hanchenye-llvm-project/lld/COFF/Writer.cpp

1215 lines
42 KiB
C++
Raw Normal View History

//===- Writer.cpp ---------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Writer.h"
#include "Config.h"
#include "DLL.h"
#include "InputFiles.h"
#include "MapFile.h"
#include "PDB.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Timer.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/RandomNumberGenerator.h"
#include "llvm/Support/xxhash.h"
#include <algorithm>
#include <cstdio>
#include <map>
#include <memory>
#include <utility>
using namespace llvm;
using namespace llvm::COFF;
using namespace llvm::object;
using namespace llvm::support;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::coff;
/* To re-generate DOSProgram:
$ cat > /tmp/DOSProgram.asm
org 0
; Copy cs to ds.
push cs
pop ds
; Point ds:dx at the $-terminated string.
mov dx, str
; Int 21/AH=09h: Write string to standard output.
mov ah, 0x9
int 0x21
; Int 21/AH=4Ch: Exit with return code (in AL).
mov ax, 0x4C01
int 0x21
str:
db 'This program cannot be run in DOS mode.$'
align 8, db 0
$ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin
$ xxd -i /tmp/DOSProgram.bin
*/
static unsigned char DOSProgram[] = {
0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c,
0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72,
0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65,
0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20,
0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00
};
static_assert(sizeof(DOSProgram) % 8 == 0,
"DOSProgram size must be multiple of 8");
static const int SectorSize = 512;
static const int DOSStubSize = sizeof(dos_header) + sizeof(DOSProgram);
static_assert(DOSStubSize % 8 == 0, "DOSStub size must be multiple of 8");
static const int NumberfOfDataDirectory = 16;
namespace {
class DebugDirectoryChunk : public Chunk {
public:
DebugDirectoryChunk(const std::vector<Chunk *> &R) : Records(R) {}
size_t getSize() const override {
return Records.size() * sizeof(debug_directory);
}
void writeTo(uint8_t *B) const override {
auto *D = reinterpret_cast<debug_directory *>(B + OutputSectionOff);
for (const Chunk *Record : Records) {
D->Characteristics = 0;
D->TimeDateStamp = 0;
D->MajorVersion = 0;
D->MinorVersion = 0;
D->Type = COFF::IMAGE_DEBUG_TYPE_CODEVIEW;
D->SizeOfData = Record->getSize();
D->AddressOfRawData = Record->getRVA();
OutputSection *OS = Record->getOutputSection();
uint64_t Offs = OS->getFileOff() + (Record->getRVA() - OS->getRVA());
D->PointerToRawData = Offs;
TimeDateStamps.push_back(&D->TimeDateStamp);
++D;
}
}
void setTimeDateStamp(uint32_t TimeDateStamp) {
for (support::ulittle32_t *TDS : TimeDateStamps)
*TDS = TimeDateStamp;
}
private:
mutable std::vector<support::ulittle32_t *> TimeDateStamps;
const std::vector<Chunk *> &Records;
};
class CVDebugRecordChunk : public Chunk {
public:
CVDebugRecordChunk() {
PDBAbsPath = Config->PDBPath;
if (!PDBAbsPath.empty())
llvm::sys::fs::make_absolute(PDBAbsPath);
}
size_t getSize() const override {
return sizeof(codeview::DebugInfo) + PDBAbsPath.size() + 1;
}
void writeTo(uint8_t *B) const override {
// Save off the DebugInfo entry to backfill the file signature (build id)
// in Writer::writeBuildId
BuildId = reinterpret_cast<codeview::DebugInfo *>(B + OutputSectionOff);
// variable sized field (PDB Path)
char *P = reinterpret_cast<char *>(B + OutputSectionOff + sizeof(*BuildId));
if (!PDBAbsPath.empty())
memcpy(P, PDBAbsPath.data(), PDBAbsPath.size());
P[PDBAbsPath.size()] = '\0';
}
SmallString<128> PDBAbsPath;
mutable codeview::DebugInfo *BuildId = nullptr;
};
// The writer writes a SymbolTable result to a file.
class Writer {
public:
Writer() : Buffer(errorHandler().OutputBuffer) {}
void run();
private:
void createSections();
void createMiscChunks();
void createImportTables();
void createExportTable();
void assignAddresses();
void removeEmptySections();
void createSymbolAndStringTable();
void openFile(StringRef OutputPath);
template <typename PEHeaderTy> void writeHeader();
void createSEHTable(OutputSection *RData);
void createGuardCFTables(OutputSection *RData);
void createGLJmpTable(OutputSection *RData);
void markSymbolsForRVATable(ObjFile *File,
ArrayRef<SectionChunk *> SymIdxChunks,
SymbolRVASet &TableSymbols);
void maybeAddRVATable(OutputSection *RData, SymbolRVASet TableSymbols,
StringRef TableSym, StringRef CountSym);
void setSectionPermissions();
void writeSections();
void writeBuildId();
void sortExceptionTable();
llvm::Optional<coff_symbol16> createSymbol(Defined *D);
size_t addEntryToStringTable(StringRef Str);
OutputSection *findSection(StringRef Name);
OutputSection *createSection(StringRef Name);
void addBaserels(OutputSection *Dest);
void addBaserelBlocks(OutputSection *Dest, std::vector<Baserel> &V);
uint32_t getSizeOfInitializedData();
std::map<StringRef, std::vector<DefinedImportData *>> binImports();
std::unique_ptr<FileOutputBuffer> &Buffer;
std::vector<OutputSection *> OutputSections;
std::vector<char> Strtab;
std::vector<llvm::object::coff_symbol16> OutputSymtab;
IdataContents Idata;
DelayLoadContents DelayIdata;
EdataContents Edata;
RVATableChunk *GuardFidsTable = nullptr;
RVATableChunk *SEHTable = nullptr;
DebugDirectoryChunk *DebugDirectory = nullptr;
std::vector<Chunk *> DebugRecords;
CVDebugRecordChunk *BuildId = nullptr;
Optional<codeview::DebugInfo> PreviousBuildId;
ArrayRef<uint8_t> SectionTable;
uint64_t FileSize;
uint32_t PointerToSymbolTable = 0;
uint64_t SizeOfImage;
uint64_t SizeOfHeaders;
};
} // anonymous namespace
namespace lld {
namespace coff {
static Timer CodeLayoutTimer("Code Layout", Timer::root());
static Timer DiskCommitTimer("Commit Output File", Timer::root());
void writeResult() { Writer().run(); }
void OutputSection::addChunk(Chunk *C) {
Chunks.push_back(C);
C->setOutputSection(this);
}
void OutputSection::addPermissions(uint32_t C) {
Header.Characteristics |= C & PermMask;
}
void OutputSection::setPermissions(uint32_t C) {
Header.Characteristics = C & PermMask;
}
// Write the section header to a given buffer.
