hanchenye-llvm-project/clang/lib/Parse/ParseStmt.cpp

2274 lines
76 KiB
C++
Raw Normal View History

//===--- ParseStmt.cpp - Statement and Block Parser -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Statement and Block portions of the Parser
// interface.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/Attributes.h"
#include "clang/Basic/PrettyStackTrace.h"
#include "clang/Parse/Parser.h"
#include "clang/Parse/RAIIObjectsForParser.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/LoopHint.h"
#include "clang/Sema/PrettyDeclStackTrace.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/TypoCorrection.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// C99 6.8: Statements and Blocks.
//===----------------------------------------------------------------------===//
/// \brief Parse a standalone statement (for instance, as the body of an 'if',
/// 'while', or 'for').
StmtResult Parser::ParseStatement(SourceLocation *TrailingElseLoc,
bool AllowOpenMPStandalone) {
StmtResult Res;
// We may get back a null statement if we found a #pragma. Keep going until
// we get an actual statement.
do {
StmtVector Stmts;
Res = ParseStatementOrDeclaration(
Stmts, AllowOpenMPStandalone ? ACK_StatementsOpenMPAnyExecutable
: ACK_StatementsOpenMPNonStandalone,
TrailingElseLoc);
} while (!Res.isInvalid() && !Res.get());
return Res;
}
/// ParseStatementOrDeclaration - Read 'statement' or 'declaration'.
/// StatementOrDeclaration:
/// statement
/// declaration
///
/// statement:
/// labeled-statement
/// compound-statement
/// expression-statement
/// selection-statement
/// iteration-statement
/// jump-statement
/// [C++] declaration-statement
/// [C++] try-block
/// [MS] seh-try-block
/// [OBC] objc-throw-statement
/// [OBC] objc-try-catch-statement
/// [OBC] objc-synchronized-statement
/// [GNU] asm-statement
/// [OMP] openmp-construct [TODO]
///
/// labeled-statement:
/// identifier ':' statement
/// 'case' constant-expression ':' statement
/// 'default' ':' statement
///
/// selection-statement:
/// if-statement
/// switch-statement
///
/// iteration-statement:
/// while-statement
/// do-statement
/// for-statement
///
/// expression-statement:
/// expression[opt] ';'
///
/// jump-statement:
/// 'goto' identifier ';'
/// 'continue' ';'
/// 'break' ';'
/// 'return' expression[opt] ';'
/// [GNU] 'goto' '*' expression ';'
///
/// [OBC] objc-throw-statement:
/// [OBC] '@' 'throw' expression ';'
/// [OBC] '@' 'throw' ';'
///
StmtResult
Parser::ParseStatementOrDeclaration(StmtVector &Stmts,
AllowedConstructsKind Allowed,
SourceLocation *TrailingElseLoc) {
2011-10-08 19:31:46 +08:00
ParenBraceBracketBalancer BalancerRAIIObj(*this);
ParsedAttributesWithRange Attrs(AttrFactory);
MaybeParseCXX11Attributes(Attrs, nullptr, /*MightBeObjCMessageSend*/ true);
if (!MaybeParseOpenCLUnrollHintAttribute(Attrs))
return StmtError();
StmtResult Res = ParseStatementOrDeclarationAfterAttributes(
Stmts, Allowed, TrailingElseLoc, Attrs);
assert((Attrs.empty() || Res.isInvalid() || Res.isUsable()) &&
"attributes on empty statement");
if (Attrs.empty() || Res.isInvalid())
return Res;
return Actions.ProcessStmtAttributes(Res.get(), Attrs.getList(), Attrs.Range);
}
namespace {
class StatementFilterCCC : public CorrectionCandidateCallback {
public:
StatementFilterCCC(Token nextTok) : NextToken(nextTok) {
WantTypeSpecifiers = nextTok.isOneOf(tok::l_paren, tok::less, tok::l_square,
tok::identifier, tok::star, tok::amp);
WantExpressionKeywords =
nextTok.isOneOf(tok::l_paren, tok::identifier, tok::arrow, tok::period);
WantRemainingKeywords =
nextTok.isOneOf(tok::l_paren, tok::semi, tok::identifier, tok::l_brace);
WantCXXNamedCasts = false;
}
bool ValidateCandidate(const TypoCorrection &candidate) override {
if (FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>())
return !candidate.getCorrectionSpecifier() || isa<ObjCIvarDecl>(FD);
if (NextToken.is(tok::equal))
return candidate.getCorrectionDeclAs<VarDecl>();
if (NextToken.is(tok::period) &&
candidate.getCorrectionDeclAs<NamespaceDecl>())
return false;
return CorrectionCandidateCallback::ValidateCandidate(candidate);
}
private:
Token NextToken;
};
}
StmtResult
Parser::ParseStatementOrDeclarationAfterAttributes(StmtVector &Stmts,
AllowedConstructsKind Allowed, SourceLocation *TrailingElseLoc,
ParsedAttributesWithRange &Attrs) {
const char *SemiError = nullptr;
StmtResult Res;
// Cases in this switch statement should fall through if the parser expects
// the token to end in a semicolon (in which case SemiError should be set),
// or they directly 'return;' if not.
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
Retry:
tok::TokenKind Kind = Tok.getKind();
SourceLocation AtLoc;
switch (Kind) {
case tok::at: // May be a @try or @throw statement
{
ProhibitAttributes(Attrs); // TODO: is it correct?
AtLoc = ConsumeToken(); // consume @
return ParseObjCAtStatement(AtLoc);
}
case tok::code_completion:
Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Statement);
cutOffParsing();
return StmtError();
2011-10-08 19:31:46 +08:00
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
case tok::identifier: {
Token Next = NextToken();
if (Next.is(tok::colon)) { // C99 6.8.1: labeled-statement
// identifier ':' statement
return ParseLabeledStatement(Attrs);
}
2011-10-08 19:31:46 +08:00
// Look up the identifier, and typo-correct it to a keyword if it's not
// found.
if (Next.isNot(tok::coloncolon)) {
// Try to limit which sets of keywords should be included in typo
// correction based on what the next token is.
if (TryAnnotateName(/*IsAddressOfOperand*/ false,
llvm::make_unique<StatementFilterCCC>(Next)) ==
ANK_Error) {
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
// Handle errors here by skipping up to the next semicolon or '}', and
// eat the semicolon if that's what stopped us.
SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
if (Tok.is(tok::semi))
ConsumeToken();
return StmtError();
}
2011-10-08 19:31:46 +08:00
// If the identifier was typo-corrected, try again.
if (Tok.isNot(tok::identifier))
goto Retry;
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
}
2011-10-08 19:31:46 +08:00
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
// Fall through
LLVM_FALLTHROUGH;
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
}
2011-10-08 19:31:46 +08:00
2009-03-25 01:04:48 +08:00
default: {
if ((getLangOpts().CPlusPlus || getLangOpts().MicrosoftExt ||
Allowed == ACK_Any) &&
isDeclarationStatement()) {
SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
DeclGroupPtrTy Decl = ParseDeclaration(Declarator::BlockContext,
DeclEnd, Attrs);
return Actions.ActOnDeclStmt(Decl, DeclStart, DeclEnd);
2009-03-25 01:04:48 +08:00
}
if (Tok.is(tok::r_brace)) {
Diag(Tok, diag::err_expected_statement);
return StmtError();
}
return ParseExprStatement();
2009-03-25 01:04:48 +08:00
}
case tok::kw_case: // C99 6.8.1: labeled-statement
return ParseCaseStatement();
case tok::kw_default: // C99 6.8.1: labeled-statement
return ParseDefaultStatement();
case tok::l_brace: // C99 6.8.2: compound-statement
return ParseCompoundStatement();
case tok::semi: { // C99 6.8.3p3: expression[opt] ';'
bool HasLeadingEmptyMacro = Tok.hasLeadingEmptyMacro();
return Actions.ActOnNullStmt(ConsumeToken(), HasLeadingEmptyMacro);
}
case tok::kw_if: // C99 6.8.4.1: if-statement
return ParseIfStatement(TrailingElseLoc);
case tok::kw_switch: // C99 6.8.4.2: switch-statement
return ParseSwitchStatement(TrailingElseLoc);
case tok::kw_while: // C99 6.8.5.1: while-statement
return ParseWhileStatement(TrailingElseLoc);
case tok::kw_do: // C99 6.8.5.2: do-statement
Res = ParseDoStatement();
SemiError = "do/while";
break;
case tok::kw_for: // C99 6.8.5.3: for-statement
return ParseForStatement(TrailingElseLoc);
case tok::kw_goto: // C99 6.8.6.1: goto-statement
Res = ParseGotoStatement();
SemiError = "goto";
break;
case tok::kw_continue: // C99 6.8.6.2: continue-statement
Res = ParseContinueStatement();
SemiError = "continue";
break;
case tok::kw_break: // C99 6.8.6.3: break-statement
Res = ParseBreakStatement();
SemiError = "break";
break;
case tok::kw_return: // C99 6.8.6.4: return-statement
Res = ParseReturnStatement();
SemiError = "return";
break;
case tok::kw_co_return: // C++ Coroutines: co_return statement
Res = ParseReturnStatement();
SemiError = "co_return";
break;
case tok::kw_asm: {
ProhibitAttributes(Attrs);
bool msAsm = false;
Res = ParseAsmStatement(msAsm);
Res = Actions.ActOnFinishFullStmt(Res.get());
if (msAsm) return Res;
SemiError = "asm";
break;
}
case tok::kw___if_exists:
case tok::kw___if_not_exists:
ProhibitAttributes(Attrs);
ParseMicrosoftIfExistsStatement(Stmts);
// An __if_exists block is like a compound statement, but it doesn't create
// a new scope.
return StmtEmpty();
case tok::kw_try: // C++ 15: try-block
return ParseCXXTryBlock();
case tok::kw___try:
ProhibitAttributes(Attrs); // TODO: is it correct?
