Port the recent innovations in ComputeMaskedBits to SimplifyDemandedBits.

This allows us to simplify on conditions where bits are not known, but they
are not demanded either!  This also fixes a couple of bugs in
ComputeMaskedBits that were exposed during this work.

In the future, swaths of instcombine should be removed, as this code
subsumes a bunch of ad-hockery.

llvm-svn: 26122
This commit is contained in:
Chris Lattner 2006-02-11 09:31:47 +00:00
parent b24ce3a2a8
commit 0157e7f55b
1 changed files with 426 additions and 212 deletions

View File

@ -228,7 +228,9 @@ namespace {
// operators.
bool SimplifyCommutative(BinaryOperator &I);
bool SimplifyDemandedBits(Value *V, uint64_t Mask, unsigned Depth = 0);
bool SimplifyDemandedBits(Value *V, uint64_t Mask,
uint64_t &KnownZero, uint64_t &KnownOne,
unsigned Depth = 0);
// FoldOpIntoPhi - Given a binary operator or cast instruction which has a
// PHI node as operand #0, see if we can fold the instruction into the PHI
@ -406,6 +408,18 @@ static ConstantInt *SubOne(ConstantInt *C) {
ConstantInt::get(C->getType(), 1)));
}
/// GetConstantInType - Return a ConstantInt with the specified type and value.
///
static ConstantInt *GetConstantInType(const Type *Ty, uint64_t Val) {
if (Ty->isUnsigned())
return ConstantUInt::get(Ty, Val);
int64_t SVal = Val;
SVal <<= 64-Ty->getPrimitiveSizeInBits();
SVal >>= 64-Ty->getPrimitiveSizeInBits();
return ConstantSInt::get(Ty, SVal);
}
/// ComputeMaskedBits - Determine which of the bits specified in Mask are
/// known to be either zero or one and return them in the KnownZero/KnownOne
/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
@ -420,7 +434,7 @@ static void ComputeMaskedBits(Value *V, uint64_t Mask, uint64_t &KnownZero,
// this won't lose us code quality.
if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(V)) {
// We know all of the bits for a constant!
KnownOne = CI->getZExtValue();
KnownOne = CI->getZExtValue() & Mask;
KnownZero = ~KnownOne & Mask;
return;
}
@ -430,147 +444,149 @@ static void ComputeMaskedBits(Value *V, uint64_t Mask, uint64_t &KnownZero,
return; // Limit search depth.
uint64_t KnownZero2, KnownOne2;
if (Instruction *I = dyn_cast<Instruction>(V)) {
switch (I->getOpcode()) {
case Instruction::And:
// If either the LHS or the RHS are Zero, the result is zero.
ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
Mask &= ~KnownZero;
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne &= KnownOne2;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
KnownZero |= KnownZero2;
return;
case Instruction::Or:
ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero &= KnownZero2;
// Output known-1 are known to be set if set in either the LHS | RHS.
KnownOne |= KnownOne2;
return;
case Instruction::Xor: {
ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-0 bits are known if clear or set in both the LHS & RHS.
uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
KnownZero = KnownZeroOut;
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return;
switch (I->getOpcode()) {
case Instruction::And:
// If either the LHS or the RHS are Zero, the result is zero.
ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
Mask &= ~KnownZero;
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne &= KnownOne2;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
KnownZero |= KnownZero2;
return;
case Instruction::Or:
ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
Mask &= ~KnownOne;
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero &= KnownZero2;
// Output known-1 are known to be set if set in either the LHS | RHS.
