hanchenye-llvm-project/lldb/source/Core/ValueObject.cpp

3448 lines
118 KiB
C++
Raw Normal View History

//===-- ValueObject.cpp -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/ValueObject.h"
#include "lldb/Core/Address.h" // for Address
<rdar://problem/11757916> Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes: - Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file". - modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly - Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was. - modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile() Cleaned up header includes a bit as well. llvm-svn: 162860
2012-08-30 05:13:06 +08:00
#include "lldb/Core/Module.h"
#include "lldb/Core/Scalar.h" // for Scalar
#include "lldb/Core/ValueObjectCast.h"
#include "lldb/Core/ValueObjectChild.h"
Modified LLDB expressions to not have to JIT and run code just to see variable values or persistent expression variables. Now if an expression consists of a value that is a child of a variable, or of a persistent variable only, we will create a value object for it and make a ValueObjectConstResult from it to freeze the value (for program variables only, not persistent variables) and avoid running JITed code. For everything else we still parse up and JIT code and run it in the inferior. There was also a lot of clean up in the expression code. I made the ClangExpressionVariables be stored in collections of shared pointers instead of in collections of objects. This will help stop a lot of copy constructors on these large objects and also cleans up the code considerably. The persistent clang expression variables were moved over to the Target to ensure they persist across process executions. Added the ability for lldb_private::Target objects to evaluate expressions. We want to evaluate expressions at the target level in case we aren't running yet, or we have just completed running. We still want to be able to access the persistent expression variables between runs, and also evaluate constant expressions. Added extra logging to the dynamic loader plug-in for MacOSX. ModuleList objects can now dump their contents with the UUID, arch and full paths being logged with appropriate prefix values. Thread hardened the Communication class a bit by making the connection auto_ptr member into a shared pointer member and then making a local copy of the shared pointer in each method that uses it to make sure another thread can't nuke the connection object while it is being used by another thread. Added a new file to the lldb/test/load_unload test that causes the test a.out file to link to the libd.dylib file all the time. This will allow us to test using the DYLD_LIBRARY_PATH environment variable after moving libd.dylib somewhere else. llvm-svn: 121745
2010-12-14 10:59:59 +08:00
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Core/ValueObjectDynamicValue.h"
#include "lldb/Core/ValueObjectMemory.h"
#include "lldb/Core/ValueObjectSyntheticFilter.h"
#include "lldb/DataFormatters/DataVisualization.h"
#include "lldb/DataFormatters/FormatManager.h" // for FormatManager
#include "lldb/DataFormatters/StringPrinter.h"
#include "lldb/DataFormatters/TypeFormat.h" // for TypeFormatImpl_F...
#include "lldb/DataFormatters/TypeSummary.h" // for TypeSummaryOptions
#include "lldb/DataFormatters/TypeValidator.h" // for TypeValidatorImp...
#include "lldb/DataFormatters/ValueObjectPrinter.h"
#include "lldb/Expression/ExpressionVariable.h" // for ExpressionVariable
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Symbol/CompileUnit.h"
#include "lldb/Symbol/CompilerType.h"
#include "lldb/Symbol/Declaration.h" // for Declaration
#include "lldb/Symbol/SymbolContext.h" // for SymbolContext
#include "lldb/Symbol/Type.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Language.h"
#include "lldb/Target/LanguageRuntime.h"
#include "lldb/Target/ObjCLanguageRuntime.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/StackFrame.h" // for StackFrame
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/ThreadList.h" // for ThreadList
#include "lldb/Utility/DataBuffer.h" // for DataBuffer
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/Flags.h" // for Flags
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Logging.h" // for GetLogIfAllCateg...
#include "lldb/Utility/SharingPtr.h" // for SharingPtr
#include "lldb/Utility/Stream.h" // for Stream
#include "lldb/Utility/StreamString.h"
#include "lldb/lldb-private-types.h" // for RegisterInfo
#include "llvm/Support/Compiler.h" // for LLVM_FALLTHROUGH
#include <algorithm> // for min
#include <cstdint> // for uint32_t, uint64_t
#include <cstdlib> // for size_t, NULL
#include <memory> // for shared_ptr, oper...