return ParseSEHTryBlock();
case tok::kw___leave:
Res = ParseSEHLeaveStatement();
SemiError = "__leave";
break;
case tok::annot_pragma_vis:
ProhibitAttributes(Attrs);
HandlePragmaVisibility();
return StmtEmpty();
case tok::annot_pragma_pack:
ProhibitAttributes(Attrs);
HandlePragmaPack();
return StmtEmpty();
case tok::annot_pragma_msstruct:
ProhibitAttributes(Attrs);
HandlePragmaMSStruct();
return StmtEmpty();
case tok::annot_pragma_align:
ProhibitAttributes(Attrs);
HandlePragmaAlign();
return StmtEmpty();
case tok::annot_pragma_weak:
ProhibitAttributes(Attrs);
HandlePragmaWeak();
return StmtEmpty();
case tok::annot_pragma_weakalias:
ProhibitAttributes(Attrs);
HandlePragmaWeakAlias();
return StmtEmpty();
case tok::annot_pragma_redefine_extname:
ProhibitAttributes(Attrs);
HandlePragmaRedefineExtname();
return StmtEmpty();
case tok::annot_pragma_fp_contract:
ProhibitAttributes(Attrs);
Diag(Tok, diag::err_pragma_fp_contract_scope);
ConsumeAnnotationToken();
return StmtError();
case tok::annot_pragma_fp:
ProhibitAttributes(Attrs);
Diag(Tok, diag::err_pragma_fp_scope);
ConsumeAnnotationToken();
return StmtError();
case tok::annot_pragma_opencl_extension:
ProhibitAttributes(Attrs);
HandlePragmaOpenCLExtension();
return StmtEmpty();
case tok::annot_pragma_captured:
ProhibitAttributes(Attrs);
return HandlePragmaCaptured();
case tok::annot_pragma_openmp:
ProhibitAttributes(Attrs);
return ParseOpenMPDeclarativeOrExecutableDirective(Allowed);
case tok::annot_pragma_ms_pointers_to_members:
ProhibitAttributes(Attrs);
HandlePragmaMSPointersToMembers();
return StmtEmpty();
case tok::annot_pragma_ms_pragma:
ProhibitAttributes(Attrs);
HandlePragmaMSPragma();
return StmtEmpty();
case tok::annot_pragma_ms_vtordisp:
ProhibitAttributes(Attrs);
HandlePragmaMSVtorDisp();
return StmtEmpty();
case tok::annot_pragma_loop_hint:
ProhibitAttributes(Attrs);
return ParsePragmaLoopHint(Stmts, Allowed, TrailingElseLoc, Attrs);
case tok::annot_pragma_dump:
HandlePragmaDump();
return StmtEmpty();
case tok::annot_pragma_attribute:
HandlePragmaAttribute();
return StmtEmpty();
}
// If we reached this code, the statement must end in a semicolon.
if (!TryConsumeToken(tok::semi) && !Res.isInvalid()) {
// If the result was valid, then we do want to diagnose this. Use
// ExpectAndConsume to emit the diagnostic, even though we know it won't
// succeed.
ExpectAndConsume(tok::semi, diag::err_expected_semi_after_stmt, SemiError);
// Skip until we see a } or ;, but don't eat it.
SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
}
return Res;
}
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
/// \brief Parse an expression statement.
StmtResult Parser::ParseExprStatement() {
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
// If a case keyword is missing, this is where it should be inserted.
Token OldToken = Tok;
2011-10-08 19:31:46 +08:00
ExprStatementTokLoc = Tok.getLocation();
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
// expression[opt] ';'
ExprResult Expr(ParseExpression());
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
if (Expr.isInvalid()) {
// If the expression is invalid, skip ahead to the next semicolon or '}'.
// Not doing this opens us up to the possibility of infinite loops if
// ParseExpression does not consume any tokens.
SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
if (Tok.is(tok::semi))
ConsumeToken();
return Actions.ActOnExprStmtError();
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
}
2011-10-08 19:31:46 +08:00
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
if (Tok.is(tok::colon) && getCurScope()->isSwitchScope() &&
Actions.CheckCaseExpression(Expr.get())) {
// If a constant expression is followed by a colon inside a switch block,
// suggest a missing case keyword.
Diag(OldToken, diag::err_expected_case_before_expression)
<< FixItHint::CreateInsertion(OldToken.getLocation(), "case ");
2011-10-08 19:31:46 +08:00
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
// Recover parsing as a case statement.
return ParseCaseStatement(/*MissingCase=*/true, Expr);
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
}
2011-10-08 19:31:46 +08:00
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
// Otherwise, eat the semicolon.
ExpectAndConsumeSemi(diag::err_expected_semi_after_expr);
return Actions.ActOnExprStmt(Expr);
}
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
/// ParseSEHTryBlockCommon
///
/// seh-try-block:
/// '__try' compound-statement seh-handler
///
/// seh-handler:
/// seh-except-block
/// seh-finally-block
///
StmtResult Parser::ParseSEHTryBlock() {
assert(Tok.is(tok::kw___try) && "Expected '__try'");
SourceLocation TryLoc = ConsumeToken();
if (Tok.isNot(tok::l_brace))
return StmtError(Diag(Tok, diag::err_expected) << tok::l_brace);
StmtResult TryBlock(ParseCompoundStatement(
/*isStmtExpr=*/false,
Scope::DeclScope | Scope::CompoundStmtScope | Scope::SEHTryScope));
if (TryBlock.isInvalid())
return TryBlock;
StmtResult Handler;
if (Tok.is(tok::identifier) &&
Tok.getIdentifierInfo() == getSEHExceptKeyword()) {
SourceLocation Loc = ConsumeToken();
Handler = ParseSEHExceptBlock(Loc);
} else if (Tok.is(tok::kw___finally)) {
SourceLocation Loc = ConsumeToken();
Handler = ParseSEHFinallyBlock(Loc);
} else {
return StmtError(Diag(Tok, diag::err_seh_expected_handler));
}
if(Handler.isInvalid())
return Handler;
return Actions.ActOnSEHTryBlock(false /* IsCXXTry */,
TryLoc,
TryBlock.get(),
Handler.get());
}
/// ParseSEHExceptBlock - Handle __except
///
/// seh-except-block:
/// '__except' '(' seh-filter-expression ')' compound-statement
///
StmtResult Parser::ParseSEHExceptBlock(SourceLocation ExceptLoc) {
PoisonIdentifierRAIIObject raii(Ident__exception_code, false),
raii2(Ident___exception_code, false),
raii3(Ident_GetExceptionCode, false);
if (ExpectAndConsume(tok::l_paren))
return StmtError();
Initial support for Win64 SEH IR emission The lowering looks a lot like normal EH lowering, with the exception that the exceptions are caught by executing filter expression code instead of matching typeinfo globals. The filter expressions are outlined into functions which are used in landingpad clauses where typeinfo would normally go. Major aspects that still need work: - Non-call exceptions in __try bodies won't work yet. The plan is to outline the __try block in the frontend to keep things simple. - Filter expressions cannot use local variables until capturing is implemented. - __finally blocks will not run after exceptions. Fixing this requires work in the LLVM SEH preparation pass. The IR lowering looks like this: // C code: bool safe_div(int n, int d, int *r) { __try { *r = normal_div(n, d); } __except(_exception_code() == EXCEPTION_INT_DIVIDE_BY_ZERO) { return false; } return true; } ; LLVM IR: define i32 @filter(i8* %e, i8* %fp) { %ehptrs = bitcast i8* %e to i32** %ehrec = load i32** %ehptrs %code = load i32* %ehrec %matches = icmp eq i32 %code, i32 u0xC0000094 %matches.i32 = zext i1 %matches to i32 ret i32 %matches.i32 } define i1 zeroext @safe_div(i32 %n, i32 %d, i32* %r) { %rr = invoke i32 @normal_div(i32 %n, i32 %d) to label %normal unwind to label %lpad normal: store i32 %rr, i32* %r ret i1 1 lpad: %ehvals = landingpad {i8*, i32} personality i32 (...)* @__C_specific_handler catch i8* bitcast (i32 (i8*, i8*)* @filter to i8*) %ehptr = extractvalue {i8*, i32} %ehvals, i32 0 %sel = extractvalue {i8*, i32} %ehvals, i32 1 %filter_sel = call i32 @llvm.eh.seh.typeid.for(i8* bitcast (i32 (i8*, i8*)* @filter to i8*)) %matches = icmp eq i32 %sel, %filter_sel br i1 %matches, label %eh.except, label %eh.resume eh.except: ret i1 false eh.resume: resume } Reviewers: rjmccall, rsmith, majnemer Differential Revision: http://reviews.llvm.org/D5607 llvm-svn: 226760
2015-01-22 09:36:17 +08:00
ParseScope ExpectScope(this, Scope::DeclScope | Scope::ControlScope |
Scope::SEHExceptScope);
if (getLangOpts().Borland) {
Ident__exception_info->setIsPoisoned(false);
Ident___exception_info->setIsPoisoned(false);
Ident_GetExceptionInfo->setIsPoisoned(false);
}
Initial support for Win64 SEH IR emission The lowering looks a lot like normal EH lowering, with the exception that the exceptions are caught by executing filter expression code instead of matching typeinfo globals. The filter expressions are outlined into functions which are used in landingpad clauses where typeinfo would normally go. Major aspects that still need work: - Non-call exceptions in __try bodies won't work yet. The plan is to outline the __try block in the frontend to keep things simple. - Filter expressions cannot use local variables until capturing is implemented. - __finally blocks will not run after exceptions. Fixing this requires work in the LLVM SEH preparation pass. The IR lowering looks like this: // C code: bool safe_div(int n, int d, int *r) { __try { *r = normal_div(n, d); } __except(_exception_code() == EXCEPTION_INT_DIVIDE_BY_ZERO) { return false; } return true; } ; LLVM IR: define i32 @filter(i8* %e, i8* %fp) { %ehptrs = bitcast i8* %e to i32** %ehrec = load i32** %ehptrs %code = load i32* %ehrec %matches = icmp eq i32 %code, i32 u0xC0000094 %matches.i32 = zext i1 %matches to i32 ret i32 %matches.i32 } define i1 zeroext @safe_div(i32 %n, i32 %d, i32* %r) { %rr = invoke i32 @normal_div(i32 %n, i32 %d) to label %normal unwind to label %lpad normal: store i32 %rr, i32* %r ret i1 1 lpad: %ehvals = landingpad {i8*, i32} personality i32 (...)* @__C_specific_handler catch i8* bitcast (i32 (i8*, i8*)* @filter to i8*) %ehptr = extractvalue {i8*, i32} %ehvals, i32 0 %sel = extractvalue {i8*, i32} %ehvals, i32 1 %filter_sel = call i32 @llvm.eh.seh.typeid.for(i8* bitcast (i32 (i8*, i8*)* @filter to i8*)) %matches = icmp eq i32 %sel, %filter_sel br i1 %matches, label %eh.except, label %eh.resume eh.except: ret i1 false eh.resume: resume } Reviewers: rjmccall, rsmith, majnemer Differential Revision: http://reviews.llvm.org/D5607 llvm-svn: 226760
2015-01-22 09:36:17 +08:00
ExprResult FilterExpr;
{
ParseScopeFlags FilterScope(this, getCurScope()->getFlags() |
Scope::SEHFilterScope);
FilterExpr = Actions.CorrectDelayedTyposInExpr(ParseExpression());
Initial support for Win64 SEH IR emission The lowering looks a lot like normal EH lowering, with the exception that the exceptions are caught by executing filter expression code instead of matching typeinfo globals. The filter expressions are outlined into functions which are used in landingpad clauses where typeinfo would normally go. Major aspects that still need work: - Non-call exceptions in __try bodies won't work yet. The plan is to outline the __try block in the frontend to keep things simple. - Filter expressions cannot use local variables until capturing is implemented. - __finally blocks will not run after exceptions. Fixing this requires work in the LLVM SEH preparation pass. The IR lowering looks like this: // C code: bool safe_div(int n, int d, int *r) { __try { *r = normal_div(n, d); } __except(_exception_code() == EXCEPTION_INT_DIVIDE_BY_ZERO) { return false; } return true; } ; LLVM IR: define i32 @filter(i8* %e, i8* %fp) { %ehptrs = bitcast i8* %e to i32** %ehrec = load i32** %ehptrs %code = load i32* %ehrec %matches = icmp eq i32 %code, i32 u0xC0000094 %matches.i32 = zext i1 %matches to i32 ret i32 %matches.i32 } define i1 zeroext @safe_div(i32 %n, i32 %d, i32* %r) { %rr = invoke i32 @normal_div(i32 %n, i32 %d) to label %normal unwind to label %lpad normal: store i32 %rr, i32* %r ret i1 1 lpad: %ehvals = landingpad {i8*, i32} personality i32 (...)* @__C_specific_handler catch i8* bitcast (i32 (i8*, i8*)* @filter to i8*) %ehptr = extractvalue {i8*, i32} %ehvals, i32 0 %sel = extractvalue {i8*, i32} %ehvals, i32 1 %filter_sel = call i32 @llvm.eh.seh.typeid.for(i8* bitcast (i32 (i8*, i8*)* @filter to i8*)) %matches = icmp eq i32 %sel, %filter_sel br i1 %matches, label %eh.except, label %eh.resume eh.except: ret i1 false eh.resume: resume } Reviewers: rjmccall, rsmith, majnemer Differential Revision: http://reviews.llvm.org/D5607 llvm-svn: 226760
2015-01-22 09:36:17 +08:00
}
if (getLangOpts().Borland) {
Ident__exception_info->setIsPoisoned(true);
Ident___exception_info->setIsPoisoned(true);
Ident_GetExceptionInfo->setIsPoisoned(true);
}
if(FilterExpr.isInvalid())
return StmtError();
if (ExpectAndConsume(tok::r_paren))
return StmtError();
if (Tok.isNot(tok::l_brace))
return StmtError(Diag(Tok, diag::err_expected) << tok::l_brace);
StmtResult Block(ParseCompoundStatement());
if(Block.isInvalid())
return Block;
return Actions.ActOnSEHExceptBlock(ExceptLoc, FilterExpr.get(), Block.get());
}
/// ParseSEHFinallyBlock - Handle __finally
///
/// seh-finally-block:
/// '__finally' compound-statement
///
StmtResult Parser::ParseSEHFinallyBlock(SourceLocation FinallyLoc) {
PoisonIdentifierRAIIObject raii(Ident__abnormal_termination, false),
raii2(Ident___abnormal_termination, false),
raii3(Ident_AbnormalTermination, false);
if (Tok.isNot(tok::l_brace))
return StmtError(Diag(Tok, diag::err_expected) << tok::l_brace);
ParseScope FinallyScope(this, 0);
Actions.ActOnStartSEHFinallyBlock();
StmtResult Block(ParseCompoundStatement());
if(Block.isInvalid()) {
Actions.ActOnAbortSEHFinallyBlock();
return Block;
}
return Actions.ActOnFinishSEHFinallyBlock(FinallyLoc, Block.get());
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
}
/// Handle __leave
///
/// seh-leave-statement:
/// '__leave' ';'
///
StmtResult Parser::ParseSEHLeaveStatement() {
SourceLocation LeaveLoc = ConsumeToken(); // eat the '__leave'.