KnownOne |= KnownOne2;
return;
case Instruction::Xor: {
ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-0 bits are known if clear or set in both the LHS & RHS.
uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
KnownZero = KnownZeroOut;
return;
}
case Instruction::Select:
ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
return;
case Instruction::Cast: {
const Type *SrcTy = I->getOperand(0)->getType();
if (!SrcTy->isIntegral()) return;
// If this is an integer truncate or noop, just look in the input.
if (SrcTy->getPrimitiveSizeInBits() >=
I->getType()->getPrimitiveSizeInBits()) {
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
return;
}
case Instruction::Select:
ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
return;
case Instruction::Cast: {
const Type *SrcTy = I->getOperand(0)->getType();
if (!SrcTy->isIntegral()) return;
// Sign or Zero extension. Compute the bits in the result that are not
// present in the input.
uint64_t NotIn = ~SrcTy->getIntegralTypeMask();
uint64_t NewBits = I->getType()->getIntegralTypeMask() & NotIn;
// If this is an integer truncate or noop, just look in the input.
if (SrcTy->getPrimitiveSizeInBits() >=
I->getType()->getPrimitiveSizeInBits()) {
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
return;
}
// Handle zero extension.
if (!SrcTy->isSigned()) {
Mask &= SrcTy->getIntegralTypeMask();
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
// The top bits are known to be zero.
KnownZero |= NewBits;
} else {
// Sign extension.
Mask &= SrcTy->getIntegralTypeMask();
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
// Sign or Zero extension. Compute the bits in the result that are not
// present in the input.
uint64_t NotIn = ~SrcTy->getIntegralTypeMask();
uint64_t NewBits = I->getType()->getIntegralTypeMask() & NotIn;
// Handle zero extension.
if (!SrcTy->isSigned()) {
Mask &= SrcTy->getIntegralTypeMask();
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
// The top bits are known to be zero.
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1);
if (KnownZero & InSignBit) { // Input sign bit known zero
KnownZero |= NewBits;
KnownOne &= ~NewBits;
} else if (KnownOne & InSignBit) { // Input sign bit known set
KnownOne |= NewBits;
KnownZero &= ~NewBits;
} else { // Input sign bit unknown
KnownZero &= ~NewBits;
KnownOne &= ~NewBits;
}
}
return;
}
case Instruction::Shl:
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
Mask >>= SA->getValue();
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero <<= SA->getValue();
KnownOne <<= SA->getValue();
KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
return;
}
break;
case Instruction::Shr:
// (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
// Compute the new bits that are at the top now.
uint64_t HighBits = (1ULL << SA->getValue())-1;
HighBits <<= I->getType()->getPrimitiveSizeInBits()-SA->getValue();
if (I->getType()->isUnsigned()) { // Unsigned shift right.
Mask <<= SA->getValue();
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
KnownZero >>= SA->getValue();
KnownOne >>= SA->getValue();
KnownZero |= HighBits; // high bits known zero.
} else {
// Sign extension.
Mask &= SrcTy->getIntegralTypeMask();
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1);
if (KnownZero & InSignBit) { // Input sign bit known zero
KnownZero |= NewBits;
KnownOne &= ~NewBits;
} else if (KnownOne & InSignBit) { // Input sign bit known set
KnownOne |= NewBits;
KnownZero &= ~NewBits;
} else { // Input sign bit unknown
KnownZero &= ~NewBits;
KnownOne &= ~NewBits;
Mask <<= SA->getValue();
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
KnownZero >>= SA->getValue();
KnownOne >>= SA->getValue();
// Handle the sign bits.
uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1);
SignBit >>= SA->getValue(); // Adjust to where it is now in the mask.
if (KnownZero & SignBit) { // New bits are known zero.
KnownZero |= HighBits;
} else if (KnownOne & SignBit) { // New bits are known one.
KnownOne |= HighBits;
}
}
return;
}
case Instruction::Shl:
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
Mask >> SA->getValue();
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero <<= SA->getValue();
KnownOne <<= SA->getValue();
KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
return;
}
break;
case Instruction::Shr:
// (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
// Compute the new bits that are at the top now.
uint64_t HighBits = (1ULL << SA->getValue())-1;
HighBits <<= I->getType()->getPrimitiveSizeInBits()-SA->getValue();
if (I->getType()->isUnsigned()) { // Unsigned shift right.