void OutputSection::writeHeaderTo(uint8_t *Buf) {
auto *Hdr = reinterpret_cast<coff_section *>(Buf);
*Hdr = Header;
if (StringTableOff) {
// If name is too long, write offset into the string table as a name.
sprintf(Hdr->Name, "/%d", StringTableOff);
} else {
assert(!Config->Debug || Name.size() <= COFF::NameSize ||
(Hdr->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0);
strncpy(Hdr->Name, Name.data(),
std::min(Name.size(), (size_t)COFF::NameSize));
}
}
} // namespace coff
} // namespace lld
// PDBs are matched against executables using a build id which consists of three
// components:
// 1. A 16-bit GUID
// 2. An age
// 3. A time stamp.
//
// Debuggers and symbol servers match executables against debug info by checking
// each of these components of the EXE/DLL against the corresponding value in
// the PDB and failing a match if any of the components differ. In the case of
// symbol servers, symbols are cached in a folder that is a function of the
// GUID. As a result, in order to avoid symbol cache pollution where every
// incremental build copies a new PDB to the symbol cache, we must try to re-use
// the existing GUID if one exists, but bump the age. This way the match will
// fail, so the symbol cache knows to use the new PDB, but the GUID matches, so
// it overwrites the existing item in the symbol cache rather than making a new
// one.
static Optional<codeview::DebugInfo> loadExistingBuildId(StringRef Path) {
// We don't need to incrementally update a previous build id if we're not
// writing codeview debug info.
if (!Config->Debug)
return None;
auto ExpectedBinary = llvm::object::createBinary(Path);
if (!ExpectedBinary) {
consumeError(ExpectedBinary.takeError());
return None;
}
auto Binary = std::move(*ExpectedBinary);
if (!Binary.getBinary()->isCOFF())
return None;
std::error_code EC;
COFFObjectFile File(Binary.getBinary()->getMemoryBufferRef(), EC);
if (EC)
return None;
// If the machine of the binary we're outputting doesn't match the machine
// of the existing binary, don't try to re-use the build id.
if (File.is64() != Config->is64() || File.getMachine() != Config->Machine)
return None;
for (const auto &DebugDir : File.debug_directories()) {
if (DebugDir.Type != IMAGE_DEBUG_TYPE_CODEVIEW)
continue;
const codeview::DebugInfo *ExistingDI = nullptr;
StringRef PDBFileName;
if (auto EC = File.getDebugPDBInfo(ExistingDI, PDBFileName)) {
(void)EC;
return None;
}
// We only support writing PDBs in v70 format. So if this is not a build
// id that we recognize / support, ignore it.
if (ExistingDI->Signature.CVSignature != OMF::Signature::PDB70)
return None;
return *ExistingDI;
}
return None;
}
// The main function of the writer.
void Writer::run() {
ScopedTimer T1(CodeLayoutTimer);
createSections();
createMiscChunks();
createImportTables();
createExportTable();
if (Config->Relocatable)
createSection(".reloc");
assignAddresses();
removeEmptySections();
setSectionPermissions();
createSymbolAndStringTable();
if (FileSize > UINT32_MAX)
fatal("image size (" + Twine(FileSize) + ") " +
"exceeds maximum allowable size (" + Twine(UINT32_MAX) + ")");
// We must do this before opening the output file, as it depends on being able
// to read the contents of the existing output file.
PreviousBuildId = loadExistingBuildId(Config->OutputFile);
openFile(Config->OutputFile);
if (Config->is64()) {
writeHeader<pe32plus_header>();
} else {
writeHeader<pe32_header>();
}
writeSections();
sortExceptionTable();
writeBuildId();
T1.stop();
if (!Config->PDBPath.empty() && Config->Debug) {
assert(BuildId);
createPDB(Symtab, OutputSections, SectionTable, *BuildId->BuildId);
}
writeMapFile(OutputSections);
ScopedTimer T2(DiskCommitTimer);
if (auto E = Buffer->commit())
fatal("failed to write the output file: " + toString(std::move(E)));
}
static StringRef getOutputSection(StringRef Name) {
StringRef S = Name.split('$').first;
// Treat a later period as a separator for MinGW, for sections like
// ".ctors.01234".
