hanchenye-llvm-project/lld/ELF/InputSection.h

245 lines
7.8 KiB
C
Raw Normal View History

//===- InputSection.h -------------------------------------------*- C++ -*-===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLD_ELF_INPUT_SECTION_H
#define LLD_ELF_INPUT_SECTION_H
#include "Config.h"
#include "Relocations.h"
#include "lld/Core/LLVM.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Object/ELF.h"
namespace lld {
2016-02-28 08:25:54 +08:00
namespace elf {
class SymbolBody;
template <class ELFT> class ICF;
template <class ELFT> class DefinedRegular;
template <class ELFT> class ObjectFile;
template <class ELFT> class OutputSection;
template <class ELFT> class OutputSectionBase;
// This corresponds to a section of an input file.
template <class ELFT> class InputSectionBase {
protected:
typedef typename ELFT::Rel Elf_Rel;
typedef typename ELFT::Rela Elf_Rela;
typedef typename ELFT::Shdr Elf_Shdr;
typedef typename ELFT::Sym Elf_Sym;
typedef typename ELFT::uint uintX_t;
const Elf_Shdr *Header;
// The file this section is from.
ObjectFile<ELFT> *File;
public:
enum Kind { Regular, EHFrame, Merge, MipsReginfo, MipsOptions };
Kind SectionKind;
InputSectionBase() : Repl(this) {}
InputSectionBase(ObjectFile<ELFT> *File, const Elf_Shdr *Header,
Kind SectionKind);
OutputSectionBase<ELFT> *OutSec = nullptr;
uint32_t Align;
// Used for garbage collection.
bool Live;
// This pointer points to the "real" instance of this instance.
// Usually Repl == this. However, if ICF merges two sections,
// Repl pointer of one section points to another section. So,
// if you need to get a pointer to this instance, do not use
// this but instead this->Repl.
InputSectionBase<ELFT> *Repl;
// Returns the size of this section (even if this is a common or BSS.)
[ELF] Implement infrastructure for thunk code creation Some targets might require creation of thunks. For example, MIPS targets require stubs to call PIC code from non-PIC one. The patch implements infrastructure for thunk code creation and provides support for MIPS LA25 stubs. Any MIPS PIC code function is invoked with its address in register $t9. So if we have a branch instruction from non-PIC code to the PIC one we cannot make the jump directly and need to create a small stub to save the target function address. See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf - In relocation scanning phase we ask target about thunk creation necessity by calling `TagetInfo::needsThunk` method. The `InputSection` class maintains list of Symbols requires thunk creation. - Reassigning offsets performed for each input sections after relocation scanning complete because position of each section might change due thunk creation. - The patch introduces new dedicated value for DefinedSynthetic symbols DefinedSynthetic::SectionEnd. Synthetic symbol with that value always points to the end of the corresponding output section. That allows to escape updating synthetic symbols if output sections sizes changes after relocation scanning due thunk creation. - In the `InputSection::writeTo` method we write thunks after corresponding input section. Each thunk is written by calling `TargetInfo::writeThunk` method. - The patch supports the only type of thunk code for each target. For now, it is enough. Differential Revision: http://reviews.llvm.org/D17934 llvm-svn: 265059
2016-04-01 05:26:23 +08:00
size_t getSize() const;
static InputSectionBase<ELFT> Discarded;
StringRef getSectionName() const;
const Elf_Shdr *getSectionHdr() const { return Header; }
ObjectFile<ELFT> *getFile() const { return File; }
uintX_t getOffset(const DefinedRegular<ELFT> &Sym);
// Translate an offset in the input section to an offset in the output
// section.
uintX_t getOffset(uintX_t Offset);
ArrayRef<uint8_t> getSectionData() const;
void relocate(uint8_t *Buf, uint8_t *BufEnd);
std::vector<Relocation> Relocations;
};
template <class ELFT> InputSectionBase<ELFT> InputSectionBase<ELFT>::Discarded;
// SectionPiece represents a piece of splittable section contents.
struct SectionPiece {
SectionPiece(size_t Off, ArrayRef<uint8_t> Data)
: InputOff(Off), Data(Data), Live(!Config->GcSections) {}
size_t size() const { return Data.size(); }
size_t InputOff;
size_t OutputOff = -1;
ArrayRef<uint8_t> Data; // slice of the input section
bool Live;
};
2016-01-06 11:16:23 +08:00
// Usually sections are copied to the output as atomic chunks of data,
// but some special types of sections are split into small pieces of data
// and each piece is copied to a different place in the output.