#include <tuple> // for tie, tuple
#include <assert.h> // for assert
#include <inttypes.h> // for PRIu64, PRIx64
#include <stdio.h> // for snprintf
#include <string.h> // for memcpy, memcmp
namespace lldb_private {
class ExecutionContextScope;
}
namespace lldb_private {
class SymbolContextScope;
}
using namespace lldb;
using namespace lldb_private;
using namespace lldb_utility;
static user_id_t g_value_obj_uid = 0;
//----------------------------------------------------------------------
// ValueObject constructor
//----------------------------------------------------------------------
ValueObject::ValueObject(ValueObject &parent)
: UserID(++g_value_obj_uid), // Unique identifier for every value object
m_parent(&parent), m_root(NULL), m_update_point(parent.GetUpdatePoint()),
m_name(), m_data(), m_value(), m_error(), m_value_str(),
m_old_value_str(), m_location_str(), m_summary_str(), m_object_desc_str(),
m_validation_result(), m_manager(parent.GetManager()), m_children(),
m_synthetic_children(), m_dynamic_value(NULL), m_synthetic_value(NULL),
m_deref_valobj(NULL), m_format(eFormatDefault),
m_last_format(eFormatDefault), m_last_format_mgr_revision(0),
m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(),
m_type_validator_sp(), m_user_id_of_forced_summary(),
m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid),
m_value_checksum(),
m_preferred_display_language(lldb::eLanguageTypeUnknown),
m_language_flags(0), m_value_is_valid(false), m_value_did_change(false),
m_children_count_valid(false), m_old_value_valid(false),
m_is_deref_of_parent(false), m_is_array_item_for_pointer(false),
m_is_bitfield_for_scalar(false), m_is_child_at_offset(false),
m_is_getting_summary(false),
m_did_calculate_complete_objc_class_type(false),
m_is_synthetic_children_generated(
parent.m_is_synthetic_children_generated) {
m_manager->ManageObject(this);
}
//----------------------------------------------------------------------
// ValueObject constructor
//----------------------------------------------------------------------
ValueObject::ValueObject(ExecutionContextScope *exe_scope,
AddressType child_ptr_or_ref_addr_type)
: UserID(++g_value_obj_uid), // Unique identifier for every value object
m_parent(NULL), m_root(NULL), m_update_point(exe_scope), m_name(),
m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(),
m_location_str(), m_summary_str(), m_object_desc_str(),
m_validation_result(), m_manager(), m_children(), m_synthetic_children(),
m_dynamic_value(NULL), m_synthetic_value(NULL), m_deref_valobj(NULL),
m_format(eFormatDefault), m_last_format(eFormatDefault),
m_last_format_mgr_revision(0), m_type_summary_sp(), m_type_format_sp(),
m_synthetic_children_sp(), m_type_validator_sp(),
m_user_id_of_forced_summary(),
m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type),
m_value_checksum(),
m_preferred_display_language(lldb::eLanguageTypeUnknown),
m_language_flags(0), m_value_is_valid(false), m_value_did_change(false),
m_children_count_valid(false), m_old_value_valid(false),
m_is_deref_of_parent(false), m_is_array_item_for_pointer(false),
m_is_bitfield_for_scalar(false), m_is_child_at_offset(false),
m_is_getting_summary(false),
m_did_calculate_complete_objc_class_type(false),
m_is_synthetic_children_generated(false) {
m_manager = new ValueObjectManager();
m_manager->ManageObject(this);
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
ValueObject::~ValueObject() {}
bool ValueObject::UpdateValueIfNeeded(bool update_format) {
bool did_change_formats = false;
if (update_format)
did_change_formats = UpdateFormatsIfNeeded();
// If this is a constant value, then our success is predicated on whether
// we have an error or not
if (GetIsConstant()) {
// if you are constant, things might still have changed behind your back
// (e.g. you are a frozen object and things have changed deeper than you
// cared to freeze-dry yourself)
// in this case, your value has not changed, but "computed" entries might
// have, so you might now have
// a different summary, or a different object description. clear these so we
// will recompute them
if (update_format && !did_change_formats)
ClearUserVisibleData(eClearUserVisibleDataItemsSummary |
eClearUserVisibleDataItemsDescription);
return m_error.Success();
}
bool first_update = IsChecksumEmpty();
if (NeedsUpdating()) {
m_update_point.SetUpdated();
// Save the old value using swap to avoid a string copy which
// also will clear our m_value_str
if (m_value_str.empty()) {
m_old_value_valid = false;
} else {
m_old_value_valid = true;
m_old_value_str.swap(m_value_str);
ClearUserVisibleData(eClearUserVisibleDataItemsValue);
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-07 03:20:51 +08:00
}
ClearUserVisibleData();
if (IsInScope()) {
const bool value_was_valid = GetValueIsValid();
SetValueDidChange(false);
m_error.Clear();
// Call the pure virtual function to update the value
bool need_compare_checksums = false;
llvm::SmallVector<uint8_t, 16> old_checksum;
if (!first_update && CanProvideValue()) {
need_compare_checksums = true;
old_checksum.resize(m_value_checksum.size());
std::copy(m_value_checksum.begin(), m_value_checksum.end(),
old_checksum.begin());
}
bool success = UpdateValue();
SetValueIsValid(success);
if (success) {
const uint64_t max_checksum_size = 128;
m_data.Checksum(m_value_checksum, max_checksum_size);
} else {
need_compare_checksums = false;
m_value_checksum.clear();
}
assert(!need_compare_checksums ||
(!old_checksum.empty() && !m_value_checksum.empty()));
if (first_update)
SetValueDidChange(false);
else if (!m_value_did_change && success == false) {
// The value wasn't gotten successfully, so we mark this
// as changed if the value used to be valid and now isn't
SetValueDidChange(value_was_valid);
} else if (need_compare_checksums) {
SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0],
m_value_checksum.size()));
}
} else {
m_error.SetErrorString("out of scope");
}
}
return m_error.Success();
}
bool ValueObject::UpdateFormatsIfNeeded() {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS));
if (log)
log->Printf("[%s %p] checking for FormatManager revisions. ValueObject "
"rev: %d - Global rev: %d",
GetName().GetCString(), static_cast<void *>(this),
m_last_format_mgr_revision,
DataVisualization::GetCurrentRevision());
bool any_change = false;
if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) {
m_last_format_mgr_revision = DataVisualization::GetCurrentRevision();
any_change = true;
SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues));
SetSummaryFormat(
DataVisualization::GetSummaryFormat(*this, GetDynamicValueType()));
#ifndef LLDB_DISABLE_PYTHON
SetSyntheticChildren(
DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType()));
#endif
SetValidator(DataVisualization::GetValidator(*this, GetDynamicValueType()));
}
return any_change;
}
void ValueObject::SetNeedsUpdate() {
m_update_point.SetNeedsUpdate();
// We have to clear the value string here so ConstResult children will notice
// if their values are
// changed by hand (i.e. with SetValueAsCString).