return Actions.ActOnSEHLeaveStmt(LeaveLoc, getCurScope());
}
/// ParseLabeledStatement - We have an identifier and a ':' after it.
///
/// labeled-statement:
/// identifier ':' statement
/// [GNU] identifier ':' attributes[opt] statement
///
StmtResult Parser::ParseLabeledStatement(ParsedAttributesWithRange &attrs) {
assert(Tok.is(tok::identifier) && Tok.getIdentifierInfo() &&
"Not an identifier!");
Token IdentTok = Tok; // Save the whole token.
ConsumeToken(); // eat the identifier.
assert(Tok.is(tok::colon) && "Not a label!");
// identifier ':' statement
SourceLocation ColonLoc = ConsumeToken();
// Read label attributes, if present.
StmtResult SubStmt;
if (Tok.is(tok::kw___attribute)) {
ParsedAttributesWithRange TempAttrs(AttrFactory);
ParseGNUAttributes(TempAttrs);
// In C++, GNU attributes only apply to the label if they are followed by a
// semicolon, to disambiguate label attributes from attributes on a labeled
// declaration.
//
// This doesn't quite match what GCC does; if the attribute list is empty
// and followed by a semicolon, GCC will reject (it appears to parse the
// attributes as part of a statement in that case). That looks like a bug.
if (!getLangOpts().CPlusPlus || Tok.is(tok::semi))
attrs.takeAllFrom(TempAttrs);
else if (isDeclarationStatement()) {
StmtVector Stmts;
// FIXME: We should do this whether or not we have a declaration
// statement, but that doesn't work correctly (because ProhibitAttributes
// can't handle GNU attributes), so only call it in the one case where
// GNU attributes are allowed.
SubStmt = ParseStatementOrDeclarationAfterAttributes(
Stmts, /*Allowed=*/ACK_StatementsOpenMPNonStandalone, nullptr,
TempAttrs);
if (!TempAttrs.empty() && !SubStmt.isInvalid())
SubStmt = Actions.ProcessStmtAttributes(
SubStmt.get(), TempAttrs.getList(), TempAttrs.Range);
} else {
Diag(Tok, diag::err_expected_after) << "__attribute__" << tok::semi;
}
}
// If we've not parsed a statement yet, parse one now.
if (!SubStmt.isInvalid() && !SubStmt.isUsable())
SubStmt = ParseStatement();
// Broken substmt shouldn't prevent the label from being added to the AST.
if (SubStmt.isInvalid())
SubStmt = Actions.ActOnNullStmt(ColonLoc);
2011-10-08 19:31:46 +08:00
LabelDecl *LD = Actions.LookupOrCreateLabel(IdentTok.getIdentifierInfo(),
IdentTok.getLocation());
if (AttributeList *Attrs = attrs.getList()) {
Actions.ProcessDeclAttributeList(Actions.CurScope, LD, Attrs);
attrs.clear();
}
2011-10-08 19:31:46 +08:00
return Actions.ActOnLabelStmt(IdentTok.getLocation(), LD, ColonLoc,
SubStmt.get());
}
/// ParseCaseStatement
/// labeled-statement:
/// 'case' constant-expression ':' statement
/// [GNU] 'case' constant-expression '...' constant-expression ':' statement
///
StmtResult Parser::ParseCaseStatement(bool MissingCase, ExprResult Expr) {
assert((MissingCase || Tok.is(tok::kw_case)) && "Not a case stmt!");
// It is very very common for code to contain many case statements recursively
// nested, as in (but usually without indentation):
// case 1:
// case 2:
// case 3:
// case 4:
// case 5: etc.
//
// Parsing this naively works, but is both inefficient and can cause us to run
// out of stack space in our recursive descent parser. As a special case,
// flatten this recursion into an iterative loop. This is complex and gross,
// but all the grossness is constrained to ParseCaseStatement (and some
// weirdness in the actions), so this is just local grossness :).
// TopLevelCase - This is the highest level we have parsed. 'case 1' in the
// example above.
StmtResult TopLevelCase(true);
// DeepestParsedCaseStmt - This is the deepest statement we have parsed, which
// gets updated each time a new case is parsed, and whose body is unset so
// far. When parsing 'case 4', this is the 'case 3' node.
Stmt *DeepestParsedCaseStmt = nullptr;
// While we have case statements, eat and stack them.
SourceLocation ColonLoc;
do {
SourceLocation CaseLoc = MissingCase ? Expr.get()->getExprLoc() :
ConsumeToken(); // eat the 'case'.
ColonLoc = SourceLocation();
if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteCase(getCurScope());
cutOffParsing();
return StmtError();
}
2011-10-08 19:31:46 +08:00
/// We don't want to treat 'case x : y' as a potential typo for 'case x::y'.
/// Disable this form of error recovery while we're parsing the case
/// expression.
ColonProtectionRAIIObject ColonProtection(*this);
2011-10-08 19:31:46 +08:00
ExprResult LHS;
if (!MissingCase) {
LHS = ParseConstantExpression();
if (!getLangOpts().CPlusPlus11) {
LHS = Actions.CorrectDelayedTyposInExpr(LHS, [this](class Expr *E) {
return Actions.VerifyIntegerConstantExpression(E);
});
}
if (LHS.isInvalid()) {
// If constant-expression is parsed unsuccessfully, recover by skipping
// current case statement (moving to the colon that ends it).
if (SkipUntil(tok::colon, tok::r_brace, StopAtSemi | StopBeforeMatch)) {
TryConsumeToken(tok::colon, ColonLoc);
continue;
}
return StmtError();
}
} else {
LHS = Expr;
MissingCase = false;
}
// GNU case range extension.
SourceLocation DotDotDotLoc;
ExprResult RHS;
if (TryConsumeToken(tok::ellipsis, DotDotDotLoc)) {
Diag(DotDotDotLoc, diag::ext_gnu_case_range);
RHS = ParseConstantExpression();
if (RHS.isInvalid()) {
if (SkipUntil(tok::colon, tok::r_brace, StopAtSemi | StopBeforeMatch)) {
TryConsumeToken(tok::colon, ColonLoc);
continue;
}
return StmtError();
}
}
2011-10-08 19:31:46 +08:00
ColonProtection.restore();
if (TryConsumeToken(tok::colon, ColonLoc)) {
} else if (TryConsumeToken(tok::semi, ColonLoc) ||
TryConsumeToken(tok::coloncolon, ColonLoc)) {
// Treat "case blah;" or "case blah::" as a typo for "case blah:".
Diag(ColonLoc, diag::err_expected_after)
<< "'case'" << tok::colon
<< FixItHint::CreateReplacement(ColonLoc, ":");
} else {
SourceLocation ExpectedLoc = PP.getLocForEndOfToken(PrevTokLocation);
Diag(ExpectedLoc, diag::err_expected_after)
<< "'case'" << tok::colon
<< FixItHint::CreateInsertion(ExpectedLoc, ":");
ColonLoc = ExpectedLoc;
}
2011-10-08 19:31:46 +08:00
StmtResult Case =
Actions.ActOnCaseStmt(CaseLoc, LHS.get(), DotDotDotLoc,
RHS.get(), ColonLoc);
// If we had a sema error parsing this case, then just ignore it and
// continue parsing the sub-stmt.
if (Case.isInvalid()) {
if (TopLevelCase.isInvalid()) // No parsed case stmts.
return ParseStatement(/*TrailingElseLoc=*/nullptr,
/*AllowOpenMPStandalone=*/true);
// Otherwise, just don't add it as a nested case.
} else {
// If this is the first case statement we parsed, it becomes TopLevelCase.
// Otherwise we link it into the current chain.
Stmt *NextDeepest = Case.get();
if (TopLevelCase.isInvalid())
TopLevelCase = Case;
else
Actions.ActOnCaseStmtBody(DeepestParsedCaseStmt, Case.get());
DeepestParsedCaseStmt = NextDeepest;
}
// Handle all case statements.
