate:
case OMPC_flush:
case OMPC_proc_bind:
case OMPC_schedule:
case OMPC_ordered:
case OMPC_nowait:
case OMPC_untied:
case OMPC_threadprivate:
case OMPC_mergeable:
case OMPC_unknown:
llvm_unreachable("Clause is not allowed in 'omp atomic'.");
}
}
void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
bool IsSeqCst = S.getSingleClause(/*K=*/OMPC_seq_cst);
OpenMPClauseKind Kind = OMPC_unknown;
for (auto *C : S.clauses()) {
// Find first clause (skip seq_cst clause, if it is first).
if (C->getClauseKind() != OMPC_seq_cst) {
Kind = C->getClauseKind();
break;
}
}
EmitOMPAtomicExpr(*this, Kind, IsSeqCst, S.getX(), S.getV(), S.getExpr(),
S.getLocStart());
void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &) {
llvm_unreachable("CodeGen for 'omp atomic' is not supported yet.");
}
void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &) {

View File

@ -1,333 +0,0 @@
// RUN: %clang_cc1 -verify -triple x86_64-apple-darwin10 -fopenmp=libiomp5 -x c -emit-llvm %s -o - | FileCheck %s
// RUN: %clang_cc1 -fopenmp=libiomp5 -x c -triple x86_64-apple-darwin10 -emit-pch -o %t %s
// RUN: %clang_cc1 -fopenmp=libiomp5 -x c -triple x86_64-apple-darwin10 -include-pch %t -verify %s -emit-llvm -o - | FileCheck %s
// expected-no-diagnostics
#ifndef HEADER
#define HEADER
_Bool bv, bx;
char cv, cx;
unsigned char ucv, ucx;
short sv, sx;
unsigned short usv, usx;
int iv, ix;
unsigned int uiv, uix;
long lv, lx;
unsigned long ulv, ulx;
long long llv, llx;
unsigned long long ullv, ullx;
float fv, fx;
double dv, dx;
long double ldv, ldx;
_Complex int civ, cix;
_Complex float cfv, cfx;
_Complex double cdv, cdx;
typedef int int4 __attribute__((__vector_size__(16)));
int4 int4x;
struct BitFields {
int : 32;
int a : 31;
} bfx;
struct BitFields_packed {
int : 32;
int a : 31;
} __attribute__ ((__packed__)) bfx_packed;
struct BitFields2 {
int : 31;
int a : 1;
} bfx2;
struct BitFields2_packed {
int : 31;
int a : 1;
} __attribute__ ((__packed__)) bfx2_packed;
struct BitFields3 {
int : 11;
int a : 14;
} bfx3;
struct BitFields3_packed {
int : 11;
int a : 14;
} __attribute__ ((__packed__)) bfx3_packed;
struct BitFields4 {
short : 16;
int a: 1;
long b : 7;
} bfx4;
struct BitFields4_packed {
short : 16;
int a: 1;
long b : 7;
} __attribute__ ((__packed__)) bfx4_packed;
typedef float float2 __attribute__((ext_vector_type(2)));
float2 float2x;
register int rix __asm__("0");
int main() {
// CHECK: load atomic i8*
// CHECK: store i8
#pragma omp atomic read
bv = bx;
// CHECK: load atomic i8*
// CHECK: store i8
#pragma omp atomic read
cv = cx;
// CHECK: load atomic i8*
// CHECK: store i8
#pragma omp atomic read
ucv = ucx;
// CHECK: load atomic i16*
// CHECK: store i16
#pragma omp atomic read
sv = sx;
// CHECK: load atomic i16*
// CHECK: store i16
#pragma omp atomic read
usv = usx;
// CHECK: load atomic i32*
// CHECK: store i32
#pragma omp atomic read
iv = ix;
// CHECK: load atomic i32*
// CHECK: store i32
#pragma omp atomic read
uiv = uix;
// CHECK: load atomic i64*
// CHECK: store i64
#pragma omp atomic read
lv = lx;
// CHECK: load atomic i64*
// CHECK: store i64
#pragma omp atomic read
ulv = ulx;
// CHECK: load atomic i64*
// CHECK: store i64
#pragma omp atomic read
llv = llx;
// CHECK: load atomic i64*
// CHECK: store i64
#pragma omp atomic read
ullv = ullx;
// CHECK: load atomic i32* bitcast (float*
// CHECK: bitcast i32 {{.*}} to float
// CHECK: store float
#pragma omp atomic read
fv = fx;
// CHECK: load atomic i64* bitcast (double*
// CHECK: bitcast i64 {{.*}} to double