ClearUserVisibleData(eClearUserVisibleDataItemsValue);
}
void ValueObject::ClearDynamicTypeInformation() {
m_children_count_valid = false;
m_did_calculate_complete_objc_class_type = false;
m_last_format_mgr_revision = 0;
m_override_type = CompilerType();
SetValueFormat(lldb::TypeFormatImplSP());
SetSummaryFormat(lldb::TypeSummaryImplSP());
SetSyntheticChildren(lldb::SyntheticChildrenSP());
}
CompilerType ValueObject::MaybeCalculateCompleteType() {
CompilerType compiler_type(GetCompilerTypeImpl());
if (m_did_calculate_complete_objc_class_type) {
if (m_override_type.IsValid())
return m_override_type;
else
return compiler_type;
}
CompilerType class_type;
bool is_pointer_type = false;
if (ClangASTContext::IsObjCObjectPointerType(compiler_type, &class_type)) {
is_pointer_type = true;
} else if (ClangASTContext::IsObjCObjectOrInterfaceType(compiler_type)) {
class_type = compiler_type;
} else {
return compiler_type;
}
m_did_calculate_complete_objc_class_type = true;
if (class_type) {
ConstString class_name(class_type.GetConstTypeName());
if (class_name) {
ProcessSP process_sp(
GetUpdatePoint().GetExecutionContextRef().GetProcessSP());
if (process_sp) {
ObjCLanguageRuntime *objc_language_runtime(
process_sp->GetObjCLanguageRuntime());
if (objc_language_runtime) {
TypeSP complete_objc_class_type_sp =
objc_language_runtime->LookupInCompleteClassCache(class_name);
if (complete_objc_class_type_sp) {
CompilerType complete_class(
complete_objc_class_type_sp->GetFullCompilerType());
if (complete_class.GetCompleteType()) {
if (is_pointer_type) {
m_override_type = complete_class.GetPointerType();
} else {
m_override_type = complete_class;
}
if (m_override_type.IsValid())
return m_override_type;
}
}
}
}
}
}
return compiler_type;
}
CompilerType ValueObject::GetCompilerType() {
return MaybeCalculateCompleteType();
}
TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); }
DataExtractor &ValueObject::GetDataExtractor() {
UpdateValueIfNeeded(false);
return m_data;
}
const Status &ValueObject::GetError() {
UpdateValueIfNeeded(false);
return m_error;
}
const ConstString &ValueObject::GetName() const { return m_name; }
const char *ValueObject::GetLocationAsCString() {
return GetLocationAsCStringImpl(m_value, m_data);
}
const char *ValueObject::GetLocationAsCStringImpl(const Value &value,
const DataExtractor &data) {
if (UpdateValueIfNeeded(false)) {
if (m_location_str.empty()) {
StreamString sstr;
Value::ValueType value_type = value.GetValueType();
switch (value_type) {
case Value::eValueTypeScalar:
case Value::eValueTypeVector:
if (value.GetContextType() == Value::eContextTypeRegisterInfo) {
RegisterInfo *reg_info = value.GetRegisterInfo();
if (reg_info) {
if (reg_info->name)
m_location_str = reg_info->name;
else if (reg_info->alt_name)
m_location_str = reg_info->alt_name;
if (m_location_str.empty())
m_location_str = (reg_info->encoding == lldb::eEncodingVector)
? "vector"
: "scalar";
}
}
if (m_location_str.empty())
m_location_str =
(value_type == Value::eValueTypeVector) ? "vector" : "scalar";
break;
case Value::eValueTypeLoadAddress:
case Value::eValueTypeFileAddress:
case Value::eValueTypeHostAddress: {
uint32_t addr_nibble_size = data.GetAddressByteSize() * 2;
sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size,
value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS));
m_location_str = sstr.GetString();
} break;
}
}
}
return m_location_str.c_str();
}
Value &ValueObject::GetValue() { return m_value; }
const Value &ValueObject::GetValue() const { return m_value; }
bool ValueObject::ResolveValue(Scalar &scalar) {
if (UpdateValueIfNeeded(
false)) // make sure that you are up to date before returning anything
{
ExecutionContext exe_ctx(GetExecutionContextRef());
Value tmp_value(m_value);
scalar = tmp_value.ResolveValue(&exe_ctx);
if (scalar.IsValid()) {
const uint32_t bitfield_bit_size = GetBitfieldBitSize();
if (bitfield_bit_size)
return scalar.ExtractBitfield(bitfield_bit_size,
GetBitfieldBitOffset());
return true;
}
}
return false;
}
bool ValueObject::IsLogicalTrue(Status &error) {
if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) {
LazyBool is_logical_true = language->IsLogicalTrue(*this, error);
switch (is_logical_true) {
case eLazyBoolYes:
case eLazyBoolNo:
return (is_logical_true == true);
case eLazyBoolCalculate:
break;
}
}
Scalar scalar_value;
if (!ResolveValue(scalar_value)) {
error.SetErrorString("failed to get a scalar result");
return false;
}
bool ret;
if (scalar_value.ULongLong(1) == 0)
ret = false;
else
ret = true;
error.Clear();
return ret;
}
bool ValueObject::GetValueIsValid() const { return m_value_is_valid; }
void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; }
bool ValueObject::GetValueDidChange() { return m_value_did_change; }
void ValueObject::SetValueDidChange(bool value_changed) {
m_value_did_change = value_changed;
}
ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) {
ValueObjectSP child_sp;
// We may need to update our value if we are dynamic
if (IsPossibleDynamicType())
UpdateValueIfNeeded(false);
if (idx < GetNumChildren()) {
// Check if we have already made the child value object?