Mask << SA->getValue();
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
KnownZero >>= SA->getValue();
KnownOne >>= SA->getValue();
KnownZero |= HighBits; // high bits known zero.
} else {
Mask << SA->getValue();
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
KnownZero >>= SA->getValue();
KnownOne >>= SA->getValue();
// Handle the sign bits.
uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1);
SignBit >>= SA->getValue(); // Adjust to where it is now in the mask.
if (KnownZero & SignBit) { // New bits are known zero.
KnownZero |= HighBits;
} else if (KnownOne & SignBit) { // New bits are known one.
KnownOne |= HighBits;
}
}
return;
}
break;
}
break;
}
}
@ -584,19 +600,54 @@ static bool MaskedValueIsZero(Value *V, uint64_t Mask, unsigned Depth = 0) {
return (KnownZero & Mask) == Mask;
}
/// SimplifyDemandedBits - Look at V. At this point, we know that only the Mask
/// bits of the result of V are ever used downstream. If we can use this
/// information to simplify V, return V and set NewVal to the new value we
/// should use in V's place.
bool InstCombiner::SimplifyDemandedBits(Value *V, uint64_t Mask,
/// ShrinkDemandedConstant - Check to see if the specified operand of the
/// specified instruction is a constant integer. If so, check to see if there
/// are any bits set in the constant that are not demanded. If so, shrink the
/// constant and return true.
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
uint64_t Demanded) {
ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
if (!OpC) return false;
// If there are no bits set that aren't demanded, nothing to do.
if ((~Demanded & OpC->getZExtValue()) == 0)
return false;
// This is producing any bits that are not needed, shrink the RHS.
uint64_t Val = Demanded & OpC->getZExtValue();
I->setOperand(OpNo, GetConstantInType(OpC->getType(), Val));
return true;
}
/// SimplifyDemandedBits - Look at V. At this point, we know that only the
/// DemandedMask bits of the result of V are ever used downstream. If we can
/// use this information to simplify V, do so and return true. Otherwise,
/// analyze the expression and return a mask of KnownOne and KnownZero bits for
/// the expression (used to simplify the caller). The KnownZero/One bits may
/// only be accurate for those bits in the DemandedMask.
bool InstCombiner::SimplifyDemandedBits(Value *V, uint64_t DemandedMask,
uint64_t &KnownZero, uint64_t &KnownOne,
unsigned Depth) {
if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(V)) {
// We know all of the bits for a constant!
KnownOne = CI->getZExtValue() & DemandedMask;
KnownZero = ~KnownOne & DemandedMask;
return false;
}
KnownZero = KnownOne = 0;
if (!V->hasOneUse()) { // Other users may use these bits.
if (Depth != 0) // Not at the root.
if (Depth != 0) { // Not at the root.
// Just compute the KnownZero/KnownOne bits to simplify things downstream.
ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
return false;
}
// If this is the root being simplified, allow it to have multiple uses,
// just set the Mask to all bits.
Mask = V->getType()->getIntegralTypeMask();
} else if (Mask == 0) { // Not demanding any bits from V.
// just set the DemandedMask to all bits.
DemandedMask = V->getType()->getIntegralTypeMask();
} else if (DemandedMask == 0) { // Not demanding any bits from V.
if (V != UndefValue::get(V->getType()))
return UpdateValueUsesWith(V, UndefValue::get(V->getType()));
return false;
@ -607,99 +658,257 @@ bool InstCombiner::SimplifyDemandedBits(Value *V, uint64_t Mask,
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false; // Only analyze instructions.
uint64_t KnownZero2, KnownOne2;
switch (I->getOpcode()) {
default: break;
case Instruction::And:
if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
// Only demanding an intersection of the bits.
if (SimplifyDemandedBits(I->getOperand(0), RHS->getRawValue() & Mask,
Depth+1))
return true;
if (~Mask & RHS->getZExtValue()) {
// If this is producing any bits that are not needed, simplify the RHS.