// CHECK: store double
#pragma omp atomic read
dv = dx;
// CHECK: [[LD:%.+]] = load atomic i128* bitcast (x86_fp80*
// CHECK: [[BITCAST:%.+]] = bitcast x86_fp80* [[LDTEMP:%.*]] to i128*
// CHECK: store i128 [[LD]], i128* [[BITCAST]]
// CHECK: [[LD:%.+]] = load x86_fp80* [[LDTEMP]]
// CHECK: store x86_fp80 [[LD]]
#pragma omp atomic read
ldv = ldx;
// CHECK: call{{.*}} void @__atomic_load(i64 8,
// CHECK: store i32
// CHECK: store i32
#pragma omp atomic read
civ = cix;
// CHECK: call{{.*}} void @__atomic_load(i64 8,
// CHECK: store float
// CHECK: store float
#pragma omp atomic read
cfv = cfx;
// CHECK: call{{.*}} void @__atomic_load(i64 16,
// CHECK: call{{.*}} @__kmpc_flush(
// CHECK: store double
// CHECK: store double
#pragma omp atomic seq_cst read
cdv = cdx;
// CHECK: load atomic i64*
// CHECK: store i8
#pragma omp atomic read
bv = ulx;
// CHECK: load atomic i8*
// CHECK: store i8
#pragma omp atomic read
cv = bx;
// CHECK: load atomic i8*
// CHECK: call{{.*}} @__kmpc_flush(
// CHECK: store i8
#pragma omp atomic read, seq_cst
ucv = cx;
// CHECK: load atomic i64*
// CHECK: store i16
#pragma omp atomic read
sv = ulx;
// CHECK: load atomic i64*
// CHECK: store i16
#pragma omp atomic read
usv = lx;
// CHECK: load atomic i32*
// CHECK: call{{.*}} @__kmpc_flush(
// CHECK: store i32
#pragma omp atomic seq_cst, read
iv = uix;
// CHECK: load atomic i32*
// CHECK: store i32
#pragma omp atomic read
uiv = ix;
// CHECK: call{{.*}} void @__atomic_load(i64 8,
// CHECK: store i64
#pragma omp atomic read
lv = cix;
// CHECK: load atomic i32*
// CHECK: store i64
#pragma omp atomic read
ulv = fx;
// CHECK: load atomic i64*
// CHECK: store i64
#pragma omp atomic read
llv = dx;
// CHECK: load atomic i128*
// CHECK: store i64
#pragma omp atomic read
ullv = ldx;
// CHECK: call{{.*}} void @__atomic_load(i64 8,
// CHECK: store float
#pragma omp atomic read
fv = cix;
// CHECK: load atomic i16*
// CHECK: store double
#pragma omp atomic read
dv = sx;
// CHECK: load atomic i8*
// CHECK: store x86_fp80
#pragma omp atomic read
ldv = bx;
// CHECK: load atomic i8*
// CHECK: store i32
// CHECK: store i32
#pragma omp atomic read
civ = bx;
// CHECK: load atomic i16*
// CHECK: store float
// CHECK: store float
#pragma omp atomic read
cfv = usx;
// CHECK: load atomic i64*
// CHECK: store double
// CHECK: store double
#pragma omp atomic read
cdv = llx;
// CHECK: [[I128VAL:%.+]] = load atomic i128* bitcast (<4 x i32>* @{{.+}} to i128*) seq_cst
// CHECK: [[I128PTR:%.+]] = bitcast <4 x i32>* [[LDTEMP:%.+]] to i128*
// CHECK: store i128 [[I128VAL]], i128* [[I128PTR]]
// CHECK: [[LD:%.+]] = load <4 x i32>* [[LDTEMP]]
// CHECK: extractelement <4 x i32> [[LD]]
// CHECK: store i8
#pragma omp atomic read
bv = int4x[0];
// CHECK: [[LD:%.+]] = load atomic i32* bitcast (i8* getelementptr (i8* bitcast (%{{.+}}* @{{.+}} to i8*), i64 4) to i32*) seq_cst
// CHECK: store i32 [[LD]], i32* [[LDTEMP:%.+]]
// CHECK: [[LD:%.+]] = load i32* [[LDTEMP]]
// CHECK: [[SHL:%.+]] = shl i32 [[LD]], 1
// CHECK: ashr i32 [[SHL]], 1
// CHECK: store x86_fp80
#pragma omp atomic read
ldv = bfx.a;
// CHECK: [[LDTEMP_VOID_PTR:%.+]] = bitcast i32* [[LDTEMP:%.+]] to i8*
// CHECK: call void @__atomic_load(i64 4, i8* getelementptr (i8* bitcast (%struct.BitFields_packed* @bfx_packed to i8*), i64 4), i8* [[LDTEMP_VOID_PTR]], i32 5)
// CHECK: [[LD:%.+]] = load i32* [[LDTEMP]]
// CHECK: [[SHL:%.+]] = shl i32 [[LD]], 1
// CHECK: ashr i32 [[SHL]], 1
// CHECK: store x86_fp80
#pragma omp atomic read