if (can_create && !m_children.HasChildAtIndex(idx)) {
// No we haven't created the child at this index, so lets have our
// subclass do it and cache the result for quick future access.
m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0));
}
ValueObject *child = m_children.GetChildAtIndex(idx);
if (child != NULL)
return child->GetSP();
}
return child_sp;
}
lldb::ValueObjectSP
ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs,
size_t *index_of_error) {
if (idxs.size() == 0)
return GetSP();
ValueObjectSP root(GetSP());
for (size_t idx : idxs) {
root = root->GetChildAtIndex(idx, true);
if (!root) {
if (index_of_error)
*index_of_error = idx;
return root;
}
}
return root;
}
lldb::ValueObjectSP ValueObject::GetChildAtIndexPath(
llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) {
if (idxs.size() == 0)
return GetSP();
ValueObjectSP root(GetSP());
for (std::pair<size_t, bool> idx : idxs) {
root = root->GetChildAtIndex(idx.first, idx.second);
if (!root) {
if (index_of_error)
*index_of_error = idx.first;
return root;
}
}
return root;
}
lldb::ValueObjectSP
ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names,
ConstString *name_of_error) {
if (names.size() == 0)
return GetSP();
ValueObjectSP root(GetSP());
for (ConstString name : names) {
root = root->GetChildMemberWithName(name, true);
if (!root) {
if (name_of_error)
*name_of_error = name;
return root;
}
}
return root;
}
lldb::ValueObjectSP ValueObject::GetChildAtNamePath(
llvm::ArrayRef<std::pair<ConstString, bool>> names,
ConstString *name_of_error) {
if (names.size() == 0)
return GetSP();
ValueObjectSP root(GetSP());
for (std::pair<ConstString, bool> name : names) {
root = root->GetChildMemberWithName(name.first, name.second);
if (!root) {
if (name_of_error)
*name_of_error = name.first;
return root;
}
}
return root;
}
size_t ValueObject::GetIndexOfChildWithName(const ConstString &name) {
bool omit_empty_base_classes = true;
return GetCompilerType().GetIndexOfChildWithName(name.GetCString(),
omit_empty_base_classes);
}
ValueObjectSP ValueObject::GetChildMemberWithName(const ConstString &name,
bool can_create) {
// when getting a child by name, it could be buried inside some base
// classes (which really aren't part of the expression path), so we
// need a vector of indexes that can get us down to the correct child
ValueObjectSP child_sp;
// We may need to update our value if we are dynamic
if (IsPossibleDynamicType())
UpdateValueIfNeeded(false);
std::vector<uint32_t> child_indexes;
bool omit_empty_base_classes = true;
const size_t num_child_indexes =
GetCompilerType().GetIndexOfChildMemberWithName(
name.GetCString(), omit_empty_base_classes, child_indexes);
if (num_child_indexes > 0) {
std::vector<uint32_t>::const_iterator pos = child_indexes.begin();
std::vector<uint32_t>::const_iterator end = child_indexes.end();
child_sp = GetChildAtIndex(*pos, can_create);
for (++pos; pos != end; ++pos) {
if (child_sp) {
ValueObjectSP new_child_sp(child_sp->GetChildAtIndex(*pos, can_create));
child_sp = new_child_sp;
} else {
child_sp.reset();
}
}
}
return child_sp;
}
size_t ValueObject::GetNumChildren(uint32_t max) {
UpdateValueIfNeeded();
if (max < UINT32_MAX) {
if (m_children_count_valid) {
size_t children_count = m_children.GetChildrenCount();
return children_count <= max ? children_count : max;
} else
return CalculateNumChildren(max);
}
if (!m_children_count_valid) {
SetNumChildren(CalculateNumChildren());
}
return m_children.GetChildrenCount();
}
bool ValueObject::MightHaveChildren() {
bool has_children = false;
const uint32_t type_info = GetTypeInfo();
if (type_info) {
if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference))
has_children = true;
} else {
has_children = GetNumChildren() > 0;
}
return has_children;
}
// Should only be called by ValueObject::GetNumChildren()
void ValueObject::SetNumChildren(size_t num_children) {
m_children_count_valid = true;
m_children.SetChildrenCount(num_children);
}
void ValueObject::SetName(const ConstString &name) { m_name = name; }
ValueObject *ValueObject::CreateChildAtIndex(size_t idx,
bool synthetic_array_member,
int32_t synthetic_index) {
ValueObject *valobj = NULL;
bool omit_empty_base_classes = true;
bool ignore_array_bounds = synthetic_array_member;
std::string child_name_str;
uint32_t child_byte_size = 0;
int32_t child_byte_offset = 0;
uint32_t child_bitfield_bit_size = 0;