uint64_t Val = Mask & RHS->getZExtValue();
Constant *RHS =
ConstantUInt::get(I->getType()->getUnsignedVersion(), Val);
if (I->getType()->isSigned())
RHS = ConstantExpr::getCast(RHS, I->getType());
I->setOperand(1, RHS);
return UpdateValueUsesWith(I, I);
// If either the LHS or the RHS are Zero, the result is zero.
if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
KnownZero, KnownOne, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
// If something is known zero on the RHS, the bits aren't demanded on the
// LHS.
if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownZero,
KnownZero2, KnownOne2, Depth+1))
return true;
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// If all of the demanded bits are known one on one side, return the other.
// These bits cannot contribute to the result of the 'and'.
if ((DemandedMask & ~KnownZero2 & KnownOne) == (DemandedMask & ~KnownZero2))
return UpdateValueUsesWith(I, I->getOperand(0));
if ((DemandedMask & ~KnownZero & KnownOne2) == (DemandedMask & ~KnownZero))
return UpdateValueUsesWith(I, I->getOperand(1));
// If the RHS is a constant, see if we can simplify it.
if (ShrinkDemandedConstant(I, 1, DemandedMask))
return UpdateValueUsesWith(I, I);
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne &= KnownOne2;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
KnownZero |= KnownZero2;
break;
case Instruction::Or:
if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
KnownZero, KnownOne, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownOne,
KnownZero2, KnownOne2, Depth+1))
return true;
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'or'.
if ((DemandedMask & ~KnownOne2 & KnownZero) == DemandedMask & ~KnownOne2)
return UpdateValueUsesWith(I, I->getOperand(0));
if ((DemandedMask & ~KnownOne & KnownZero2) == DemandedMask & ~KnownOne)
return UpdateValueUsesWith(I, I->getOperand(1));
// If the RHS is a constant, see if we can simplify it.
if (ShrinkDemandedConstant(I, 1, DemandedMask))
return UpdateValueUsesWith(I, I);
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero &= KnownZero2;
// Output known-1 are known to be set if set in either the LHS | RHS.
KnownOne |= KnownOne2;
break;
case Instruction::Xor: {
if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
KnownZero, KnownOne, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
KnownZero2, KnownOne2, Depth+1))
return true;
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'xor'.
if ((DemandedMask & KnownZero) == DemandedMask)
return UpdateValueUsesWith(I, I->getOperand(0));
if ((DemandedMask & KnownZero2) == DemandedMask)
return UpdateValueUsesWith(I, I->getOperand(1));
// Output known-0 bits are known if clear or set in both the LHS & RHS.
uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
uint64_t KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
// If all of the unknown bits are known to be zero on one side or the other
// (but not both) turn this into an *inclusive* or.
if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut)) {
if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits) {
Instruction *Or =
BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
I->getName());
InsertNewInstBefore(Or, *I);
return UpdateValueUsesWith(I, Or);
}
}
// Walk the LHS and the RHS.
return SimplifyDemandedBits(I->getOperand(0), Mask, Depth+1) ||
SimplifyDemandedBits(I->getOperand(1), Mask, Depth+1);
case Instruction::Or:
case Instruction::Xor:
if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
// If none of the [x]or'd in bits are demanded, don't both with the [x]or.
if ((Mask & RHS->getRawValue()) == 0)
return UpdateValueUsesWith(I, I->getOperand(0));
// Otherwise, for an OR, we only demand those bits not set by the OR.
if (I->getOpcode() == Instruction::Or)
Mask &= ~RHS->getRawValue();
return SimplifyDemandedBits(I->getOperand(0), Mask, Depth+1);
}
// Walk the LHS and the RHS.
return SimplifyDemandedBits(I->getOperand(0), Mask, Depth+1) ||
SimplifyDemandedBits(I->getOperand(1), Mask, Depth+1);
// If the RHS is a constant, see if we can simplify it.
// FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
if (ShrinkDemandedConstant(I, 1, DemandedMask))
return UpdateValueUsesWith(I, I);
KnownZero = KnownZeroOut;
KnownOne = KnownOneOut;
break;
}
case Instruction::Select:
if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
KnownZero, KnownOne, Depth+1))
return true;
if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
KnownZero2, KnownOne2, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// If the operands are constants, see if we can simplify them.
if (ShrinkDemandedConstant(I, 1, DemandedMask))
return UpdateValueUsesWith(I, I);
if (ShrinkDemandedConstant(I, 2, DemandedMask))
return UpdateValueUsesWith(I, I);
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
break;
case Instruction::Cast: {
const Type *SrcTy = I->getOperand(0)->getType();
if (SrcTy == Type::BoolTy)
return SimplifyDemandedBits(I->getOperand(0), Mask&1, Depth+1);
if (!SrcTy->isIntegral()) return false;
if (!SrcTy->isInteger()) return false;
// If this is an integer truncate or noop, just look in the input.
if (SrcTy->getPrimitiveSizeInBits() >=
I->getType()->getPrimitiveSizeInBits()) {
if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
KnownZero, KnownOne, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
break;
}
// Sign or Zero extension. Compute the bits in the result that are not
// present in the input.
uint64_t NotIn = ~SrcTy->getIntegralTypeMask();
uint64_t NewBits = I->getType()->getIntegralTypeMask() & NotIn;
// Handle zero extension.
if (!SrcTy->isSigned()) {
DemandedMask &= SrcTy->getIntegralTypeMask();
if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
KnownZero, KnownOne, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
// The top bits are known to be zero.
KnownZero |= NewBits;
} else {
// Sign extension.
if (SimplifyDemandedBits(I->getOperand(0),
DemandedMask & SrcTy->getIntegralTypeMask(),
KnownZero, KnownOne, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1);
unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
// If this is a sign-extend, treat specially.
if (SrcTy->isSigned() &&
SrcBits < I->getType()->getPrimitiveSizeInBits()) {
// If none of the top bits are demanded, convert this into an unsigned
// extend instead of a sign extend.
if ((Mask & ((1ULL << SrcBits)-1)) == 0) {
// If the input sign bit is known zero, or if the NewBits are not demanded
// convert this into a zero extension.
if ((KnownZero & InSignBit) || (NewBits & ~DemandedMask) == NewBits) {
// Convert to unsigned first.
Instruction *NewVal;
NewVal = new CastInst(I->getOperand(0), SrcTy->getUnsignedVersion(),
I->getOperand(0)->getName());
InsertNewInstBefore(NewVal, *I);
// Then cast that to the destination type.
NewVal = new CastInst(NewVal, I->getType(), I->getName());
InsertNewInstBefore(NewVal, *I);
return UpdateValueUsesWith(I, NewVal);
} else if (KnownOne & InSignBit) { // Input sign bit known set
KnownOne |= NewBits;
KnownZero &= ~NewBits;
} else { // Input sign bit unknown
KnownZero &= ~NewBits;
KnownOne &= ~NewBits;
}
// Otherwise, the high-bits *are* demanded. This means that the code
// implicitly demands computation of the sign bit of the input, make sure
// we explicitly include it in Mask.
Mask |= 1ULL << (SrcBits-1);
}
// If this is an extension, the top bits are ignored.