} while (Tok.is(tok::kw_case));
// If we found a non-case statement, start by parsing it.
StmtResult SubStmt;
if (Tok.isNot(tok::r_brace)) {
SubStmt = ParseStatement(/*TrailingElseLoc=*/nullptr,
/*AllowOpenMPStandalone=*/true);
} else {
// Nicely diagnose the common error "switch (X) { case 4: }", which is
// not valid. If ColonLoc doesn't point to a valid text location, there was
// another parsing error, so avoid producing extra diagnostics.
if (ColonLoc.isValid()) {
SourceLocation AfterColonLoc = PP.getLocForEndOfToken(ColonLoc);
Diag(AfterColonLoc, diag::err_label_end_of_compound_statement)
<< FixItHint::CreateInsertion(AfterColonLoc, " ;");
}
SubStmt = StmtError();
}
// Install the body into the most deeply-nested case.
if (DeepestParsedCaseStmt) {
// Broken sub-stmt shouldn't prevent forming the case statement properly.
if (SubStmt.isInvalid())
SubStmt = Actions.ActOnNullStmt(SourceLocation());
Actions.ActOnCaseStmtBody(DeepestParsedCaseStmt, SubStmt.get());
}
// Return the top level parsed statement tree.
return TopLevelCase;
}
/// ParseDefaultStatement
/// labeled-statement:
/// 'default' ':' statement
/// Note that this does not parse the 'statement' at the end.
///
StmtResult Parser::ParseDefaultStatement() {
assert(Tok.is(tok::kw_default) && "Not a default stmt!");
SourceLocation DefaultLoc = ConsumeToken(); // eat the 'default'.
SourceLocation ColonLoc;
if (TryConsumeToken(tok::colon, ColonLoc)) {
} else if (TryConsumeToken(tok::semi, ColonLoc)) {
// Treat "default;" as a typo for "default:".
Diag(ColonLoc, diag::err_expected_after)
<< "'default'" << tok::colon
<< FixItHint::CreateReplacement(ColonLoc, ":");
} else {
SourceLocation ExpectedLoc = PP.getLocForEndOfToken(PrevTokLocation);
Diag(ExpectedLoc, diag::err_expected_after)
<< "'default'" << tok::colon
<< FixItHint::CreateInsertion(ExpectedLoc, ":");
ColonLoc = ExpectedLoc;
}
2011-10-08 19:31:46 +08:00
StmtResult SubStmt;
if (Tok.isNot(tok::r_brace)) {
SubStmt = ParseStatement(/*TrailingElseLoc=*/nullptr,
/*AllowOpenMPStandalone=*/true);
} else {
// Diagnose the common error "switch (X) {... default: }", which is
// not valid.
SourceLocation AfterColonLoc = PP.getLocForEndOfToken(ColonLoc);
Diag(AfterColonLoc, diag::err_label_end_of_compound_statement)
<< FixItHint::CreateInsertion(AfterColonLoc, " ;");
SubStmt = true;
}
// Broken sub-stmt shouldn't prevent forming the case statement properly.
if (SubStmt.isInvalid())
SubStmt = Actions.ActOnNullStmt(ColonLoc);
return Actions.ActOnDefaultStmt(DefaultLoc, ColonLoc,
SubStmt.get(), getCurScope());
}
StmtResult Parser::ParseCompoundStatement(bool isStmtExpr) {
return ParseCompoundStatement(isStmtExpr,
Scope::DeclScope | Scope::CompoundStmtScope);
}
/// ParseCompoundStatement - Parse a "{}" block.
///
/// compound-statement: [C99 6.8.2]
/// { block-item-list[opt] }
/// [GNU] { label-declarations block-item-list } [TODO]
///
/// block-item-list:
/// block-item
/// block-item-list block-item
///
/// block-item:
/// declaration
/// [GNU] '__extension__' declaration
/// statement
///
/// [GNU] label-declarations:
/// [GNU] label-declaration
/// [GNU] label-declarations label-declaration
///
/// [GNU] label-declaration:
/// [GNU] '__label__' identifier-list ';'
///
StmtResult Parser::ParseCompoundStatement(bool isStmtExpr,
unsigned ScopeFlags) {
assert(Tok.is(tok::l_brace) && "Not a compount stmt!");
// Enter a scope to hold everything within the compound stmt. Compound
// statements can always hold declarations.
ParseScope CompoundScope(this, ScopeFlags);
// Parse the statements in the body.
return ParseCompoundStatementBody(isStmtExpr);
}
/// Parse any pragmas at the start of the compound expression. We handle these
/// separately since some pragmas (FP_CONTRACT) must appear before any C
/// statement in the compound, but may be intermingled with other pragmas.
void Parser::ParseCompoundStatementLeadingPragmas() {
bool checkForPragmas = true;
while (checkForPragmas) {
switch (Tok.getKind()) {
case tok::annot_pragma_vis:
HandlePragmaVisibility();
break;
case tok::annot_pragma_pack:
HandlePragmaPack();
break;
case tok::annot_pragma_msstruct:
HandlePragmaMSStruct();
break;
case tok::annot_pragma_align:
HandlePragmaAlign();
break;
case tok::annot_pragma_weak:
HandlePragmaWeak();
break;
case tok::annot_pragma_weakalias:
HandlePragmaWeakAlias();
break;
case tok::annot_pragma_redefine_extname:
HandlePragmaRedefineExtname();
break;
case tok::annot_pragma_opencl_extension:
HandlePragmaOpenCLExtension();
break;
case tok::annot_pragma_fp_contract:
HandlePragmaFPContract();
break;
case tok::annot_pragma_fp:
HandlePragmaFP();
break;
case tok::annot_pragma_ms_pointers_to_members:
HandlePragmaMSPointersToMembers();
break;
case tok::annot_pragma_ms_pragma:
HandlePragmaMSPragma();
break;
case tok::annot_pragma_ms_vtordisp:
HandlePragmaMSVtorDisp();
break;
case tok::annot_pragma_dump:
HandlePragmaDump();
break;
default:
checkForPragmas = false;
break;
}
}
}
/// ParseCompoundStatementBody - Parse a sequence of statements and invoke the
/// ActOnCompoundStmt action. This expects the '{' to be the current token, and
/// consume the '}' at the end of the block. It does not manipulate the scope
/// stack.
StmtResult Parser::ParseCompoundStatementBody(bool isStmtExpr) {
PrettyStackTraceLoc CrashInfo(PP.getSourceManager(),
Tok.getLocation(),
"in compound statement ('{}')");
// Record the state of the FP_CONTRACT pragma, restore on leaving the
// compound statement.
Sema::FPContractStateRAII SaveFPContractState(Actions);
InMessageExpressionRAIIObject InMessage(*this, false);
BalancedDelimiterTracker T(*this, tok::l_brace);
if (T.consumeOpen())
return StmtError();
Sema::CompoundScopeRAII CompoundScope(Actions);
// Parse any pragmas at the beginning of the compound statement.
ParseCompoundStatementLeadingPragmas();
StmtVector Stmts;
// "__label__ X, Y, Z;" is the GNU "Local Label" extension. These are
// only allowed at the start of a compound stmt regardless of the language.
while (Tok.is(tok::kw___label__)) {
SourceLocation LabelLoc = ConsumeToken();
2011-10-08 19:31:46 +08:00
SmallVector<Decl *, 8> DeclsInGroup;
while (1) {
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected) << tok::identifier;
break;
}
2011-10-08 19:31:46 +08:00
IdentifierInfo *II = Tok.getIdentifierInfo();
SourceLocation IdLoc = ConsumeToken();
DeclsInGroup.push_back(Actions.LookupOrCreateLabel(II, IdLoc, LabelLoc));
2011-10-08 19:31:46 +08:00
if (!TryConsumeToken(tok::comma))
break;
}
2011-10-08 19:31:46 +08:00
DeclSpec DS(AttrFactory);
DeclGroupPtrTy Res =
Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
StmtResult R = Actions.ActOnDeclStmt(Res, LabelLoc, Tok.getLocation());
2011-10-08 19:31:46 +08:00
ExpectAndConsumeSemi(diag::err_expected_semi_declaration);
if (R.isUsable())
Stmts.push_back(R.get());
}
2011-10-08 19:31:46 +08:00
while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) &&
Tok.isNot(tok::eof)) {
if (Tok.is(tok::annot_pragma_unused)) {
HandlePragmaUnused();
continue;
}
StmtResult R;
if (Tok.isNot(tok::kw___extension__)) {
R = ParseStatementOrDeclaration(Stmts, ACK_Any);
} else {
// __extension__ can start declarations and it can also be a unary
// operator for expressions. Consume multiple __extension__ markers here
// until we can determine which is which.
// FIXME: This loses extension expressions in the AST!
SourceLocation ExtLoc = ConsumeToken();
while (Tok.is(tok::kw___extension__))
ConsumeToken();
ParsedAttributesWithRange attrs(AttrFactory);
MaybeParseCXX11Attributes(attrs, nullptr,
/*MightBeObjCMessageSend*/ true);
// If this is the start of a declaration, parse it as such.
if (isDeclarationStatement()) {
// __extension__ silences extension warnings in the subdeclaration.
// FIXME: Save the __extension__ on the decl as a node somehow?
ExtensionRAIIObject O(Diags);
SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
DeclGroupPtrTy Res = ParseDeclaration(Declarator::BlockContext, DeclEnd,
attrs);
R = Actions.ActOnDeclStmt(Res, DeclStart, DeclEnd);
} else {
// Otherwise this was a unary __extension__ marker.
ExprResult Res(ParseExpressionWithLeadingExtension(ExtLoc));
if (Res.isInvalid()) {
SkipUntil(tok::semi);
continue;
}
// FIXME: Use attributes?
// Eat the semicolon at the end of stmt and convert the expr into a
// statement.
ExpectAndConsumeSemi(diag::err_expected_semi_after_expr);
R = Actions.ActOnExprStmt(Res);
}
}
if (R.isUsable())
Stmts.push_back(R.get());
}
SourceLocation CloseLoc = Tok.getLocation();
// We broke out of the while loop because we found a '}' or EOF.
if (!T.consumeClose())
// Recover by creating a compound statement with what we parsed so far,
// instead of dropping everything and returning StmtError();
CloseLoc = T.getCloseLocation();
return Actions.ActOnCompoundStmt(T.getOpenLocation(), CloseLoc,
Stmts, isStmtExpr);
}
2006-08-10 12:23:57 +08:00
/// ParseParenExprOrCondition:
/// [C ] '(' expression ')'
/// [C++] '(' condition ')'
/// [C++1z] '(' init-statement[opt] condition ')'
///
/// This function parses and performs error recovery on the specified condition
/// or expression (depending on whether we're in C++ or C mode). This function
/// goes out of its way to recover well. It returns true if there was a parser
/// error (the right paren couldn't be found), which indicates that the caller
/// should try to recover harder. It returns false if the condition is
/// successfully parsed. Note that a successful parse can still have semantic
/// errors in the condition.
bool Parser::ParseParenExprOrCondition(StmtResult *InitStmt,
Sema::ConditionResult &Cond,
SourceLocation Loc,
Sema::ConditionKind CK) {
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
if (getLangOpts().CPlusPlus)
Cond = ParseCXXCondition(InitStmt, Loc, CK);
else {
ExprResult CondExpr = ParseExpression();
2011-10-08 19:31:46 +08:00
// If required, convert to a boolean value.
if (CondExpr.isInvalid())
Cond = Sema::ConditionError();
else
Cond = Actions.ActOnCondition(getCurScope(), Loc, CondExpr.get(), CK);
}
// If the parser was confused by the condition and we don't have a ')', try to
// recover by skipping ahead to a semi and bailing out. If condexp is
// semantically invalid but we have well formed code, keep going.
if (Cond.isInvalid() && Tok.isNot(tok::r_paren)) {
SkipUntil(tok::semi);
// Skipping may have stopped if it found the containing ')'. If so, we can
// continue parsing the if statement.
if (Tok.isNot(tok::r_paren))
return true;
}
// Otherwise the condition is valid or the rparen is present.