uint32_t child_bitfield_bit_offset = 0;
bool child_is_base_class = false;
bool child_is_deref_of_parent = false;
uint64_t language_flags = 0;
const bool transparent_pointers = synthetic_array_member == false;
CompilerType child_compiler_type;
ExecutionContext exe_ctx(GetExecutionContextRef());
child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex(
&exe_ctx, idx, transparent_pointers, omit_empty_base_classes,
ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset,
child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class,
child_is_deref_of_parent, this, language_flags);
if (child_compiler_type) {
if (synthetic_index)
child_byte_offset += child_byte_size * synthetic_index;
ConstString child_name;
if (!child_name_str.empty())
child_name.SetCString(child_name_str.c_str());
valobj = new ValueObjectChild(
*this, child_compiler_type, child_name, child_byte_size,
child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset,
child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid,
language_flags);
// if (valobj)
// valobj->SetAddressTypeOfChildren(eAddressTypeInvalid);
}
return valobj;
}
bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr,
std::string &destination,
lldb::LanguageType lang) {
return GetSummaryAsCString(summary_ptr, destination,
TypeSummaryOptions().SetLanguage(lang));
}
bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr,
std::string &destination,
const TypeSummaryOptions &options) {
destination.clear();
// ideally we would like to bail out if passing NULL, but if we do so
// we end up not providing the summary for function pointers anymore
if (/*summary_ptr == NULL ||*/ m_is_getting_summary)
return false;
m_is_getting_summary = true;
TypeSummaryOptions actual_options(options);
if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown)
actual_options.SetLanguage(GetPreferredDisplayLanguage());
// this is a hot path in code and we prefer to avoid setting this string all
// too often also clearing out other
// information that we might care to see in a crash log. might be useful in
// very specific situations though.
/*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s.
Summary provider's description is %s",
GetTypeName().GetCString(),
GetName().GetCString(),
summary_ptr->GetDescription().c_str());*/
if (UpdateValueIfNeeded(false) && summary_ptr) {
if (HasSyntheticValue())
m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on
// the synthetic children being
// up-to-date (e.g. ${svar%#})
summary_ptr->FormatObject(this, destination, actual_options);
}
m_is_getting_summary = false;
return !destination.empty();
}
const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) {
if (UpdateValueIfNeeded(true) && m_summary_str.empty()) {
TypeSummaryOptions summary_options;
summary_options.SetLanguage(lang);
GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str,
summary_options);
}
if (m_summary_str.empty())
return NULL;
return m_summary_str.c_str();
}
bool ValueObject::GetSummaryAsCString(std::string &destination,
const TypeSummaryOptions &options) {
return GetSummaryAsCString(GetSummaryFormat().get(), destination, options);
}
bool ValueObject::IsCStringContainer(bool check_pointer) {
CompilerType pointee_or_element_compiler_type;
const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type));
bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
pointee_or_element_compiler_type.IsCharType());
if (!is_char_arr_ptr)
return false;
if (!check_pointer)
return true;
if (type_flags.Test(eTypeIsArray))
return true;
addr_t cstr_address = LLDB_INVALID_ADDRESS;
AddressType cstr_address_type = eAddressTypeInvalid;
cstr_address = GetAddressOf(true, &cstr_address_type);
return (cstr_address != LLDB_INVALID_ADDRESS);
}
size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx,
uint32_t item_count) {
CompilerType pointee_or_element_compiler_type;
const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type);
const bool is_pointer_type = type_info & eTypeIsPointer;
const bool is_array_type = type_info & eTypeIsArray;
if (!(is_pointer_type || is_array_type))
return 0;
if (item_count == 0)
return 0;
ExecutionContext exe_ctx(GetExecutionContextRef());
const uint64_t item_type_size = pointee_or_element_compiler_type.GetByteSize(
exe_ctx.GetBestExecutionContextScope());
const uint64_t bytes = item_count * item_type_size;
const uint64_t offset = item_idx * item_type_size;