S = S.substr(0, S.find('.', 1));
auto It = Config->Merge.find(S);
if (It == Config->Merge.end())
return S;
return It->second;
}
// For /order.
static void sortBySectionOrder(std::vector<Chunk *> &Chunks) {
auto GetPriority = [](const Chunk *C) {
if (auto *Sec = dyn_cast<SectionChunk>(C))
if (Sec->Sym)
return Config->Order.lookup(Sec->Sym->getName());
return 0;
};
std::stable_sort(Chunks.begin(), Chunks.end(),
[=](const Chunk *A, const Chunk *B) {
return GetPriority(A) < GetPriority(B);
});
}
// Create output section objects and add them to OutputSections.
void Writer::createSections() {
// First, bin chunks by name.
std::map<StringRef, std::vector<Chunk *>> Map;
for (Chunk *C : Symtab->getChunks()) {
auto *SC = dyn_cast<SectionChunk>(C);
if (SC && !SC->isLive()) {
if (Config->Verbose)
SC->printDiscardedMessage();
continue;
}
Map[C->getSectionName()].push_back(C);
}
// Process an /order option.
if (!Config->Order.empty())
for (auto &Pair : Map)
sortBySectionOrder(Pair.second);
// Then create an OutputSection for each section.
// '$' and all following characters in input section names are
// discarded when determining output section. So, .text$foo
// contributes to .text, for example. See PE/COFF spec 3.2.
SmallDenseMap<StringRef, OutputSection *> Sections;
for (auto Pair : Map) {
StringRef Name = getOutputSection(Pair.first);
OutputSection *&Sec = Sections[Name];
if (!Sec) {
Sec = make<OutputSection>(Name);
OutputSections.push_back(Sec);
}
std::vector<Chunk *> &Chunks = Pair.second;
for (Chunk *C : Chunks) {
Sec->addChunk(C);
Sec->addPermissions(C->getPermissions());
}
}
}
void Writer::createMiscChunks() {
OutputSection *RData = createSection(".rdata");
for (auto &P : MergeChunk::Instances)
RData->addChunk(P.second);
// Create thunks for locally-dllimported symbols.
if (!Symtab->LocalImportChunks.empty()) {
for (Chunk *C : Symtab->LocalImportChunks)
RData->addChunk(C);
}
// Create Debug Information Chunks
if (Config->Debug) {
DebugDirectory = make<DebugDirectoryChunk>(DebugRecords);
// Make a CVDebugRecordChunk even when /DEBUG:CV is not specified. We
// output a PDB no matter what, and this chunk provides the only means of
// allowing a debugger to match a PDB and an executable. So we need it even
// if we're ultimately not going to write CodeView data to the PDB.
auto *CVChunk = make<CVDebugRecordChunk>();
BuildId = CVChunk;
DebugRecords.push_back(CVChunk);
RData->addChunk(DebugDirectory);
for (Chunk *C : DebugRecords)
RData->addChunk(C);
}
// Create SEH table. x86-only.
if (Config->Machine == I386)
createSEHTable(RData);
// Create /guard:cf tables if requested.
if (Config->GuardCF != GuardCFLevel::Off)
createGuardCFTables(RData);
}
// Create .idata section for the DLL-imported symbol table.
// The format of this section is inherently Windows-specific.
// IdataContents class abstracted away the details for us,
// so we just let it create chunks and add them to the section.
void Writer::createImportTables() {
if (ImportFile::Instances.empty())
return;
// Initialize DLLOrder so that import entries are ordered in
// the same order as in the command line. (That affects DLL
// initialization order, and this ordering is MSVC-compatible.)
for (ImportFile *File : ImportFile::Instances) {
if (!File->Live)
continue;
std::string DLL = StringRef(File->DLLName).lower();
if (Config->DLLOrder.count(DLL) == 0)
Config->DLLOrder[DLL] = Config->DLLOrder.size();
}
OutputSection *Text = createSection(".text");
for (ImportFile *File : ImportFile::Instances) {
if (!File->Live)
continue;
if (DefinedImportThunk *Thunk = File->ThunkSym)
Text->addChunk(Thunk->getChunk());
if (Config->DelayLoads.count(StringRef(File->DLLName).lower())) {
if (!File->ThunkSym)
fatal("cannot delay-load " + toString(File) +
" due to import of data: " + toString(*File->ImpSym));
DelayIdata.add(File->ImpSym);
} else {
Idata.add(File->ImpSym);
}
}
if (!Idata.empty()) {
OutputSection *Sec = createSection(".idata");
for (Chunk *C : Idata.getChunks())
Sec->addChunk(C);
}
if (!DelayIdata.empty()) {
Defined *Helper = cast<Defined>(Config->DelayLoadHelper);
DelayIdata.create(Helper);
OutputSection *Sec = createSection(".didat");
for (Chunk *C : DelayIdata.getChunks())
Sec->addChunk(C);
Sec = createSection(".data");
for (Chunk *C : DelayIdata.getDataChunks())
Sec->addChunk(C);
Sec = createSection(".text");
for (Chunk *C : DelayIdata.getCodeChunks())
Sec->addChunk(C);
}
}
void Writer::createExportTable() {
if (Config->Exports.empty())
return;
OutputSection *Sec = createSection(".edata");
for (Chunk *C : Edata.Chunks)
Sec->addChunk(C);
}
// The Windows loader doesn't seem to like empty sections,
// so we remove them if any.
void Writer::removeEmptySections() {
auto IsEmpty = [](OutputSection *S) { return S->getVirtualSize() == 0; };
OutputSections.erase(
std::remove_if(OutputSections.begin(), OutputSections.end(), IsEmpty),
OutputSections.end());
uint32_t Idx = 1;
for (OutputSection *Sec : OutputSections)
Sec->SectionIndex = Idx++;
}
size_t Writer::addEntryToStringTable(StringRef Str) {
assert(Str.size() > COFF::NameSize);
size_t OffsetOfEntry = Strtab.size() + 4; // +4 for the size field
Strtab.insert(Strtab.end(), Str.begin(), Str.end());
Strtab.push_back('\0');
return OffsetOfEntry;
}
Optional<coff_symbol16> Writer::createSymbol(Defined *Def) {
// Relative symbols are unrepresentable in a COFF symbol table.