T.consumeClose();
// Check for extraneous ')'s to catch things like "if (foo())) {". We know
// that all callers are looking for a statement after the condition, so ")"
// isn't valid.
while (Tok.is(tok::r_paren)) {
Diag(Tok, diag::err_extraneous_rparen_in_condition)
<< FixItHint::CreateRemoval(Tok.getLocation());
ConsumeParen();
}
return false;
}
2006-08-10 12:23:57 +08:00
/// ParseIfStatement
/// if-statement: [C99 6.8.4.1]
/// 'if' '(' expression ')' statement
/// 'if' '(' expression ')' statement 'else' statement
/// [C++] 'if' '(' condition ')' statement
/// [C++] 'if' '(' condition ')' statement 'else' statement
///
StmtResult Parser::ParseIfStatement(SourceLocation *TrailingElseLoc) {
assert(Tok.is(tok::kw_if) && "Not an if stmt!");
SourceLocation IfLoc = ConsumeToken(); // eat the 'if'.
2006-08-10 12:23:57 +08:00
bool IsConstexpr = false;
if (Tok.is(tok::kw_constexpr)) {
Diag(Tok, getLangOpts().CPlusPlus1z ? diag::warn_cxx14_compat_constexpr_if
: diag::ext_constexpr_if);
IsConstexpr = true;
ConsumeToken();
}
if (Tok.isNot(tok::l_paren)) {
Diag(Tok, diag::err_expected_lparen_after) << "if";
2006-08-10 12:23:57 +08:00
SkipUntil(tok::semi);
return StmtError();
2006-08-10 12:23:57 +08:00
}
bool C99orCXX = getLangOpts().C99 || getLangOpts().CPlusPlus;
// C99 6.8.4p3 - In C99, the if statement is a block. This is not
// the case for C90.
//
// C++ 6.4p3:
// A name introduced by a declaration in a condition is in scope from its
// point of declaration until the end of the substatements controlled by the
// condition.
// C++ 3.3.2p4:
// Names declared in the for-init-statement, and in the condition of if,
// while, for, and switch statements are local to the if, while, for, or
// switch statement (including the controlled statement).
//
ParseScope IfScope(this, Scope::DeclScope | Scope::ControlScope, C99orCXX);
2006-08-10 12:23:57 +08:00
// Parse the condition.
StmtResult InitStmt;
Sema::ConditionResult Cond;
if (ParseParenExprOrCondition(&InitStmt, Cond, IfLoc,
IsConstexpr ? Sema::ConditionKind::ConstexprIf
: Sema::ConditionKind::Boolean))
return StmtError();
llvm::Optional<bool> ConstexprCondition;
if (IsConstexpr)
ConstexprCondition = Cond.getKnownValue();
// C99 6.8.4p3 - In C99, the body of the if statement is a scope, even if
// there is no compound stmt. C90 does not have this clause. We only do this
// if the body isn't a compound statement to avoid push/pop in common cases.
//
// C++ 6.4p1:
// The substatement in a selection-statement (each substatement, in the else
// form of the if statement) implicitly defines a local scope.
//
// For C++ we create a scope for the condition and a new scope for
// substatements because:
// -When the 'then' scope exits, we want the condition declaration to still be
// active for the 'else' scope too.
// -Sema will detect name clashes by considering declarations of a
// 'ControlScope' as part of its direct subscope.
// -If we wanted the condition and substatement to be in the same scope, we
// would have to notify ParseStatement not to create a new scope. It's
// simpler to let it create a new scope.
//
ParseScope InnerScope(this, Scope::DeclScope, C99orCXX, Tok.is(tok::l_brace));
// Read the 'then' stmt.
SourceLocation ThenStmtLoc = Tok.getLocation();
SourceLocation InnerStatementTrailingElseLoc;
StmtResult ThenStmt;
{
EnterExpressionEvaluationContext PotentiallyDiscarded(
Actions, Sema::ExpressionEvaluationContext::DiscardedStatement, nullptr,
false,
/*ShouldEnter=*/ConstexprCondition && !*ConstexprCondition);
ThenStmt = ParseStatement(&InnerStatementTrailingElseLoc);
}
// Pop the 'if' scope if needed.
InnerScope.Exit();
2006-08-10 12:23:57 +08:00
// If it has an else, parse it.
SourceLocation ElseLoc;
SourceLocation ElseStmtLoc;
StmtResult ElseStmt;
if (Tok.is(tok::kw_else)) {
if (TrailingElseLoc)
*TrailingElseLoc = Tok.getLocation();
ElseLoc = ConsumeToken();
ElseStmtLoc = Tok.getLocation();
// C99 6.8.4p3 - In C99, the body of the if statement is a scope, even if
// there is no compound stmt. C90 does not have this clause. We only do
// this if the body isn't a compound statement to avoid push/pop in common
// cases.
//
// C++ 6.4p1:
// The substatement in a selection-statement (each substatement, in the else
// form of the if statement) implicitly defines a local scope.
//
ParseScope InnerScope(this, Scope::DeclScope, C99orCXX,
Tok.is(tok::l_brace));
EnterExpressionEvaluationContext PotentiallyDiscarded(
Actions, Sema::ExpressionEvaluationContext::DiscardedStatement, nullptr,
false,
/*ShouldEnter=*/ConstexprCondition && *ConstexprCondition);
ElseStmt = ParseStatement();
2011-10-08 19:31:46 +08:00
// Pop the 'else' scope if needed.
InnerScope.Exit();
} else if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteAfterIf(getCurScope());
cutOffParsing();
return StmtError();
} else if (InnerStatementTrailingElseLoc.isValid()) {
Diag(InnerStatementTrailingElseLoc, diag::warn_dangling_else);
2006-08-10 12:23:57 +08:00
}
IfScope.Exit();
// If the then or else stmt is invalid and the other is valid (and present),
// make turn the invalid one into a null stmt to avoid dropping the other
// part. If both are invalid, return error.
if ((ThenStmt.isInvalid() && ElseStmt.isInvalid()) ||
(ThenStmt.isInvalid() && ElseStmt.get() == nullptr) ||
(ThenStmt.get() == nullptr && ElseStmt.isInvalid())) {
// Both invalid, or one is invalid and other is non-present: return error.
return StmtError();
}
// Now if either are invalid, replace with a ';'.
if (ThenStmt.isInvalid())
ThenStmt = Actions.ActOnNullStmt(ThenStmtLoc);
if (ElseStmt.isInvalid())
ElseStmt = Actions.ActOnNullStmt(ElseStmtLoc);
return Actions.ActOnIfStmt(IfLoc, IsConstexpr, InitStmt.get(), Cond,
ThenStmt.get(), ElseLoc, ElseStmt.get());
}
/// ParseSwitchStatement
/// switch-statement:
/// 'switch' '(' expression ')' statement
/// [C++] 'switch' '(' condition ')' statement
StmtResult Parser::ParseSwitchStatement(SourceLocation *TrailingElseLoc) {
assert(Tok.is(tok::kw_switch) && "Not a switch stmt!");
SourceLocation SwitchLoc = ConsumeToken(); // eat the 'switch'.
if (Tok.isNot(tok::l_paren)) {
Diag(Tok, diag::err_expected_lparen_after) << "switch";
SkipUntil(tok::semi);
return StmtError();
}
bool C99orCXX = getLangOpts().C99 || getLangOpts().CPlusPlus;
// C99 6.8.4p3 - In C99, the switch statement is a block. This is
// not the case for C90. Start the switch scope.
//
// C++ 6.4p3:
// A name introduced by a declaration in a condition is in scope from its
// point of declaration until the end of the substatements controlled by the
// condition.
// C++ 3.3.2p4:
// Names declared in the for-init-statement, and in the condition of if,
// while, for, and switch statements are local to the if, while, for, or
// switch statement (including the controlled statement).
//
unsigned ScopeFlags = Scope::SwitchScope;
if (C99orCXX)
ScopeFlags |= Scope::DeclScope | Scope::ControlScope;
ParseScope SwitchScope(this, ScopeFlags);
// Parse the condition.
StmtResult InitStmt;
Sema::ConditionResult Cond;
if (ParseParenExprOrCondition(&InitStmt, Cond, SwitchLoc,
Sema::ConditionKind::Switch))
return StmtError();
StmtResult Switch =
Actions.ActOnStartOfSwitchStmt(SwitchLoc, InitStmt.get(), Cond);
if (Switch.isInvalid()) {
2011-10-08 19:31:46 +08:00
// Skip the switch body.
// FIXME: This is not optimal recovery, but parsing the body is more
// dangerous due to the presence of case and default statements, which
// will have no place to connect back with the switch.
if (Tok.is(tok::l_brace)) {
ConsumeBrace();
SkipUntil(tok::r_brace);
} else
SkipUntil(tok::semi);
return Switch;
}
2011-10-08 19:31:46 +08:00
// C99 6.8.4p3 - In C99, the body of the switch statement is a scope, even if
// there is no compound stmt. C90 does not have this clause. We only do this
// if the body isn't a compound statement to avoid push/pop in common cases.
//
// C++ 6.4p1:
// The substatement in a selection-statement (each substatement, in the else
// form of the if statement) implicitly defines a local scope.
//
// See comments in ParseIfStatement for why we create a scope for the
// condition and a new scope for substatement in C++.
//
getCurScope()->AddFlags(Scope::BreakScope);
ParseScope InnerScope(this, Scope::DeclScope, C99orCXX, Tok.is(tok::l_brace));
// We have incremented the mangling number for the SwitchScope and the
// InnerScope, which is one too many.
if (C99orCXX)
getCurScope()->decrementMSManglingNumber();
// Read the body statement.
StmtResult Body(ParseStatement(TrailingElseLoc));
// Pop the scopes.