if (item_idx == 0 && item_count == 1) // simply a deref
{
if (is_pointer_type) {
Status error;
ValueObjectSP pointee_sp = Dereference(error);
if (error.Fail() || pointee_sp.get() == NULL)
return 0;
return pointee_sp->GetData(data, error);
} else {
ValueObjectSP child_sp = GetChildAtIndex(0, true);
if (child_sp.get() == NULL)
return 0;
Status error;
return child_sp->GetData(data, error);
}
return true;
} else /* (items > 1) */
{
Status error;
lldb_private::DataBufferHeap *heap_buf_ptr = NULL;
lldb::DataBufferSP data_sp(heap_buf_ptr =
new lldb_private::DataBufferHeap());
AddressType addr_type;
lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type)
: GetAddressOf(true, &addr_type);
switch (addr_type) {
case eAddressTypeFile: {
ModuleSP module_sp(GetModule());
if (module_sp) {
addr = addr + offset;
Address so_addr;
module_sp->ResolveFileAddress(addr, so_addr);
ExecutionContext exe_ctx(GetExecutionContextRef());
Target *target = exe_ctx.GetTargetPtr();
if (target) {
heap_buf_ptr->SetByteSize(bytes);
size_t bytes_read = target->ReadMemory(
so_addr, false, heap_buf_ptr->GetBytes(), bytes, error);
if (error.Success()) {
data.SetData(data_sp);
return bytes_read;
}
}
}
} break;
case eAddressTypeLoad: {
ExecutionContext exe_ctx(GetExecutionContextRef());
Process *process = exe_ctx.GetProcessPtr();
if (process) {
heap_buf_ptr->SetByteSize(bytes);
size_t bytes_read = process->ReadMemory(
addr + offset, heap_buf_ptr->GetBytes(), bytes, error);
if (error.Success() || bytes_read > 0) {
data.SetData(data_sp);
return bytes_read;
}
}
} break;
case eAddressTypeHost: {
const uint64_t max_bytes =
GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope());
if (max_bytes > offset) {
size_t bytes_read = std::min<uint64_t>(max_bytes - offset, bytes);
addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
if (addr == 0 || addr == LLDB_INVALID_ADDRESS)
break;
heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read);
data.SetData(data_sp);
return bytes_read;
}
} break;
case eAddressTypeInvalid:
break;
}
}
return 0;
}
uint64_t ValueObject::GetData(DataExtractor &data, Status &error) {
UpdateValueIfNeeded(false);
ExecutionContext exe_ctx(GetExecutionContextRef());
error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get());
if (error.Fail()) {
if (m_data.GetByteSize()) {
data = m_data;
error.Clear();
return data.GetByteSize();
} else {
return 0;
}
}
data.SetAddressByteSize(m_data.GetAddressByteSize());
data.SetByteOrder(m_data.GetByteOrder());
return data.GetByteSize();
}
bool ValueObject::SetData(DataExtractor &data, Status &error) {
error.Clear();
// Make sure our value is up to date first so that our location and location
// type is valid.
if (!UpdateValueIfNeeded(false)) {
error.SetErrorString("unable to read value");
return false;
}
uint64_t count = 0;
const Encoding encoding = GetCompilerType().GetEncoding(count);
const size_t byte_size = GetByteSize();
Value::ValueType value_type = m_value.GetValueType();
switch (value_type) {
case Value::eValueTypeScalar: {
Status set_error =
m_value.GetScalar().SetValueFromData(data, encoding, byte_size);
if (!set_error.Success()) {
error.SetErrorStringWithFormat("unable to set scalar value: %s",
set_error.AsCString());
return false;
}
} break;
case Value::eValueTypeLoadAddress: {
// If it is a load address, then the scalar value is the storage location
// of the data, and we have to shove this value down to that load location.
ExecutionContext exe_ctx(GetExecutionContextRef());
Process *process = exe_ctx.GetProcessPtr();
if (process) {
addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
size_t bytes_written = process->WriteMemory(
target_addr, data.GetDataStart(), byte_size, error);
if (!error.Success())
return false;
if (bytes_written != byte_size) {
error.SetErrorString("unable to write value to memory");
return false;
}
}
} break;
case Value::eValueTypeHostAddress: {
// If it is a host address, then we stuff the scalar as a DataBuffer into
// the Value's data.
DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0));
m_data.SetData(buffer_sp, 0);
data.CopyByteOrderedData(0, byte_size,
const_cast<uint8_t *>(m_data.GetDataStart()),
byte_size, m_data.GetByteOrder());
m_value.GetScalar() = (uintptr_t)m_data.GetDataStart();
} break;
case Value::eValueTypeFileAddress:
case Value::eValueTypeVector:
break;
}
// If we have reached this point, then we have successfully changed the value.