if (isa<DefinedSynthetic>(Def))
return None;
// Don't write dead symbols or symbols in codeview sections to the symbol
// table.
if (!Def->isLive())
return None;
if (auto *D = dyn_cast<DefinedRegular>(Def))
if (D->getChunk()->isCodeView())
return None;
coff_symbol16 Sym;
StringRef Name = Def->getName();
if (Name.size() > COFF::NameSize) {
Sym.Name.Offset.Zeroes = 0;
Sym.Name.Offset.Offset = addEntryToStringTable(Name);
} else {
memset(Sym.Name.ShortName, 0, COFF::NameSize);
memcpy(Sym.Name.ShortName, Name.data(), Name.size());
}
if (auto *D = dyn_cast<DefinedCOFF>(Def)) {
COFFSymbolRef Ref = D->getCOFFSymbol();
Sym.Type = Ref.getType();
Sym.StorageClass = Ref.getStorageClass();
} else {
Sym.Type = IMAGE_SYM_TYPE_NULL;
Sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL;
}
Sym.NumberOfAuxSymbols = 0;
switch (Def->kind()) {
case Symbol::DefinedAbsoluteKind:
Sym.Value = Def->getRVA();
Sym.SectionNumber = IMAGE_SYM_ABSOLUTE;
break;
default: {
uint64_t RVA = Def->getRVA();
OutputSection *Sec = nullptr;
for (OutputSection *S : OutputSections) {
if (S->getRVA() > RVA)
break;
Sec = S;
}
Sym.Value = RVA - Sec->getRVA();
Sym.SectionNumber = Sec->SectionIndex;
break;
}
}
return Sym;
}
void Writer::createSymbolAndStringTable() {
// PE/COFF images are limited to 8 byte section names. Longer names can be
// supported by writing a non-standard string table, but this string table is
// not mapped at runtime and the long names will therefore be inaccessible.
// link.exe always truncates section names to 8 bytes, whereas binutils always
// preserves long section names via the string table. LLD adopts a hybrid
// solution where discardable sections have long names preserved and
// non-discardable sections have their names truncated, to ensure that any
// section which is mapped at runtime also has its name mapped at runtime.
for (OutputSection *Sec : OutputSections) {
if (Sec->Name.size() <= COFF::NameSize)
continue;
if ((Sec->getPermissions() & IMAGE_SCN_MEM_DISCARDABLE) == 0)
continue;
Sec->setStringTableOff(addEntryToStringTable(Sec->Name));
}
if (Config->DebugDwarf) {
for (ObjFile *File : ObjFile::Instances) {
for (Symbol *B : File->getSymbols()) {
auto *D = dyn_cast_or_null<Defined>(B);
if (!D || D->WrittenToSymtab)
continue;
D->WrittenToSymtab = true;
if (Optional<coff_symbol16> Sym = createSymbol(D))
OutputSymtab.push_back(*Sym);
}
}
}
if (OutputSymtab.empty() && Strtab.empty())
return;
// We position the symbol table to be adjacent to the end of the last section.
uint64_t FileOff = FileSize;
PointerToSymbolTable = FileOff;
FileOff += OutputSymtab.size() * sizeof(coff_symbol16);
FileOff += 4 + Strtab.size();
FileSize = alignTo(FileOff, SectorSize);
}
// Visits all sections to assign incremental, non-overlapping RVAs and
// file offsets.
void Writer::assignAddresses() {
SizeOfHeaders = DOSStubSize + sizeof(PEMagic) + sizeof(coff_file_header) +
sizeof(data_directory) * NumberfOfDataDirectory +
sizeof(coff_section) * OutputSections.size();
SizeOfHeaders +=
Config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header);
SizeOfHeaders = alignTo(SizeOfHeaders, SectorSize);
uint64_t RVA = PageSize; // The first page is kept unmapped.
FileSize = SizeOfHeaders;
// Move DISCARDABLE (or non-memory-mapped) sections to the end of file because
// the loader cannot handle holes.
std::stable_partition(
OutputSections.begin(), OutputSections.end(), [](OutputSection *S) {
return (S->getPermissions() & IMAGE_SCN_MEM_DISCARDABLE) == 0;
});
for (OutputSection *Sec : OutputSections) {
if (Sec->Name == ".reloc")
addBaserels(Sec);
uint64_t RawSize = 0, VirtualSize = 0;
Sec->Header.VirtualAddress = RVA;
for (Chunk *C : Sec->getChunks()) {
VirtualSize = alignTo(VirtualSize, C->Alignment);
C->setRVA(RVA + VirtualSize);
C->OutputSectionOff = VirtualSize;
C->finalizeContents();
VirtualSize += C->getSize();
if (C->hasData())
RawSize = alignTo(VirtualSize, SectorSize);
}
if (VirtualSize > UINT32_MAX)
error("section larger than 4 GiB: " + Sec->Name);
Sec->Header.VirtualSize = VirtualSize;
Sec->Header.SizeOfRawData = RawSize;
if (RawSize != 0)
Sec->Header.PointerToRawData = FileSize;
RVA += alignTo(VirtualSize, PageSize);
FileSize += alignTo(RawSize, SectorSize);
}
SizeOfImage = alignTo(RVA, PageSize);
}
template <typename PEHeaderTy> void Writer::writeHeader() {
// Write DOS header. For backwards compatibility, the first part of a PE/COFF
// executable consists of an MS-DOS MZ executable. If the executable is run
// under DOS, that program gets run (usually to just print an error message).