InnerScope.Exit();
SwitchScope.Exit();
return Actions.ActOnFinishSwitchStmt(SwitchLoc, Switch.get(), Body.get());
2006-08-10 12:23:57 +08:00
}
/// ParseWhileStatement
/// while-statement: [C99 6.8.5.1]
/// 'while' '(' expression ')' statement
/// [C++] 'while' '(' condition ')' statement
StmtResult Parser::ParseWhileStatement(SourceLocation *TrailingElseLoc) {
assert(Tok.is(tok::kw_while) && "Not a while stmt!");
SourceLocation WhileLoc = Tok.getLocation();
ConsumeToken(); // eat the 'while'.
if (Tok.isNot(tok::l_paren)) {
Diag(Tok, diag::err_expected_lparen_after) << "while";
SkipUntil(tok::semi);
return StmtError();
}
bool C99orCXX = getLangOpts().C99 || getLangOpts().CPlusPlus;
// C99 6.8.5p5 - In C99, the while statement is a block. This is not
// the case for C90. Start the loop scope.
//
// C++ 6.4p3:
// A name introduced by a declaration in a condition is in scope from its
// point of declaration until the end of the substatements controlled by the
// condition.
// C++ 3.3.2p4:
// Names declared in the for-init-statement, and in the condition of if,
// while, for, and switch statements are local to the if, while, for, or
// switch statement (including the controlled statement).
//
unsigned ScopeFlags;
if (C99orCXX)
ScopeFlags = Scope::BreakScope | Scope::ContinueScope |
Scope::DeclScope | Scope::ControlScope;
else
ScopeFlags = Scope::BreakScope | Scope::ContinueScope;
ParseScope WhileScope(this, ScopeFlags);
// Parse the condition.
Sema::ConditionResult Cond;
if (ParseParenExprOrCondition(nullptr, Cond, WhileLoc,
Sema::ConditionKind::Boolean))
return StmtError();
// C99 6.8.5p5 - In C99, the body of the while statement is a scope, even if
// there is no compound stmt. C90 does not have this clause. We only do this
// if the body isn't a compound statement to avoid push/pop in common cases.
//
// C++ 6.5p2:
// The substatement in an iteration-statement implicitly defines a local scope
// which is entered and exited each time through the loop.
//
// See comments in ParseIfStatement for why we create a scope for the
// condition and a new scope for substatement in C++.
//
ParseScope InnerScope(this, Scope::DeclScope, C99orCXX, Tok.is(tok::l_brace));
// Read the body statement.
StmtResult Body(ParseStatement(TrailingElseLoc));
// Pop the body scope if needed.
InnerScope.Exit();
WhileScope.Exit();
if (Cond.isInvalid() || Body.isInvalid())
return StmtError();
return Actions.ActOnWhileStmt(WhileLoc, Cond, Body.get());
}
/// ParseDoStatement
/// do-statement: [C99 6.8.5.2]
/// 'do' statement 'while' '(' expression ')' ';'
/// Note: this lets the caller parse the end ';'.
StmtResult Parser::ParseDoStatement() {
assert(Tok.is(tok::kw_do) && "Not a do stmt!");
SourceLocation DoLoc = ConsumeToken(); // eat the 'do'.
// C99 6.8.5p5 - In C99, the do statement is a block. This is not
// the case for C90. Start the loop scope.
unsigned ScopeFlags;
if (getLangOpts().C99)
ScopeFlags = Scope::BreakScope | Scope::ContinueScope | Scope::DeclScope;
else
ScopeFlags = Scope::BreakScope | Scope::ContinueScope;
ParseScope DoScope(this, ScopeFlags);
// C99 6.8.5p5 - In C99, the body of the do statement is a scope, even if
// there is no compound stmt. C90 does not have this clause. We only do this
// if the body isn't a compound statement to avoid push/pop in common cases.
//
// C++ 6.5p2:
// The substatement in an iteration-statement implicitly defines a local scope
// which is entered and exited each time through the loop.
//
bool C99orCXX = getLangOpts().C99 || getLangOpts().CPlusPlus;
ParseScope InnerScope(this, Scope::DeclScope, C99orCXX, Tok.is(tok::l_brace));
// Read the body statement.
StmtResult Body(ParseStatement());
// Pop the body scope if needed.
InnerScope.Exit();
if (Tok.isNot(tok::kw_while)) {
if (!Body.isInvalid()) {
Diag(Tok, diag::err_expected_while);
Diag(DoLoc, diag::note_matching) << "'do'";
SkipUntil(tok::semi, StopBeforeMatch);
}
return StmtError();
}
SourceLocation WhileLoc = ConsumeToken();
if (Tok.isNot(tok::l_paren)) {
Diag(Tok, diag::err_expected_lparen_after) << "do/while";
SkipUntil(tok::semi, StopBeforeMatch);
return StmtError();
}
// Parse the parenthesized expression.
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
// A do-while expression is not a condition, so can't have attributes.
DiagnoseAndSkipCXX11Attributes();
ExprResult Cond = ParseExpression();
T.consumeClose();
DoScope.Exit();
if (Cond.isInvalid() || Body.isInvalid())
return StmtError();
return Actions.ActOnDoStmt(DoLoc, Body.get(), WhileLoc, T.getOpenLocation(),
Cond.get(), T.getCloseLocation());
}
bool Parser::isForRangeIdentifier() {
assert(Tok.is(tok::identifier));
const Token &Next = NextToken();
if (Next.is(tok::colon))
return true;
if (Next.isOneOf(tok::l_square, tok::kw_alignas)) {
TentativeParsingAction PA(*this);
ConsumeToken();
SkipCXX11Attributes();
bool Result = Tok.is(tok::colon);
PA.Revert();
return Result;
}
return false;
}
/// ParseForStatement
/// for-statement: [C99 6.8.5.3]
/// 'for' '(' expr[opt] ';' expr[opt] ';' expr[opt] ')' statement
/// 'for' '(' declaration expr[opt] ';' expr[opt] ')' statement
/// [C++] 'for' '(' for-init-statement condition[opt] ';' expression[opt] ')'
/// [C++] statement
/// [C++0x] 'for'
/// 'co_await'[opt] [Coroutines]
/// '(' for-range-declaration ':' for-range-initializer ')'
/// statement
/// [OBJC2] 'for' '(' declaration 'in' expr ')' statement
/// [OBJC2] 'for' '(' expr 'in' expr ')' statement
///
/// [C++] for-init-statement:
/// [C++] expression-statement
/// [C++] simple-declaration
///
/// [C++0x] for-range-declaration:
/// [C++0x] attribute-specifier-seq[opt] type-specifier-seq declarator
/// [C++0x] for-range-initializer:
/// [C++0x] expression
/// [C++0x] braced-init-list [TODO]
StmtResult Parser::ParseForStatement(SourceLocation *TrailingElseLoc) {
assert(Tok.is(tok::kw_for) && "Not a for stmt!");
SourceLocation ForLoc = ConsumeToken(); // eat the 'for'.
SourceLocation CoawaitLoc;
if (Tok.is(tok::kw_co_await))
CoawaitLoc = ConsumeToken();
if (Tok.isNot(tok::l_paren)) {
Diag(Tok, diag::err_expected_lparen_after) << "for";
SkipUntil(tok::semi);
return StmtError();
}
bool C99orCXXorObjC = getLangOpts().C99 || getLangOpts().CPlusPlus ||
getLangOpts().ObjC1;
// C99 6.8.5p5 - In C99, the for statement is a block. This is not
// the case for C90. Start the loop scope.
//
// C++ 6.4p3:
// A name introduced by a declaration in a condition is in scope from its
// point of declaration until the end of the substatements controlled by the
// condition.
// C++ 3.3.2p4:
// Names declared in the for-init-statement, and in the condition of if,
// while, for, and switch statements are local to the if, while, for, or
// switch statement (including the controlled statement).
// C++ 6.5.3p1:
// Names declared in the for-init-statement are in the same declarative-region
// as those declared in the condition.
//
unsigned ScopeFlags = 0;
if (C99orCXXorObjC)
ScopeFlags = Scope::DeclScope | Scope::ControlScope;
ParseScope ForScope(this, ScopeFlags);
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
ExprResult Value;
bool ForEach = false, ForRange = false;
StmtResult FirstPart;
Sema::ConditionResult SecondPart;
ExprResult Collection;
ForRangeInit ForRangeInit;
FullExprArg ThirdPart(Actions);
2011-10-08 19:31:46 +08:00
if (Tok.is(tok::code_completion)) {
2011-10-08 19:31:46 +08:00
Actions.CodeCompleteOrdinaryName(getCurScope(),
C99orCXXorObjC? Sema::PCC_ForInit
: Sema::PCC_Expression);
cutOffParsing();
return StmtError();
}
2011-10-08 19:31:46 +08:00
ParsedAttributesWithRange attrs(AttrFactory);
MaybeParseCXX11Attributes(attrs);
// Parse the first part of the for specifier.
if (Tok.is(tok::semi)) { // for (;
ProhibitAttributes(attrs);
// no first part, eat the ';'.
ConsumeToken();
} else if (getLangOpts().CPlusPlus && Tok.is(tok::identifier) &&
isForRangeIdentifier()) {
ProhibitAttributes(attrs);
IdentifierInfo *Name = Tok.getIdentifierInfo();
SourceLocation Loc = ConsumeToken();
MaybeParseCXX11Attributes(attrs);
ForRangeInit.ColonLoc = ConsumeToken();
if (Tok.is(tok::l_brace))
ForRangeInit.RangeExpr = ParseBraceInitializer();
else
ForRangeInit.RangeExpr = ParseExpression();
Diag(Loc, diag::err_for_range_identifier)
<< ((getLangOpts().CPlusPlus11 && !getLangOpts().CPlusPlus1z)
? FixItHint::CreateInsertion(Loc, "auto &&")
: FixItHint());
FirstPart = Actions.ActOnCXXForRangeIdentifier(getCurScope(), Loc, Name,
attrs, attrs.Range.getEnd());
ForRange = true;
} else if (isForInitDeclaration()) { // for (int X = 4;
// Parse declaration, which eats the ';'.
if (!C99orCXXorObjC) // Use of C99-style for loops in C90 mode?