SetNeedsUpdate();
return true;
}
static bool CopyStringDataToBufferSP(const StreamString &source,
lldb::DataBufferSP &destination) {
destination.reset(new DataBufferHeap(source.GetSize() + 1, 0));
memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize());
return true;
}
std::pair<size_t, bool>
ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error,
uint32_t max_length, bool honor_array,
Format item_format) {
bool was_capped = false;
StreamString s;
ExecutionContext exe_ctx(GetExecutionContextRef());
Target *target = exe_ctx.GetTargetPtr();
if (!target) {
s << "<no target to read from>";
error.SetErrorString("no target to read from");
CopyStringDataToBufferSP(s, buffer_sp);
return {0, was_capped};
}
if (max_length == 0)
max_length = target->GetMaximumSizeOfStringSummary();
size_t bytes_read = 0;
size_t total_bytes_read = 0;
CompilerType compiler_type = GetCompilerType();
CompilerType elem_or_pointee_compiler_type;
const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type));
if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
elem_or_pointee_compiler_type.IsCharType()) {
addr_t cstr_address = LLDB_INVALID_ADDRESS;
AddressType cstr_address_type = eAddressTypeInvalid;
size_t cstr_len = 0;
bool capped_data = false;
const bool is_array = type_flags.Test(eTypeIsArray);
if (is_array) {
// We have an array
uint64_t array_size = 0;
if (compiler_type.IsArrayType(NULL, &array_size, NULL)) {
cstr_len = array_size;
if (cstr_len > max_length) {
capped_data = true;
cstr_len = max_length;
}
}
cstr_address = GetAddressOf(true, &cstr_address_type);
} else {
// We have a pointer
cstr_address = GetPointerValue(&cstr_address_type);
}
if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) {
if (cstr_address_type == eAddressTypeHost && is_array) {
const char *cstr = GetDataExtractor().PeekCStr(0);
if (cstr == nullptr) {
s << "<invalid address>";
error.SetErrorString("invalid address");
CopyStringDataToBufferSP(s, buffer_sp);
return {0, was_capped};
}
buffer_sp.reset(new DataBufferHeap(cstr_len, 0));
memcpy(buffer_sp->GetBytes(), cstr, cstr_len);
return {cstr_len, was_capped};
} else {
s << "<invalid address>";
error.SetErrorString("invalid address");
CopyStringDataToBufferSP(s, buffer_sp);
return {0, was_capped};
}
}
Address cstr_so_addr(cstr_address);
DataExtractor data;
if (cstr_len > 0 && honor_array) {
// I am using GetPointeeData() here to abstract the fact that some
// ValueObjects are actually frozen pointers in the host
// but the pointed-to data lives in the debuggee, and GetPointeeData()
// automatically takes care of this
GetPointeeData(data, 0, cstr_len);
if ((bytes_read = data.GetByteSize()) > 0) {
total_bytes_read = bytes_read;
for (size_t offset = 0; offset < bytes_read; offset++)
s.Printf("%c", *data.PeekData(offset, 1));
if (capped_data)
was_capped = true;
}
} else {
cstr_len = max_length;
const size_t k_max_buf_size = 64;
size_t offset = 0;
int cstr_len_displayed = -1;
bool capped_cstr = false;
// I am using GetPointeeData() here to abstract the fact that some
// ValueObjects are actually frozen pointers in the host
// but the pointed-to data lives in the debuggee, and GetPointeeData()
// automatically takes care of this
while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) {
total_bytes_read += bytes_read;
const char *cstr = data.PeekCStr(0);
size_t len = strnlen(cstr, k_max_buf_size);
if (cstr_len_displayed < 0)
cstr_len_displayed = len;
if (len == 0)
break;
cstr_len_displayed += len;
if (len > bytes_read)
len = bytes_read;
if (len > cstr_len)
len = cstr_len;
for (size_t offset = 0; offset < bytes_read; offset++)
s.Printf("%c", *data.PeekData(offset, 1));
if (len < k_max_buf_size)
break;
if (len >= cstr_len) {
capped_cstr = true;
break;
}
cstr_len -= len;
offset += len;
}
if (cstr_len_displayed >= 0) {
if (capped_cstr)
was_capped = true;
}
}
} else {
error.SetErrorString("not a string object");
s << "<not a string object>";
}
CopyStringDataToBufferSP(s, buffer_sp);
return {total_bytes_read, was_capped};
}
std::pair<TypeValidatorResult, std::string> ValueObject::GetValidationStatus() {
if (!UpdateValueIfNeeded(true))
return {TypeValidatorResult::Success,
""}; // not the validator's job to discuss update problems
if (m_validation_result.hasValue())
return m_validation_result.getValue();
if (!m_type_validator_sp)
return {TypeValidatorResult::Success, ""}; // no validator no failure
auto outcome = m_type_validator_sp->FormatObject(this);
return (m_validation_result = {outcome.m_result, outcome.m_message})
.getValue();
}
const char *ValueObject::GetObjectDescription() {
if (!UpdateValueIfNeeded(true))
return NULL;
if (!m_object_desc_str.empty())
return m_object_desc_str.c_str();
ExecutionContext exe_ctx(GetExecutionContextRef());
Process *process = exe_ctx.GetProcessPtr();
if (process == NULL)
return NULL;
StreamString s;
LanguageType language = GetObjectRuntimeLanguage();
LanguageRuntime *runtime = process->GetLanguageRuntime(language);
if (runtime == NULL) {
// Aw, hell, if the things a pointer, or even just an integer, let's try
// ObjC anyway...
