From 014ee634ce0eb066bad1e7483da488120b43adf3 Mon Sep 17 00:00:00 2001 From: Chris Lattner Date: Fri, 10 May 2002 05:41:34 +0000 Subject: [PATCH] Initial checkin of the PiNodeInsertion pass llvm-svn: 2593 --- .../lib/Transforms/Scalar/PiNodeInsertion.cpp | 185 ++++++++++++++++++ 1 file changed, 185 insertions(+) create mode 100644 llvm/lib/Transforms/Scalar/PiNodeInsertion.cpp diff --git a/llvm/lib/Transforms/Scalar/PiNodeInsertion.cpp b/llvm/lib/Transforms/Scalar/PiNodeInsertion.cpp new file mode 100644 index 000000000000..d7bc08b1a4b3 --- /dev/null +++ b/llvm/lib/Transforms/Scalar/PiNodeInsertion.cpp @@ -0,0 +1,185 @@ +//===- PiNodeInsertion.cpp - Insert Pi nodes into a program ---------------===// +// +// PiNodeInsertion - This pass inserts single entry Phi nodes into basic blocks +// that are preceeded by a conditional branch, where the branch gives +// information about the operands of the condition. For example, this C code: +// if (x == 0) { ... = x + 4; +// becomes: +// if (x == 0) { +// x2 = phi(x); // Node that can hold data flow information about X +// ... = x2 + 4; +// +// Since the direction of the condition branch gives information about X itself +// (whether or not it is zero), some passes (like value numbering or ABCD) can +// use the inserted Phi/Pi nodes as a place to attach information, in this case +// saying that X has a value of 0 in this scope. The power of this analysis +// information is that "in the scope" translates to "for all uses of x2". +// +// This special form of Phi node is refered to as a Pi node, following the +// terminology defined in the "Array Bounds Checks on Demand" paper. +// +// As a really trivial example of what the Pi nodes are good for, this pass +// replaces values compared for equality with direct constants with the constant +// itself in the branch it's equal to the constant. In the case above, it would +// change the body to be "... = 0 + 4;" Real value numbering can do much more. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/Pass.h" +#include "llvm/Function.h" +#include "llvm/BasicBlock.h" +#include "llvm/iTerminators.h" +#include "llvm/iOperators.h" +#include "llvm/iPHINode.h" +#include "llvm/Support/CFG.h" + +namespace { + struct PiNodeInserter : public FunctionPass { + const char *getPassName() const { return "Pi Node Insertion"; } + + virtual bool runOnFunction(Function *F); + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.preservesCFG(); + AU.addRequired(DominatorSet::ID); + } + + // insertPiNodeFor - Insert a Pi node for V in the successors of BB if our + // conditions hold. If Rep is not null, fill in a value of 'Rep' instead of + // creating a new Pi node itself because we know that the value is a simple + // constant. + // + bool insertPiNodeFor(Value *V, BasicBlock *BB, Value *Rep = 0); + }; +} + +Pass *createPiNodeInsertionPass() { return new PiNodeInserter(); } + + +bool PiNodeInserter::runOnFunction(Function *F) { + bool Changed = false; + for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) { + BasicBlock *BB = *I; + TerminatorInst *TI = BB->getTerminator(); + + // FIXME: Insert PI nodes for switch statements too + + // Look for conditional branch instructions... that branch on a setcc test + if (BranchInst *BI = dyn_cast(TI)) + if (BI->isConditional()) + // TODO: we could in theory support logical operations here too... + if (SetCondInst *SCI = dyn_cast(BI->getCondition())) { + // Calculate replacement values if this is an obvious constant == or + // != comparison... + Value *TrueRep = 0, *FalseRep = 0; + + // Make sure the the constant is the second operand if there is one... + // This fits with our cannonicalization patterns used elsewhere in the + // compiler, without depending on instcombine running before us. + // + if (isa(SCI->getOperand(0)) && + !isa(SCI->getOperand(1))) { + SCI->swapOperands(); + Changed = true; + } + + if (isa(SCI->getOperand(1))) { + if (SCI->getOpcode() == Instruction::SetEQ) + TrueRep = SCI->getOperand(1); + else if (SCI->getOpcode() == Instruction::SetNE) + FalseRep = SCI->getOperand(1); + } + + BasicBlock *TB = BI->getSuccessor(0); // True block + BasicBlock *FB = BI->getSuccessor(1); // False block + + // Insert the Pi nodes for the first operand to the comparison... + Changed |= insertPiNodeFor(SCI->getOperand(0), TB, TrueRep); + Changed |= insertPiNodeFor(SCI->getOperand(0), FB, FalseRep); + + // Insert the Pi nodes for the second operand to the comparison... + Changed |= insertPiNodeFor(SCI->getOperand(1), TB); + Changed |= insertPiNodeFor(SCI->getOperand(1), FB); + } + } + + return Changed; +} + + +// alreadyHasPiNodeFor - Return true if there is already a Pi node in BB for +// V. +static bool alreadyHasPiNodeFor(Value *V, BasicBlock *BB) { + for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) + if (PHINode *PN = dyn_cast(*I)) + if (PN->getParent() == BB) + return true; + return false; +} + + +// insertPiNodeFor - Insert a Pi node for V in the successors of BB if our +// conditions hold. If Rep is not null, fill in a value of 'Rep' instead of +// creating a new Pi node itself because we know that the value is a simple +// constant. +// +bool PiNodeInserter::insertPiNodeFor(Value *V, BasicBlock *Succ, Value *Rep) { + // Do not insert Pi nodes for constants! + if (isa(V)) return false; + + // Check to make sure that there is not already a PI node inserted... + if (alreadyHasPiNodeFor(V, Succ) && Rep == 0) + return false; + + // Insert Pi nodes only into successors that the conditional branch dominates. + // In this simple case, we know that BB dominates a successor as long there + // are no other incoming edges to the successor. + // + + // Check to make sure that the successor only has a single predecessor... + pred_iterator PI = pred_begin(Succ); + BasicBlock *Pred = *PI; + if (++PI != pred_end(Succ)) return false; // Multiple predecessor? Bail... + + // It seems to be safe to insert the Pi node. Do so now... + + // Create the Pi node... + Value *Pi = Rep; + if (Rep == 0) { + PHINode *Phi = new PHINode(V->getType(), V->getName() + ".pi"); + + // Insert the Pi node in the successor basic block... + Succ->getInstList().push_front(Phi); + Pi = Phi; + } + + // Loop over all of the uses of V, replacing ones that the Pi node + // dominates with references to the Pi node itself. + // + DominatorSet &DS = getAnalysis(); + for (unsigned i = 0; i < V->use_size(); ) { + if (Instruction *U = dyn_cast(*(V->use_begin()+i))) + if (U->getParent()->getParent() == Succ->getParent() && + DS.dominates(Succ, U->getParent())) { + // This instruction is dominated by the Pi node, replace reference to V + // with a reference to the Pi node. + // + U->replaceUsesOfWith(V, Pi); + continue; // Do not skip the next use... + } + + // This use is not dominated by the Pi node, skip it... + ++i; + } + + // Set up the incoming value for the Pi node... do this after uses have been + // replaced, because we don't want the Pi node to refer to itself. + // + if (Rep == 0) + cast(Pi)->addIncoming(V, Pred); + + return true; +} +