2006-08-10 13:22:36 +08:00
Diag(Tok, diag::ext_c99_variable_decl_in_for_loop);
// In C++0x, "for (T NS:a" might not be a typo for ::
bool MightBeForRangeStmt = getLangOpts().CPlusPlus;
ColonProtectionRAIIObject ColonProtection(*this, MightBeForRangeStmt);
SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
DeclGroupPtrTy DG = ParseSimpleDeclaration(
Declarator::ForContext, DeclEnd, attrs, false,
MightBeForRangeStmt ? &ForRangeInit : nullptr);
FirstPart = Actions.ActOnDeclStmt(DG, DeclStart, Tok.getLocation());
if (ForRangeInit.ParsedForRangeDecl()) {
Diag(ForRangeInit.ColonLoc, getLangOpts().CPlusPlus11 ?
diag::warn_cxx98_compat_for_range : diag::ext_for_range);
ForRange = true;
} else if (Tok.is(tok::semi)) { // for (int x = 4;
ConsumeToken();
} else if ((ForEach = isTokIdentifier_in())) {
Actions.ActOnForEachDeclStmt(DG);
// ObjC: for (id x in expr)
ConsumeToken(); // consume 'in'
2011-10-08 19:31:46 +08:00
if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteObjCForCollection(getCurScope(), DG);
cutOffParsing();
return StmtError();
}
Collection = ParseExpression();
} else {
Diag(Tok, diag::err_expected_semi_for);
}
} else {
ProhibitAttributes(attrs);
Value = Actions.CorrectDelayedTyposInExpr(ParseExpression());
ForEach = isTokIdentifier_in();
// Turn the expression into a stmt.
if (!Value.isInvalid()) {
if (ForEach)
FirstPart = Actions.ActOnForEachLValueExpr(Value.get());
else
FirstPart = Actions.ActOnExprStmt(Value);
}
if (Tok.is(tok::semi)) {
ConsumeToken();
} else if (ForEach) {
ConsumeToken(); // consume 'in'
2011-10-08 19:31:46 +08:00
if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteObjCForCollection(getCurScope(), nullptr);
cutOffParsing();
return StmtError();
}
Collection = ParseExpression();
} else if (getLangOpts().CPlusPlus11 && Tok.is(tok::colon) && FirstPart.get()) {
// User tried to write the reasonable, but ill-formed, for-range-statement
// for (expr : expr) { ... }
Diag(Tok, diag::err_for_range_expected_decl)
<< FirstPart.get()->getSourceRange();
SkipUntil(tok::r_paren, StopBeforeMatch);
SecondPart = Sema::ConditionError();
} else {
if (!Value.isInvalid()) {
Diag(Tok, diag::err_expected_semi_for);
} else {
// Skip until semicolon or rparen, don't consume it.
SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
if (Tok.is(tok::semi))
ConsumeToken();
}
}
}
// Parse the second part of the for specifier.
getCurScope()->AddFlags(Scope::BreakScope | Scope::ContinueScope);
if (!ForEach && !ForRange && !SecondPart.isInvalid()) {
// Parse the second part of the for specifier.
if (Tok.is(tok::semi)) { // for (...;;
// no second part.
} else if (Tok.is(tok::r_paren)) {
// missing both semicolons.
} else {
if (getLangOpts().CPlusPlus)
SecondPart =
ParseCXXCondition(nullptr, ForLoc, Sema::ConditionKind::Boolean);
else {
ExprResult SecondExpr = ParseExpression();
if (SecondExpr.isInvalid())
SecondPart = Sema::ConditionError();
else
SecondPart =
Actions.ActOnCondition(getCurScope(), ForLoc, SecondExpr.get(),
Sema::ConditionKind::Boolean);
}
}
if (Tok.isNot(tok::semi)) {
if (!SecondPart.isInvalid())
Diag(Tok, diag::err_expected_semi_for);
else
// Skip until semicolon or rparen, don't consume it.
SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
}
if (Tok.is(tok::semi)) {
ConsumeToken();
}
// Parse the third part of the for specifier.
if (Tok.isNot(tok::r_paren)) { // for (...;...;)
ExprResult Third = ParseExpression();
// FIXME: The C++11 standard doesn't actually say that this is a
// discarded-value expression, but it clearly should be.
ThirdPart = Actions.MakeFullDiscardedValueExpr(Third.get());
}
}
// Match the ')'.
T.consumeClose();
// C++ Coroutines [stmt.iter]:
// 'co_await' can only be used for a range-based for statement.
if (CoawaitLoc.isValid() && !ForRange) {
Diag(CoawaitLoc, diag::err_for_co_await_not_range_for);
CoawaitLoc = SourceLocation();
}
// We need to perform most of the semantic analysis for a C++0x for-range
// statememt before parsing the body, in order to be able to deduce the type
// of an auto-typed loop variable.
StmtResult ForRangeStmt;
StmtResult ForEachStmt;
if (ForRange) {
ExprResult CorrectedRange =
Actions.CorrectDelayedTyposInExpr(ForRangeInit.RangeExpr.get());
ForRangeStmt = Actions.ActOnCXXForRangeStmt(
getCurScope(), ForLoc, CoawaitLoc, FirstPart.get(),
ForRangeInit.ColonLoc, CorrectedRange.get(),
T.getCloseLocation(), Sema::BFRK_Build);
// Similarly, we need to do the semantic analysis for a for-range
// statement immediately in order to close over temporaries correctly.
} else if (ForEach) {
ForEachStmt = Actions.ActOnObjCForCollectionStmt(ForLoc,
FirstPart.get(),
Collection.get(),
T.getCloseLocation());
} else {
// In OpenMP loop region loop control variable must be captured and be
// private. Perform analysis of first part (if any).
if (getLangOpts().OpenMP && FirstPart.isUsable()) {
Actions.ActOnOpenMPLoopInitialization(ForLoc, FirstPart.get());
}
}
// C99 6.8.5p5 - In C99, the body of the for statement is a scope, even if
// there is no compound stmt. C90 does not have this clause. We only do this
// if the body isn't a compound statement to avoid push/pop in common cases.
//
// C++ 6.5p2:
// The substatement in an iteration-statement implicitly defines a local scope
// which is entered and exited each time through the loop.
//
// See comments in ParseIfStatement for why we create a scope for
// for-init-statement/condition and a new scope for substatement in C++.
//
ParseScope InnerScope(this, Scope::DeclScope, C99orCXXorObjC,
Tok.is(tok::l_brace));
// The body of the for loop has the same local mangling number as the
// for-init-statement.
// It will only be incremented if the body contains other things that would
// normally increment the mangling number (like a compound statement).
if (C99orCXXorObjC)
getCurScope()->decrementMSManglingNumber();
// Read the body statement.
StmtResult Body(ParseStatement(TrailingElseLoc));
// Pop the body scope if needed.
InnerScope.Exit();
// Leave the for-scope.
ForScope.Exit();
if (Body.isInvalid())
return StmtError();
if (ForEach)
return Actions.FinishObjCForCollectionStmt(ForEachStmt.get(),
Body.get());
if (ForRange)
return Actions.FinishCXXForRangeStmt(ForRangeStmt.get(), Body.get());
return Actions.ActOnForStmt(ForLoc, T.getOpenLocation(), FirstPart.get(),
SecondPart, ThirdPart, T.getCloseLocation(),
Body.get());
}
2006-08-10 12:23:57 +08:00
/// ParseGotoStatement
/// jump-statement:
/// 'goto' identifier ';'
/// [GNU] 'goto' '*' expression ';'
///
/// Note: this lets the caller parse the end ';'.
///
StmtResult Parser::ParseGotoStatement() {
assert(Tok.is(tok::kw_goto) && "Not a goto stmt!");
SourceLocation GotoLoc = ConsumeToken(); // eat the 'goto'.
StmtResult Res;
if (Tok.is(tok::identifier)) {
LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
Tok.getLocation());
Res = Actions.ActOnGotoStmt(GotoLoc, Tok.getLocation(), LD);
ConsumeToken();
} else if (Tok.is(tok::star)) {
// GNU indirect goto extension.
Diag(Tok, diag::ext_gnu_indirect_goto);
SourceLocation StarLoc = ConsumeToken();
ExprResult R(ParseExpression());
if (R.isInvalid()) { // Skip to the semicolon, but don't consume it.
SkipUntil(tok::semi, StopBeforeMatch);
return StmtError();
}
Res = Actions.ActOnIndirectGotoStmt(GotoLoc, StarLoc, R.get());
} else {
Diag(Tok, diag::err_expected) << tok::identifier;
return StmtError();
}
return Res;
}
/// ParseContinueStatement
/// jump-statement:
/// 'continue' ';'
///
/// Note: this lets the caller parse the end ';'.
///
StmtResult Parser::ParseContinueStatement() {
SourceLocation ContinueLoc = ConsumeToken(); // eat the 'continue'.
return Actions.ActOnContinueStmt(ContinueLoc, getCurScope());
}
/// ParseBreakStatement
/// jump-statement:
/// 'break' ';'
///
/// Note: this lets the caller parse the end ';'.
///
StmtResult Parser::ParseBreakStatement() {
SourceLocation BreakLoc = ConsumeToken(); // eat the 'break'.
return Actions.ActOnBreakStmt(BreakLoc, getCurScope());
}
/// ParseReturnStatement
/// jump-statement:
/// 'return' expression[opt] ';'
/// 'return' braced-init-list ';'
/// 'co_return' expression[opt] ';'
/// 'co_return' braced-init-list ';'
StmtResult Parser::ParseReturnStatement() {
assert((Tok.is(tok::kw_return) || Tok.is(tok::kw_co_return)) &&
"Not a return stmt!");
bool IsCoreturn = Tok.is(tok::kw_co_return);
SourceLocation ReturnLoc = ConsumeToken(); // eat the 'return'.
ExprResult R;
if (Tok.isNot(tok::semi)) {
// FIXME: Code completion for co_return.
if (Tok.is(tok::code_completion) && !IsCoreturn) {
Actions.CodeCompleteReturn(getCurScope());
cutOffParsing();
return StmtError();
}
2011-10-08 19:31:46 +08:00
if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus) {
R = ParseInitializer();
if (R.isUsable())
Diag(R.get()->getLocStart(), getLangOpts().CPlusPlus11 ?
diag::warn_cxx98_compat_generalized_initializer_lists :
diag::ext_generalized_initializer_lists)
<< R.get()->getSourceRange();
} else
R = ParseExpression();
if (R.isInvalid()) {
SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
return StmtError();
}
}
if (IsCoreturn)
return Actions.ActOnCoreturnStmt(getCurScope(), ReturnLoc, R.get());
return Actions.ActOnReturnStmt(ReturnLoc, R.get(), getCurScope());
}
StmtResult Parser::ParsePragmaLoopHint(StmtVector &Stmts,
AllowedConstructsKind Allowed,
SourceLocation *TrailingElseLoc,
ParsedAttributesWithRange &Attrs) {
// Create temporary attribute list.
ParsedAttributesWithRange TempAttrs(AttrFactory);
// Get loop hints and consume annotated token.
while (Tok.is(tok::annot_pragma_loop_hint)) {
LoopHint Hint;
if (!HandlePragmaLoopHint(Hint))
continue;
ArgsUnion ArgHints[] = {Hint.PragmaNameLoc, Hint.OptionLoc, Hint.StateLoc,
ArgsUnion(Hint.ValueExpr)};
TempAttrs.addNew(Hint.PragmaNameLoc->Ident, Hint.Range, nullptr,
Hint.PragmaNameLoc->Loc, ArgHints, 4,
AttributeList::AS_Pragma);
}
// Get the next statement.