// When run under Windows, the loader looks at AddressOfNewExeHeader and uses
// the PE header instead.
uint8_t *Buf = Buffer->getBufferStart();
auto *DOS = reinterpret_cast<dos_header *>(Buf);
Buf += sizeof(dos_header);
DOS->Magic[0] = 'M';
DOS->Magic[1] = 'Z';
DOS->UsedBytesInTheLastPage = DOSStubSize % 512;
DOS->FileSizeInPages = divideCeil(DOSStubSize, 512);
DOS->HeaderSizeInParagraphs = sizeof(dos_header) / 16;
DOS->AddressOfRelocationTable = sizeof(dos_header);
DOS->AddressOfNewExeHeader = DOSStubSize;
// Write DOS program.
memcpy(Buf, DOSProgram, sizeof(DOSProgram));
Buf += sizeof(DOSProgram);
// Write PE magic
memcpy(Buf, PEMagic, sizeof(PEMagic));
Buf += sizeof(PEMagic);
// Write COFF header
auto *COFF = reinterpret_cast<coff_file_header *>(Buf);
Buf += sizeof(*COFF);
COFF->Machine = Config->Machine;
COFF->NumberOfSections = OutputSections.size();
COFF->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE;
if (Config->LargeAddressAware)
COFF->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
if (!Config->is64())
COFF->Characteristics |= IMAGE_FILE_32BIT_MACHINE;
if (Config->DLL)
COFF->Characteristics |= IMAGE_FILE_DLL;
if (!Config->Relocatable)
COFF->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED;
COFF->SizeOfOptionalHeader =
sizeof(PEHeaderTy) + sizeof(data_directory) * NumberfOfDataDirectory;
// Write PE header
auto *PE = reinterpret_cast<PEHeaderTy *>(Buf);
Buf += sizeof(*PE);
PE->Magic = Config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32;
// If {Major,Minor}LinkerVersion is left at 0.0, then for some
// reason signing the resulting PE file with Authenticode produces a
// signature that fails to validate on Windows 7 (but is OK on 10).
// Set it to 14.0, which is what VS2015 outputs, and which avoids
// that problem.
PE->MajorLinkerVersion = 14;
PE->MinorLinkerVersion = 0;
PE->ImageBase = Config->ImageBase;
PE->SectionAlignment = PageSize;
PE->FileAlignment = SectorSize;
PE->MajorImageVersion = Config->MajorImageVersion;
PE->MinorImageVersion = Config->MinorImageVersion;
PE->MajorOperatingSystemVersion = Config->MajorOSVersion;
PE->MinorOperatingSystemVersion = Config->MinorOSVersion;
PE->MajorSubsystemVersion = Config->MajorOSVersion;
PE->MinorSubsystemVersion = Config->MinorOSVersion;
PE->Subsystem = Config->Subsystem;
PE->SizeOfImage = SizeOfImage;
PE->SizeOfHeaders = SizeOfHeaders;
if (!Config->NoEntry) {
Defined *Entry = cast<Defined>(Config->Entry);
PE->AddressOfEntryPoint = Entry->getRVA();
// Pointer to thumb code must have the LSB set, so adjust it.
if (Config->Machine == ARMNT)
PE->AddressOfEntryPoint |= 1;
}
2015-05-30 00:21:11 +08:00
PE->SizeOfStackReserve = Config->StackReserve;
PE->SizeOfStackCommit = Config->StackCommit;
PE->SizeOfHeapReserve = Config->HeapReserve;
PE->SizeOfHeapCommit = Config->HeapCommit;
if (Config->AppContainer)
PE->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER;
if (Config->DynamicBase)
PE->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE;
if (Config->HighEntropyVA)
PE->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA;
if (!Config->AllowBind)
PE->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND;
if (Config->NxCompat)
PE->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT;
if (!Config->AllowIsolation)
PE->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION;
if (Config->GuardCF != GuardCFLevel::Off)
PE->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_GUARD_CF;
if (Config->Machine == I386 && !SEHTable &&
!Symtab->findUnderscore("_load_config_used"))
PE->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_SEH;
if (Config->TerminalServerAware)
PE->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE;
PE->NumberOfRvaAndSize = NumberfOfDataDirectory;
if (OutputSection *Text = findSection(".text")) {
PE->BaseOfCode = Text->getRVA();
PE->SizeOfCode = Text->getRawSize();
}
PE->SizeOfInitializedData = getSizeOfInitializedData();
// Write data directory
auto *Dir = reinterpret_cast<data_directory *>(Buf);
Buf += sizeof(*Dir) * NumberfOfDataDirectory;
if (OutputSection *Sec = findSection(".edata")) {
Dir[EXPORT_TABLE].RelativeVirtualAddress = Sec->getRVA();
Dir[EXPORT_TABLE].Size = Sec->getVirtualSize();
}
if (!Idata.empty()) {
Dir[IMPORT_TABLE].RelativeVirtualAddress = Idata.getDirRVA();
Dir[IMPORT_TABLE].Size = Idata.getDirSize();
Dir[IAT].RelativeVirtualAddress = Idata.getIATRVA();
Dir[IAT].Size = Idata.getIATSize();
}
if (OutputSection *Sec = findSection(".rsrc")) {
Dir[RESOURCE_TABLE].RelativeVirtualAddress = Sec->getRVA();
Dir[RESOURCE_TABLE].Size = Sec->getVirtualSize();
}
if (OutputSection *Sec = findSection(".pdata")) {