ldv = bfx_packed.a;
// CHECK: [[LD:%.+]] = load atomic i32* getelementptr inbounds (%struct.BitFields2* @bfx2, i32 0, i32 0) seq_cst
// CHECK: store i32 [[LD]], i32* [[LDTEMP:%.+]]
// CHECK: [[LD:%.+]] = load i32* [[LDTEMP]]
// CHECK: ashr i32 [[LD]], 31
// CHECK: store x86_fp80
#pragma omp atomic read
ldv = bfx2.a;
// CHECK: [[LD:%.+]] = load atomic i8* getelementptr (i8* bitcast (%struct.BitFields2_packed* @bfx2_packed to i8*), i64 3) seq_cst
// CHECK: store i8 [[LD]], i8* [[LDTEMP:%.+]]
// CHECK: [[LD:%.+]] = load i8* [[LDTEMP]]
// CHECK: ashr i8 [[LD]], 7
// CHECK: store x86_fp80
#pragma omp atomic read
ldv = bfx2_packed.a;
// CHECK: [[LD:%.+]] = load atomic i32* getelementptr inbounds (%struct.BitFields3* @bfx3, i32 0, i32 0) seq_cst
// CHECK: store i32 [[LD]], i32* [[LDTEMP:%.+]]
// CHECK: [[LD:%.+]] = load i32* [[LDTEMP]]
// CHECK: [[SHL:%.+]] = shl i32 [[LD]], 7
// CHECK: ashr i32 [[SHL]], 18
// CHECK: store x86_fp80
#pragma omp atomic read
ldv = bfx3.a;
// CHECK: [[LDTEMP_VOID_PTR:%.+]] = bitcast i24* [[LDTEMP:%.+]] to i8*
// CHECK: call void @__atomic_load(i64 3, i8* getelementptr (i8* bitcast (%struct.BitFields3_packed* @bfx3_packed to i8*), i64 1), i8* [[LDTEMP_VOID_PTR]], i32 5)
// CHECK: [[LD:%.+]] = load i24* [[LDTEMP]]
// CHECK: [[SHL:%.+]] = shl i24 [[LD]], 7
// CHECK: [[ASHR:%.+]] = ashr i24 [[SHL]], 10
// CHECK: sext i24 [[ASHR]] to i32
// CHECK: store x86_fp80
#pragma omp atomic read
ldv = bfx3_packed.a;
// CHECK: [[LD:%.+]] = load atomic i64* bitcast (%struct.BitFields4* @bfx4 to i64*) seq_cst
// CHECK: store i64 [[LD]], i64* [[LDTEMP:%.+]]
// CHECK: [[LD:%.+]] = load i64* [[LDTEMP]]
// CHECK: [[SHL:%.+]] = shl i64 [[LD]], 47
// CHECK: [[ASHR:%.+]] = ashr i64 [[SHL]], 63
// CHECK: trunc i64 [[ASHR]] to i32
// CHECK: store x86_fp80
#pragma omp atomic read
ldv = bfx4.a;
// CHECK: [[LD:%.+]] = load atomic i8* getelementptr inbounds (%struct.BitFields4_packed* @bfx4_packed, i32 0, i32 0, i64 2) seq_cst
// CHECK: store i8 [[LD]], i8* [[LDTEMP:%.+]]
// CHECK: [[LD:%.+]] = load i8* [[LDTEMP]]
// CHECK: [[SHL:%.+]] = shl i8 [[LD]], 7
// CHECK: [[ASHR:%.+]] = ashr i8 [[SHL]], 7
// CHECK: sext i8 [[ASHR]] to i32
// CHECK: store x86_fp80
#pragma omp atomic read
ldv = bfx4_packed.a;
// CHECK: [[LD:%.+]] = load atomic i64* bitcast (%struct.BitFields4* @bfx4 to i64*) seq_cst
// CHECK: store i64 [[LD]], i64* [[LDTEMP:%.+]]
// CHECK: [[LD:%.+]] = load i64* [[LDTEMP]]
// CHECK: [[SHL:%.+]] = shl i64 [[LD]], 40
// CHECK: [[ASHR:%.+]] = ashr i64 [[SHL]], 57
// CHECK: store x86_fp80
#pragma omp atomic read
ldv = bfx4.b;
// CHECK: [[LD:%.+]] = load atomic i8* getelementptr inbounds (%struct.BitFields4_packed* @bfx4_packed, i32 0, i32 0, i64 2) seq_cst
// CHECK: store i8 [[LD]], i8* [[LDTEMP:%.+]]
// CHECK: [[LD:%.+]] = load i8* [[LDTEMP]]
// CHECK: [[ASHR:%.+]] = ashr i8 [[LD]], 1
// CHECK: sext i8 [[ASHR]] to i64
// CHECK: store x86_fp80
#pragma omp atomic read
ldv = bfx4_packed.b;
// CHECK: [[LD:%.+]] = load atomic i32* bitcast (<2 x float>* @{{.+}} to i32*) seq_cst
// CHECK: [[BITCAST:%.+]] = bitcast <2 x float>* [[LDTEMP:%.+]] to i32*
// CHECK: store i32 [[LD]], i32* [[BITCAST]]
// CHECK: [[LD:%.+]] = load <2 x float>* [[LDTEMP]]
// CHECK: extractelement <2 x float> [[LD]]
// CHECK: store i64
#pragma omp atomic read
ulv = float2x.x;
// CHECK: call{{.*}} i{{[0-9]+}} @llvm.read_register
// CHECK: call{{.*}} @__kmpc_flush(
// CHECK: store double
#pragma omp atomic read seq_cst
dv = rix;
return 0;
}
#endif