Mask &= SrcTy->getIntegralTypeMask();
return SimplifyDemandedBits(I->getOperand(0), Mask, Depth+1);
break;
}
case Instruction::Select:
// Simplify the T and F values if they are not demanded.
return SimplifyDemandedBits(I->getOperand(2), Mask, Depth+1) ||
SimplifyDemandedBits(I->getOperand(1), Mask, Depth+1);
case Instruction::Shl:
// We only demand the low bits of the input.
if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1)))
return SimplifyDemandedBits(I->getOperand(0), Mask >> SA->getValue(),
Depth+1);
if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
if (SimplifyDemandedBits(I->getOperand(0), DemandedMask >> SA->getValue(),
KnownZero, KnownOne, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero <<= SA->getValue();
KnownOne <<= SA->getValue();
KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
}
break;
case Instruction::Shr:
// We only demand the high bits of the input.
if (I->getType()->isUnsigned())
if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
Mask <<= SA->getValue();
Mask &= I->getType()->getIntegralTypeMask();
return SimplifyDemandedBits(I->getOperand(0), Mask, Depth+1);
if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
unsigned ShAmt = SA->getValue();
// Compute the new bits that are at the top now.
uint64_t HighBits = (1ULL << ShAmt)-1;
HighBits <<= I->getType()->getPrimitiveSizeInBits() - ShAmt;
if (I->getType()->isUnsigned()) { // Unsigned shift right.
if (SimplifyDemandedBits(I->getOperand(0), DemandedMask << ShAmt,
KnownZero, KnownOne, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero >>= ShAmt;
KnownOne >>= ShAmt;
KnownZero |= HighBits; // high bits known zero.
} else { // Signed shift right.
if (SimplifyDemandedBits(I->getOperand(0), DemandedMask << ShAmt,
KnownZero, KnownOne, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero >>= SA->getValue();
KnownOne >>= SA->getValue();
// Handle the sign bits.
uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1);
SignBit >>= SA->getValue(); // Adjust to where it is now in the mask.
// If the input sign bit is known to be zero, or if none of the top bits
// are demanded, turn this into an unsigned shift right.
if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
// Convert the input to unsigned.
Instruction *NewVal;
NewVal = new CastInst(I->getOperand(0),
I->getType()->getUnsignedVersion(),
I->getOperand(0)->getName());
InsertNewInstBefore(NewVal, *I);
// Perform the unsigned shift right.
NewVal = new ShiftInst(Instruction::Shr, NewVal, SA, I->getName());
InsertNewInstBefore(NewVal, *I);
// Then cast that to the destination type.
NewVal = new CastInst(NewVal, I->getType(), I->getName());
InsertNewInstBefore(NewVal, *I);
return UpdateValueUsesWith(I, NewVal);
} else if (KnownOne & SignBit) { // New bits are known one.
KnownOne |= HighBits;
}
}
// FIXME: handle signed shr, demanding the appropriate bits. If the top
// bits aren't demanded, strength reduce to a logical SHR instead.
}
break;
}
// If the client is only demanding bits that we know, return the known
// constant.
if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
return UpdateValueUsesWith(I, GetConstantInType(I->getType(), KnownOne));
return false;
}
@ -2021,7 +2230,9 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
// See if we can simplify any instructions used by the LHS whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask()))
uint64_t KnownZero, KnownOne;
if (SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(),
KnownZero, KnownOne))
return &I;
if (ConstantIntegral *AndRHS = dyn_cast<ConstantIntegral>(Op1)) {
@ -4378,9 +4589,12 @@ Instruction *InstCombiner::visitCastInst(CastInst &CI) {
// See if we can simplify any instructions used by the LHS whose sole
// purpose is to compute bits we don't care about.
if (CI.getType()->isInteger() && CI.getOperand(0)->getType()->isIntegral() &&
SimplifyDemandedBits(&CI, CI.getType()->getIntegralTypeMask()))
return &CI;
if (CI.getType()->isInteger() && CI.getOperand(0)->getType()->isIntegral()) {
uint64_t KnownZero, KnownOne;
if (SimplifyDemandedBits(&CI, CI.getType()->getIntegralTypeMask(),
KnownZero, KnownOne))
return &CI;
}
// If casting the result of a getelementptr instruction with no offset, turn
// this into a cast of the original pointer!