// This class represents such special sections.
template <class ELFT> class SplitInputSection : public InputSectionBase<ELFT> {
typedef typename ELFT::Shdr Elf_Shdr;
typedef typename ELFT::uint uintX_t;
public:
SplitInputSection(ObjectFile<ELFT> *File, const Elf_Shdr *Header,
typename InputSectionBase<ELFT>::Kind SectionKind);
2016-01-06 11:16:23 +08:00
// Splittable sections are handled as a sequence of data
// rather than a single large blob of data.
std::vector<SectionPiece> Pieces;
// Returns the SectionPiece at a given input section offset.
SectionPiece *getSectionPiece(uintX_t Offset);
};
// This corresponds to a SHF_MERGE section of an input file.
template <class ELFT> class MergeInputSection : public SplitInputSection<ELFT> {
typedef typename ELFT::uint uintX_t;
typedef typename ELFT::Sym Elf_Sym;
typedef typename ELFT::Shdr Elf_Shdr;
public:
MergeInputSection(ObjectFile<ELFT> *F, const Elf_Shdr *Header);
static bool classof(const InputSectionBase<ELFT> *S);
void splitIntoPieces();
// Mark the piece at a given offset live. Used by GC.
void markLiveAt(uintX_t Offset) { LiveOffsets.insert(Offset); }
// Translate an offset in the input section to an offset
// in the output section.
uintX_t getOffset(uintX_t Offset);
private:
llvm::DenseSet<uintX_t> LiveOffsets;
};
// This corresponds to a .eh_frame section of an input file.
template <class ELFT> class EhInputSection : public SplitInputSection<ELFT> {
public:
typedef typename ELFT::Shdr Elf_Shdr;
typedef typename ELFT::uint uintX_t;
EhInputSection(ObjectFile<ELFT> *F, const Elf_Shdr *Header);
static bool classof(const InputSectionBase<ELFT> *S);
void split();
// Translate an offset in the input section to an offset in the output
// section.
uintX_t getOffset(uintX_t Offset);
// Relocation section that refer to this one.
const Elf_Shdr *RelocSection = nullptr;
};
// This corresponds to a non SHF_MERGE section of an input file.
template <class ELFT> class InputSection : public InputSectionBase<ELFT> {
friend ICF<ELFT>;
typedef InputSectionBase<ELFT> Base;
typedef typename ELFT::Shdr Elf_Shdr;
typedef typename ELFT::Rela Elf_Rela;
typedef typename ELFT::Rel Elf_Rel;
typedef typename ELFT::Sym Elf_Sym;
typedef typename ELFT::uint uintX_t;
public:
InputSection(ObjectFile<ELFT> *F, const Elf_Shdr *Header);
// Write this section to a mmap'ed file, assuming Buf is pointing to
// beginning of the output section.
void writeTo(uint8_t *Buf);
// Relocation sections that refer to this one.
llvm::TinyPtrVector<const Elf_Shdr *> RelocSections;
// The offset from beginning of the output sections this section was assigned
// to. The writer sets a value.