Dir[EXCEPTION_TABLE].RelativeVirtualAddress = Sec->getRVA();
Dir[EXCEPTION_TABLE].Size = Sec->getVirtualSize();
}
if (OutputSection *Sec = findSection(".reloc")) {
Dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = Sec->getRVA();
Dir[BASE_RELOCATION_TABLE].Size = Sec->getVirtualSize();
}
if (Symbol *Sym = Symtab->findUnderscore("_tls_used")) {
if (Defined *B = dyn_cast<Defined>(Sym)) {
Dir[TLS_TABLE].RelativeVirtualAddress = B->getRVA();
Dir[TLS_TABLE].Size = Config->is64()
? sizeof(object::coff_tls_directory64)
: sizeof(object::coff_tls_directory32);
}
}
if (Config->Debug) {
Dir[DEBUG_DIRECTORY].RelativeVirtualAddress = DebugDirectory->getRVA();
Dir[DEBUG_DIRECTORY].Size = DebugDirectory->getSize();
}
if (Symbol *Sym = Symtab->findUnderscore("_load_config_used")) {
if (auto *B = dyn_cast<DefinedRegular>(Sym)) {
SectionChunk *SC = B->getChunk();
assert(B->getRVA() >= SC->getRVA());
uint64_t OffsetInChunk = B->getRVA() - SC->getRVA();
if (!SC->hasData() || OffsetInChunk + 4 > SC->getSize())
fatal("_load_config_used is malformed");
ArrayRef<uint8_t> SecContents = SC->getContents();
uint32_t LoadConfigSize =
*reinterpret_cast<const ulittle32_t *>(&SecContents[OffsetInChunk]);
if (OffsetInChunk + LoadConfigSize > SC->getSize())
fatal("_load_config_used is too large");
Dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress = B->getRVA();
Dir[LOAD_CONFIG_TABLE].Size = LoadConfigSize;
}
}
if (!DelayIdata.empty()) {
Dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress =
DelayIdata.getDirRVA();
Dir[DELAY_IMPORT_DESCRIPTOR].Size = DelayIdata.getDirSize();
}
// Write section table
for (OutputSection *Sec : OutputSections) {
Sec->writeHeaderTo(Buf);
Buf += sizeof(coff_section);
}
SectionTable = ArrayRef<uint8_t>(
Buf - OutputSections.size() * sizeof(coff_section), Buf);
if (OutputSymtab.empty() && Strtab.empty())
return;
COFF->PointerToSymbolTable = PointerToSymbolTable;
uint32_t NumberOfSymbols = OutputSymtab.size();
COFF->NumberOfSymbols = NumberOfSymbols;
auto *SymbolTable = reinterpret_cast<coff_symbol16 *>(
Buffer->getBufferStart() + COFF->PointerToSymbolTable);
for (size_t I = 0; I != NumberOfSymbols; ++I)
SymbolTable[I] = OutputSymtab[I];
// Create the string table, it follows immediately after the symbol table.
// The first 4 bytes is length including itself.
Buf = reinterpret_cast<uint8_t *>(&SymbolTable[NumberOfSymbols]);
write32le(Buf, Strtab.size() + 4);
if (!Strtab.empty())
memcpy(Buf + 4, Strtab.data(), Strtab.size());
}
void Writer::openFile(StringRef Path) {
Buffer = CHECK(
FileOutputBuffer::create(Path, FileSize, FileOutputBuffer::F_executable),
"failed to open " + Path);
}
void Writer::createSEHTable(OutputSection *RData) {
SymbolRVASet Handlers;
for (ObjFile *File : ObjFile::Instances) {
// FIXME: We should error here instead of earlier unless /safeseh:no was
// passed.
if (!File->hasSafeSEH())
return;
markSymbolsForRVATable(File, File->getSXDataChunks(), Handlers);
}
maybeAddRVATable(RData, std::move(Handlers), "__safe_se_handler_table",
"__safe_se_handler_count");
}
// Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set
// cannot contain duplicates. Therefore, the set is uniqued by Chunk and the
// symbol's offset into that Chunk.
static void addSymbolToRVASet(SymbolRVASet &RVASet, Defined *S) {
Chunk *C = S->getChunk();
if (auto *SC = dyn_cast<SectionChunk>(C))
C = SC->Repl; // Look through ICF replacement.
uint32_t Off = S->getRVA() - (C ? C->getRVA() : 0);
RVASet.insert({C, Off});
}
// Visit all relocations from all section contributions of this object file and
// mark the relocation target as address-taken.
static void markSymbolsWithRelocations(ObjFile *File,
SymbolRVASet &UsedSymbols) {
for (Chunk *C : File->getChunks()) {
// We only care about live section chunks. Common chunks and other chunks
// don't generally contain relocations.
SectionChunk *SC = dyn_cast<SectionChunk>(C);
if (!SC || !SC->isLive())
continue;
// Look for relocations in this section against symbols in executable output
// sections.
for (Symbol *Ref : SC->symbols()) {
// FIXME: Do further testing to see if the relocation type matters,
// especially for 32-bit where taking the address of something usually
// uses an absolute relocation instead of a relative one.
if (auto *D = dyn_cast_or_null<Defined>(Ref)) {
Chunk *RefChunk = D->getChunk();
OutputSection *OS = RefChunk ? RefChunk->getOutputSection() : nullptr;
if (OS && OS->getPermissions() & IMAGE_SCN_MEM_EXECUTE)
addSymbolToRVASet(UsedSymbols, D);
}
}
}
}
// Create the guard function id table. This is a table of RVAs of all
// address-taken functions. It is sorted and uniqued, just like the safe SEH
// table.