MaybeParseCXX11Attributes(Attrs);
StmtResult S = ParseStatementOrDeclarationAfterAttributes(
Stmts, Allowed, TrailingElseLoc, Attrs);
Attrs.takeAllFrom(TempAttrs);
return S;
}
Decl *Parser::ParseFunctionStatementBody(Decl *Decl, ParseScope &BodyScope) {
assert(Tok.is(tok::l_brace));
SourceLocation LBraceLoc = Tok.getLocation();
PrettyDeclStackTraceEntry CrashInfo(Actions, Decl, LBraceLoc,
"parsing function body");
// Save and reset current vtordisp stack if we have entered a C++ method body.
bool IsCXXMethod =
getLangOpts().CPlusPlus && Decl && isa<CXXMethodDecl>(Decl);
Sema::PragmaStackSentinelRAII
PragmaStackSentinel(Actions, "InternalPragmaState", IsCXXMethod);
// Do not enter a scope for the brace, as the arguments are in the same scope
// (the function body) as the body itself. Instead, just read the statement
// list and put it into a CompoundStmt for safe keeping.
StmtResult FnBody(ParseCompoundStatementBody());
// If the function body could not be parsed, make a bogus compoundstmt.
if (FnBody.isInvalid()) {
Sema::CompoundScopeRAII CompoundScope(Actions);
FnBody = Actions.ActOnCompoundStmt(LBraceLoc, LBraceLoc, None, false);
}
BodyScope.Exit();
return Actions.ActOnFinishFunctionBody(Decl, FnBody.get());
2007-12-01 16:06:07 +08:00
}
/// ParseFunctionTryBlock - Parse a C++ function-try-block.
///
/// function-try-block:
/// 'try' ctor-initializer[opt] compound-statement handler-seq
///
Decl *Parser::ParseFunctionTryBlock(Decl *Decl, ParseScope &BodyScope) {
assert(Tok.is(tok::kw_try) && "Expected 'try'");
SourceLocation TryLoc = ConsumeToken();
PrettyDeclStackTraceEntry CrashInfo(Actions, Decl, TryLoc,
"parsing function try block");
// Constructor initializer list?
if (Tok.is(tok::colon))
ParseConstructorInitializer(Decl);
else
Actions.ActOnDefaultCtorInitializers(Decl);
2011-10-08 19:31:46 +08:00
// Save and reset current vtordisp stack if we have entered a C++ method body.
bool IsCXXMethod =
getLangOpts().CPlusPlus && Decl && isa<CXXMethodDecl>(Decl);
Sema::PragmaStackSentinelRAII
PragmaStackSentinel(Actions, "InternalPragmaState", IsCXXMethod);
SourceLocation LBraceLoc = Tok.getLocation();
StmtResult FnBody(ParseCXXTryBlockCommon(TryLoc, /*FnTry*/true));
// If we failed to parse the try-catch, we just give the function an empty
// compound statement as the body.
if (FnBody.isInvalid()) {
Sema::CompoundScopeRAII CompoundScope(Actions);
FnBody = Actions.ActOnCompoundStmt(LBraceLoc, LBraceLoc, None, false);
}
BodyScope.Exit();
return Actions.ActOnFinishFunctionBody(Decl, FnBody.get());
}
bool Parser::trySkippingFunctionBody() {
assert(SkipFunctionBodies &&
"Should only be called when SkipFunctionBodies is enabled");
if (!PP.isCodeCompletionEnabled()) {
SkipFunctionBody();
return true;
}
// We're in code-completion mode. Skip parsing for all function bodies unless
// the body contains the code-completion point.
TentativeParsingAction PA(*this);
bool IsTryCatch = Tok.is(tok::kw_try);
CachedTokens Toks;
bool ErrorInPrologue = ConsumeAndStoreFunctionPrologue(Toks);
if (llvm::any_of(Toks, [](const Token &Tok) {
return Tok.is(tok::code_completion);
})) {
PA.Revert();
return false;
}
if (ErrorInPrologue) {
PA.Commit();
SkipMalformedDecl();
return true;
}
if (!SkipUntil(tok::r_brace, StopAtCodeCompletion)) {
PA.Revert();
return false;
}
while (IsTryCatch && Tok.is(tok::kw_catch)) {
if (!SkipUntil(tok::l_brace, StopAtCodeCompletion) ||
!SkipUntil(tok::r_brace, StopAtCodeCompletion)) {
PA.Revert();
return false;
}
}
PA.Commit();
return true;
}
/// ParseCXXTryBlock - Parse a C++ try-block.
///
/// try-block:
/// 'try' compound-statement handler-seq
///
StmtResult Parser::ParseCXXTryBlock() {
assert(Tok.is(tok::kw_try) && "Expected 'try'");
SourceLocation TryLoc = ConsumeToken();
return ParseCXXTryBlockCommon(TryLoc);
}
/// ParseCXXTryBlockCommon - Parse the common part of try-block and
/// function-try-block.
///
/// try-block:
/// 'try' compound-statement handler-seq
///
/// function-try-block:
/// 'try' ctor-initializer[opt] compound-statement handler-seq
///
/// handler-seq:
/// handler handler-seq[opt]
///
/// [Borland] try-block:
/// 'try' compound-statement seh-except-block
/// 'try' compound-statement seh-finally-block
///
StmtResult Parser::ParseCXXTryBlockCommon(SourceLocation TryLoc, bool FnTry) {
if (Tok.isNot(tok::l_brace))
return StmtError(Diag(Tok, diag::err_expected) << tok::l_brace);
StmtResult TryBlock(ParseCompoundStatement(
/*isStmtExpr=*/false, Scope::DeclScope | Scope::TryScope |
Scope::CompoundStmtScope |
(FnTry ? Scope::FnTryCatchScope : 0)));
if (TryBlock.isInvalid())
return TryBlock;
// Borland allows SEH-handlers with 'try'
if ((Tok.is(tok::identifier) &&
Tok.getIdentifierInfo() == getSEHExceptKeyword()) ||
Tok.is(tok::kw___finally)) {
// TODO: Factor into common return ParseSEHHandlerCommon(...)
StmtResult Handler;
if(Tok.getIdentifierInfo() == getSEHExceptKeyword()) {
SourceLocation Loc = ConsumeToken();
Handler = ParseSEHExceptBlock(Loc);
}
else {
SourceLocation Loc = ConsumeToken();
Handler = ParseSEHFinallyBlock(Loc);
}
if(Handler.isInvalid())
return Handler;
return Actions.ActOnSEHTryBlock(true /* IsCXXTry */,
TryLoc,
TryBlock.get(),
Handler.get());
}
else {
StmtVector Handlers;
// C++11 attributes can't appear here, despite this context seeming
// statement-like.
DiagnoseAndSkipCXX11Attributes();
if (Tok.isNot(tok::kw_catch))
return StmtError(Diag(Tok, diag::err_expected_catch));
while (Tok.is(tok::kw_catch)) {
StmtResult Handler(ParseCXXCatchBlock(FnTry));
if (!Handler.isInvalid())
Handlers.push_back(Handler.get());
}
// Don't bother creating the full statement if we don't have any usable
// handlers.
if (Handlers.empty())
return StmtError();
return Actions.ActOnCXXTryBlock(TryLoc, TryBlock.get(), Handlers);
}
}
/// ParseCXXCatchBlock - Parse a C++ catch block, called handler in the standard
///
/// handler:
/// 'catch' '(' exception-declaration ')' compound-statement
///
/// exception-declaration:
/// attribute-specifier-seq[opt] type-specifier-seq declarator
/// attribute-specifier-seq[opt] type-specifier-seq abstract-declarator[opt]
/// '...'
///
StmtResult Parser::ParseCXXCatchBlock(bool FnCatch) {
assert(Tok.is(tok::kw_catch) && "Expected 'catch'");
SourceLocation CatchLoc = ConsumeToken();
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.expectAndConsume())
return StmtError();
// C++ 3.3.2p3:
// The name in a catch exception-declaration is local to the handler and
// shall not be redeclared in the outermost block of the handler.
ParseScope CatchScope(this, Scope::DeclScope | Scope::ControlScope |
(FnCatch ? Scope::FnTryCatchScope : 0));
// exception-declaration is equivalent to '...' or a parameter-declaration
// without default arguments.
Decl *ExceptionDecl = nullptr;
if (Tok.isNot(tok::ellipsis)) {
ParsedAttributesWithRange Attributes(AttrFactory);
MaybeParseCXX11Attributes(Attributes);
DeclSpec DS(AttrFactory);
DS.takeAttributesFrom(Attributes);
if (ParseCXXTypeSpecifierSeq(DS))
return StmtError();
Declarator ExDecl(DS, Declarator::CXXCatchContext);
ParseDeclarator(ExDecl);
ExceptionDecl = Actions.ActOnExceptionDeclarator(getCurScope(), ExDecl);
} else
ConsumeToken();
T.consumeClose();
if (T.getCloseLocation().isInvalid())
return StmtError();
if (Tok.isNot(tok::l_brace))
return StmtError(Diag(Tok, diag::err_expected) << tok::l_brace);
// FIXME: Possible draft standard bug: attribute-specifier should be allowed?
StmtResult Block(ParseCompoundStatement());
if (Block.isInvalid())
return Block;
return Actions.ActOnCXXCatchBlock(CatchLoc, ExceptionDecl, Block.get());
}
void Parser::ParseMicrosoftIfExistsStatement(StmtVector &Stmts) {
IfExistsCondition Result;
if (ParseMicrosoftIfExistsCondition(Result))
return;
2011-10-08 19:31:46 +08:00
// Handle dependent statements by parsing the braces as a compound statement.
// This is not the same behavior as Visual C++, which don't treat this as a
// compound statement, but for Clang's type checking we can't have anything
// inside these braces escaping to the surrounding code.
if (Result.Behavior == IEB_Dependent) {
if (!Tok.is(tok::l_brace)) {
Diag(Tok, diag::err_expected) << tok::l_brace;
return;
}
StmtResult Compound = ParseCompoundStatement();
if (Compound.isInvalid())
return;
StmtResult DepResult = Actions.ActOnMSDependentExistsStmt(Result.KeywordLoc,
Result.IsIfExists,
Result.SS,
Result.Name,
Compound.get());
if (DepResult.isUsable())
Stmts.push_back(DepResult.get());
return;
}
BalancedDelimiterTracker Braces(*this, tok::l_brace);
if (Braces.consumeOpen()) {
Diag(Tok, diag::err_expected) << tok::l_brace;
return;
}
switch (Result.Behavior) {
case IEB_Parse:
// Parse the statements below.
break;
case IEB_Dependent:
llvm_unreachable("Dependent case handled above");
case IEB_Skip:
Braces.skipToEnd();
return;
}
// Condition is true, parse the statements.
while (Tok.isNot(tok::r_brace)) {
StmtResult R = ParseStatementOrDeclaration(Stmts, ACK_Any);
if (R.isUsable())
Stmts.push_back(R.get());
}
Braces.consumeClose();
}
bool Parser::ParseOpenCLUnrollHintAttribute(ParsedAttributes &Attrs) {
MaybeParseGNUAttributes(Attrs);
if (Attrs.empty())
return true;
if (Attrs.getList()->getKind() != AttributeList::AT_OpenCLUnrollHint)
return true;
if (!(Tok.is(tok::kw_for) || Tok.is(tok::kw_while) || Tok.is(tok::kw_do))) {
Diag(Tok, diag::err_opencl_unroll_hint_on_non_loop);
return false;
}
return true;
}