uint64_t OutSecOff = 0;
static bool classof(const InputSectionBase<ELFT> *S);
InputSectionBase<ELFT> *getRelocatedSection();
[ELF] Implement infrastructure for thunk code creation Some targets might require creation of thunks. For example, MIPS targets require stubs to call PIC code from non-PIC one. The patch implements infrastructure for thunk code creation and provides support for MIPS LA25 stubs. Any MIPS PIC code function is invoked with its address in register $t9. So if we have a branch instruction from non-PIC code to the PIC one we cannot make the jump directly and need to create a small stub to save the target function address. See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf - In relocation scanning phase we ask target about thunk creation necessity by calling `TagetInfo::needsThunk` method. The `InputSection` class maintains list of Symbols requires thunk creation. - Reassigning offsets performed for each input sections after relocation scanning complete because position of each section might change due thunk creation. - The patch introduces new dedicated value for DefinedSynthetic symbols DefinedSynthetic::SectionEnd. Synthetic symbol with that value always points to the end of the corresponding output section. That allows to escape updating synthetic symbols if output sections sizes changes after relocation scanning due thunk creation. - In the `InputSection::writeTo` method we write thunks after corresponding input section. Each thunk is written by calling `TargetInfo::writeThunk` method. - The patch supports the only type of thunk code for each target. For now, it is enough. Differential Revision: http://reviews.llvm.org/D17934 llvm-svn: 265059
2016-04-01 05:26:23 +08:00
// Register thunk related to the symbol. When the section is written
// to a mmap'ed file, target is requested to write an actual thunk code.
// Now thunks is supported for MIPS target only.
void addThunk(SymbolBody &Body);
// The offset of synthetic thunk code from beginning of this section.
uint64_t getThunkOff() const;
// Size of chunk with thunks code.
uint64_t getThunksSize() const;
template <class RelTy>
void relocateNonAlloc(uint8_t *Buf, llvm::ArrayRef<RelTy> Rels);
private:
template <class RelTy>
void copyRelocations(uint8_t *Buf, llvm::ArrayRef<RelTy> Rels);
// Called by ICF to merge two input sections.
void replace(InputSection<ELFT> *Other);
// Used by ICF.
uint64_t GroupId = 0;
[ELF] Implement infrastructure for thunk code creation Some targets might require creation of thunks. For example, MIPS targets require stubs to call PIC code from non-PIC one. The patch implements infrastructure for thunk code creation and provides support for MIPS LA25 stubs. Any MIPS PIC code function is invoked with its address in register $t9. So if we have a branch instruction from non-PIC code to the PIC one we cannot make the jump directly and need to create a small stub to save the target function address. See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf - In relocation scanning phase we ask target about thunk creation necessity by calling `TagetInfo::needsThunk` method. The `InputSection` class maintains list of Symbols requires thunk creation. - Reassigning offsets performed for each input sections after relocation scanning complete because position of each section might change due thunk creation. - The patch introduces new dedicated value for DefinedSynthetic symbols DefinedSynthetic::SectionEnd. Synthetic symbol with that value always points to the end of the corresponding output section. That allows to escape updating synthetic symbols if output sections sizes changes after relocation scanning due thunk creation. - In the `InputSection::writeTo` method we write thunks after corresponding input section. Each thunk is written by calling `TargetInfo::writeThunk` method. - The patch supports the only type of thunk code for each target. For now, it is enough. Differential Revision: http://reviews.llvm.org/D17934 llvm-svn: 265059
2016-04-01 05:26:23 +08:00
llvm::TinyPtrVector<const SymbolBody *> Thunks;
};
// MIPS .reginfo section provides information on the registers used by the code
// in the object file. Linker should collect this information and write a single
// .reginfo section in the output file. The output section contains a union of
// used registers masks taken from input .reginfo sections and final value
// of the `_gp` symbol. For details: Chapter 4 / "Register Information" at
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
template <class ELFT>
class MipsReginfoInputSection : public InputSectionBase<ELFT> {
typedef typename ELFT::Shdr Elf_Shdr;
public:
MipsReginfoInputSection(ObjectFile<ELFT> *F, const Elf_Shdr *Hdr);
static bool classof(const InputSectionBase<ELFT> *S);
const llvm::object::Elf_Mips_RegInfo<ELFT> *Reginfo = nullptr;
};
template <class ELFT>
class MipsOptionsInputSection : public InputSectionBase<ELFT> {
typedef typename ELFT::Shdr Elf_Shdr;
public:
MipsOptionsInputSection(ObjectFile<ELFT> *F, const Elf_Shdr *Hdr);
static bool classof(const InputSectionBase<ELFT> *S);
const llvm::object::Elf_Mips_RegInfo<ELFT> *Reginfo = nullptr;
};
2016-02-28 08:25:54 +08:00
} // namespace elf
} // namespace lld
#endif