void Writer::createGuardCFTables(OutputSection *RData) {
SymbolRVASet AddressTakenSyms;
SymbolRVASet LongJmpTargets;
for (ObjFile *File : ObjFile::Instances) {
// If the object was compiled with /guard:cf, the address taken symbols
// are in .gfids$y sections, and the longjmp targets are in .gljmp$y
// sections. If the object was not compiled with /guard:cf, we assume there
// were no setjmp targets, and that all code symbols with relocations are
// possibly address-taken.
if (File->hasGuardCF()) {
markSymbolsForRVATable(File, File->getGuardFidChunks(), AddressTakenSyms);
markSymbolsForRVATable(File, File->getGuardLJmpChunks(), LongJmpTargets);
} else {
markSymbolsWithRelocations(File, AddressTakenSyms);
}
}
// Mark the image entry as address-taken.
if (Config->Entry)
addSymbolToRVASet(AddressTakenSyms, cast<Defined>(Config->Entry));
maybeAddRVATable(RData, std::move(AddressTakenSyms), "__guard_fids_table",
"__guard_fids_count");
// Add the longjmp target table unless the user told us not to.
if (Config->GuardCF == GuardCFLevel::Full)
maybeAddRVATable(RData, std::move(LongJmpTargets), "__guard_longjmp_table",
"__guard_longjmp_count");
// Set __guard_flags, which will be used in the load config to indicate that
// /guard:cf was enabled.
uint32_t GuardFlags = uint32_t(coff_guard_flags::CFInstrumented) |
uint32_t(coff_guard_flags::HasFidTable);
if (Config->GuardCF == GuardCFLevel::Full)
GuardFlags |= uint32_t(coff_guard_flags::HasLongJmpTable);
Symbol *FlagSym = Symtab->findUnderscore("__guard_flags");
cast<DefinedAbsolute>(FlagSym)->setVA(GuardFlags);
}
// Take a list of input sections containing symbol table indices and add those
// symbols to an RVA table. The challenge is that symbol RVAs are not known and
// depend on the table size, so we can't directly build a set of integers.
void Writer::markSymbolsForRVATable(ObjFile *File,
ArrayRef<SectionChunk *> SymIdxChunks,
SymbolRVASet &TableSymbols) {
for (SectionChunk *C : SymIdxChunks) {
// Skip sections discarded by linker GC. This comes up when a .gfids section
// is associated with something like a vtable and the vtable is discarded.
// In this case, the associated gfids section is discarded, and we don't
// mark the virtual member functions as address-taken by the vtable.
if (!C->isLive())
continue;
// Validate that the contents look like symbol table indices.
ArrayRef<uint8_t> Data = C->getContents();
if (Data.size() % 4 != 0) {
warn("ignoring " + C->getSectionName() +
" symbol table index section in object " + toString(File));
continue;
}
// Read each symbol table index and check if that symbol was included in the
// final link. If so, add it to the table symbol set.
ArrayRef<ulittle32_t> SymIndices(
reinterpret_cast<const ulittle32_t *>(Data.data()), Data.size() / 4);
ArrayRef<Symbol *> ObjSymbols = File->getSymbols();
for (uint32_t SymIndex : SymIndices) {
if (SymIndex >= ObjSymbols.size()) {
warn("ignoring invalid symbol table index in section " +
C->getSectionName() + " in object " + toString(File));
continue;
}
if (Symbol *S = ObjSymbols[SymIndex]) {
if (S->isLive())
addSymbolToRVASet(TableSymbols, cast<Defined>(S));
}
}
}
}
// Replace the absolute table symbol with a synthetic symbol pointing to
// TableChunk so that we can emit base relocations for it and resolve section
// relative relocations.
void Writer::maybeAddRVATable(OutputSection *RData,
SymbolRVASet TableSymbols,
StringRef TableSym, StringRef CountSym) {
if (TableSymbols.empty())
return;
RVATableChunk *TableChunk = make<RVATableChunk>(std::move(TableSymbols));
RData->addChunk(TableChunk);
Symbol *T = Symtab->findUnderscore(TableSym);
Symbol *C = Symtab->findUnderscore(CountSym);
replaceSymbol<DefinedSynthetic>(T, T->getName(), TableChunk);
cast<DefinedAbsolute>(C)->setVA(TableChunk->getSize() / 4);
}
// Handles /section options to allow users to overwrite
// section attributes.
void Writer::setSectionPermissions() {
for (auto &P : Config->Section) {
StringRef Name = P.first;
uint32_t Perm = P.second;
if (auto *Sec = findSection(Name))
Sec->setPermissions(Perm);
}
}
// Write section contents to a mmap'ed file.
void Writer::writeSections() {
// Record the number of sections to apply section index relocations
// against absolute symbols. See applySecIdx in Chunks.cpp..
DefinedAbsolute::NumOutputSections = OutputSections.size();
uint8_t *Buf = Buffer->getBufferStart();
for (OutputSection *Sec : OutputSections) {
uint8_t *SecBuf = Buf + Sec->getFileOff();
// Fill gaps between functions in .text with INT3 instructions
// instead of leaving as NUL bytes (which can be interpreted as
// ADD instructions).
if (Sec->getPermissions() & IMAGE_SCN_CNT_CODE)
memset(SecBuf, 0xCC, Sec->getRawSize());
for_each(parallel::par, Sec->getChunks().begin(), Sec->getChunks().end(),
[&](Chunk *C) { C->writeTo(SecBuf); });
}
}
void Writer::writeBuildId() {
// There are two important parts to the build ID.
// 1) If building with debug info, the COFF debug directory contains a
// timestamp as well as a Guid and Age of the PDB.
// 2) In all cases, the PE COFF file header also contains a timestamp.
// For reproducibility, instead of a timestamp we want to use a hash of the
// binary, however when building with debug info the hash needs to take into
// account the debug info, since it's possible to add blank lines to a file
// which causes the debug info to change but not the generated code.
//
// To handle this, we first set the Guid and Age in the debug directory (but
// only if we're doing a debug build). Then, we hash the binary (thus causing
// the hash to change if only the debug info changes, since the Age will be
// different). Finally, we write that hash into the debug directory (if
// present) as well as the COFF file header (always).
if (Config->Debug) {
assert(BuildId && "BuildId is not set!");
if (PreviousBuildId.hasValue()) {
*BuildId->BuildId = *PreviousBuildId;
BuildId->BuildId->PDB70.Age = BuildId->BuildId->PDB70.Age + 1;
} else {
BuildId->BuildId->Signature.CVSignature = OMF::Signature::PDB70;
BuildId->BuildId->PDB70.Age = 1;
llvm::getRandomBytes(BuildId->BuildId->PDB70.Signature, 16);
}
}
// At this point the only fields in the COFF file which remain unset are the
// "timestamp" in the COFF file header, and the ones in the coff debug
// directory. Now we can hash the file and write that hash to the various
// timestamp fields in the file.
StringRef OutputFileData(
reinterpret_cast<const char *>(Buffer->getBufferStart()),
Buffer->getBufferSize());
uint32_t Hash = static_cast<uint32_t>(xxHash64(OutputFileData));
if (DebugDirectory)
DebugDirectory->setTimeDateStamp(Hash);
uint8_t *Buf = Buffer->getBufferStart();
Buf += DOSStubSize + sizeof(PEMagic);
object::coff_file_header *CoffHeader =
reinterpret_cast<coff_file_header *>(Buf);
CoffHeader->TimeDateStamp = Hash;
}
// Sort .pdata section contents according to PE/COFF spec 5.5.
void Writer::sortExceptionTable() {
OutputSection *Sec = findSection(".pdata");
if (!Sec)
return;
// We assume .pdata contains function table entries only.
uint8_t *Begin = Buffer->getBufferStart() + Sec->getFileOff();
uint8_t *End = Begin + Sec->getVirtualSize();
if (Config->Machine == AMD64) {
struct Entry { ulittle32_t Begin, End, Unwind; };
sort(parallel::par, (Entry *)Begin, (Entry *)End,
[](const Entry &A, const Entry &B) { return A.Begin < B.Begin; });
return;
}
if (Config->Machine == ARMNT || Config->Machine == ARM64) {
struct Entry { ulittle32_t Begin, Unwind; };
sort(parallel::par, (Entry *)Begin, (Entry *)End,
[](const Entry &A, const Entry &B) { return A.Begin < B.Begin; });
return;
}
errs() << "warning: don't know how to handle .pdata.\n";
}
OutputSection *Writer::findSection(StringRef Name) {
for (OutputSection *Sec : OutputSections)
if (Sec->Name == Name)
return Sec;
return nullptr;
}
uint32_t Writer::getSizeOfInitializedData() {
uint32_t Res = 0;
for (OutputSection *S : OutputSections)
if (S->getPermissions() & IMAGE_SCN_CNT_INITIALIZED_DATA)
Res += S->getRawSize();
return Res;
}
// Returns an existing section or create a new one if not found.
OutputSection *Writer::createSection(StringRef Name) {
if (auto *Sec = findSection(Name))
return Sec;
const auto DATA = IMAGE_SCN_CNT_INITIALIZED_DATA;
const auto BSS = IMAGE_SCN_CNT_UNINITIALIZED_DATA;
const auto CODE = IMAGE_SCN_CNT_CODE;
const auto DISCARDABLE = IMAGE_SCN_MEM_DISCARDABLE;
const auto R = IMAGE_SCN_MEM_READ;
const auto W = IMAGE_SCN_MEM_WRITE;
const auto X = IMAGE_SCN_MEM_EXECUTE;
uint32_t Perms = StringSwitch<uint32_t>(Name)
.Case(".bss", BSS | R | W)
.Case(".data", DATA | R | W)
.Cases(".didat", ".edata", ".idata", ".rdata", DATA | R)
.Case(".reloc", DATA | DISCARDABLE | R)
.Case(".text", CODE | R | X)
.Default(0);
if (!Perms)
llvm_unreachable("unknown section name");
auto Sec = make<OutputSection>(Name);
Sec->addPermissions(Perms);
OutputSections.push_back(Sec);
return Sec;
}
// Dest is .reloc section. Add contents to that section.
void Writer::addBaserels(OutputSection *Dest) {
std::vector<Baserel> V;
for (OutputSection *Sec : OutputSections) {
if (Sec == Dest)
continue;
// Collect all locations for base relocations.
for (Chunk *C : Sec->getChunks())
C->getBaserels(&V);
// Add the addresses to .reloc section.
if (!V.empty())
addBaserelBlocks(Dest, V);
V.clear();
}
}
// Add addresses to .reloc section. Note that addresses are grouped by page.
void Writer::addBaserelBlocks(OutputSection *Dest, std::vector<Baserel> &V) {
const uint32_t Mask = ~uint32_t(PageSize - 1);
uint32_t Page = V[0].RVA & Mask;
size_t I = 0, J = 1;
for (size_t E = V.size(); J < E; ++J) {
uint32_t P = V[J].RVA & Mask;
if (P == Page)
continue;
Dest->addChunk(make<BaserelChunk>(Page, &V[I], &V[0] + J));
I = J;
Page = P;
}
if (I == J)
return;
Dest->addChunk(make<BaserelChunk>(Page, &V[I], &V[0] + J));
}