CompilerType compiler_type = GetCompilerType();
if (compiler_type) {
bool is_signed;
if (compiler_type.IsIntegerType(is_signed) ||
compiler_type.IsPointerType()) {
runtime = process->GetLanguageRuntime(eLanguageTypeObjC);
}
}
}
if (runtime && runtime->GetObjectDescription(s, *this)) {
m_object_desc_str.append(s.GetString());
}
if (m_object_desc_str.empty())
return NULL;
else
return m_object_desc_str.c_str();
}
bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format,
std::string &destination) {
if (UpdateValueIfNeeded(false))
return format.FormatObject(this, destination);
else
return false;
}
bool ValueObject::GetValueAsCString(lldb::Format format,
std::string &destination) {
return GetValueAsCString(TypeFormatImpl_Format(format), destination);
}
const char *ValueObject::GetValueAsCString() {
if (UpdateValueIfNeeded(true)) {
lldb::TypeFormatImplSP format_sp;
lldb::Format my_format = GetFormat();
if (my_format == lldb::eFormatDefault) {
if (m_type_format_sp)
format_sp = m_type_format_sp;
else {
if (m_is_bitfield_for_scalar)
my_format = eFormatUnsigned;
else {
if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) {
const RegisterInfo *reg_info = m_value.GetRegisterInfo();
if (reg_info)
my_format = reg_info->format;
} else {
my_format = GetValue().GetCompilerType().GetFormat();
}
}
}
}
if (my_format != m_last_format || m_value_str.empty()) {
m_last_format = my_format;
if (!format_sp)
format_sp.reset(new TypeFormatImpl_Format(my_format));
if (GetValueAsCString(*format_sp.get(), m_value_str)) {
if (!m_value_did_change && m_old_value_valid) {
// The value was gotten successfully, so we consider the
// value as changed if the value string differs
SetValueDidChange(m_old_value_str != m_value_str);
}
}
}
}
if (m_value_str.empty())
return NULL;
return m_value_str.c_str();
}
// if > 8bytes, 0 is returned. this method should mostly be used
// to read address values out of pointers
uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) {
// If our byte size is zero this is an aggregate type that has children
if (CanProvideValue()) {
Scalar scalar;
if (ResolveValue(scalar)) {
if (success)
*success = true;
return scalar.ULongLong(fail_value);
}
// fallthrough, otherwise...
}
if (success)
*success = false;
return fail_value;
}
int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) {
// If our byte size is zero this is an aggregate type that has children
if (CanProvideValue()) {
Scalar scalar;
if (ResolveValue(scalar)) {
if (success)
*success = true;
return scalar.SLongLong(fail_value);
}
// fallthrough, otherwise...
}
if (success)
*success = false;
return fail_value;
}
// if any more "special cases" are added to
// ValueObject::DumpPrintableRepresentation() please keep
// this call up to date by returning true for your new special cases. We will
// eventually move
// to checking this call result before trying to display special cases
bool ValueObject::HasSpecialPrintableRepresentation(
ValueObjectRepresentationStyle val_obj_display, Format custom_format) {
Flags flags(GetTypeInfo());
if (flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) {
if (IsCStringContainer(true) &&
(custom_format == eFormatCString || custom_format == eFormatCharArray ||
custom_format == eFormatChar || custom_format == eFormatVectorOfChar))
return true;
if (flags.Test(eTypeIsArray)) {
if ((custom_format == eFormatBytes) ||
(custom_format == eFormatBytesWithASCII))
return true;
if ((custom_format == eFormatVectorOfChar) ||
(custom_format == eFormatVectorOfFloat32) ||
(custom_format == eFormatVectorOfFloat64) ||
(custom_format == eFormatVectorOfSInt16) ||
(custom_format == eFormatVectorOfSInt32) ||
(custom_format == eFormatVectorOfSInt64) ||
(custom_format == eFormatVectorOfSInt8) ||
(custom_format == eFormatVectorOfUInt128) ||
(custom_format == eFormatVectorOfUInt16) ||
(custom_format == eFormatVectorOfUInt32) ||
(custom_format == eFormatVectorOfUInt64) ||
(custom_format == eFormatVectorOfUInt8))
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-07 03:20:51 +08:00
return true;
}
}
return false;
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-07 03:20:51 +08:00
}
bool ValueObject::DumpPrintableRepresentation(
Stream &s, ValueObjectRepresentationStyle val_obj_display,
Format custom_format, PrintableRepresentationSpecialCases special,
bool do_dump_error) {
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-07 03:20:51 +08:00
Flags flags(GetTypeInfo());
bool allow_special =
(special == ValueObject::PrintableRepresentationSpecialCases::eAllow);
const bool only_special = false;
if (allow_special) {
if (flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) {
// when being asked to get a printable display an array or pointer type
// directly,
// try to "do the right thing"
if (IsCStringContainer(true) &&
(custom_format == eFormatCString ||
custom_format == eFormatCharArray || custom_format == eFormatChar ||
custom_format ==
eFormatVectorOfChar)) // print char[] & char* directly
{
Status error;
lldb::DataBufferSP buffer_sp;
std::pair<size_t, bool> read_string = ReadPointedString(
buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) ||
(custom_format == eFormatCharArray));
lldb_private::formatters::StringPrinter::
ReadBufferAndDumpToStreamOptions options(*this);
options.SetData(DataExtractor(
buffer_sp, lldb::eByteOrderInvalid,
8)); // none of this matters for a string - pass some defaults
options.SetStream(&s);
options.SetPrefixToken(0);
options.SetQuote('"');
options.SetSourceSize(buffer_sp->GetByteSize());
options.SetIsTruncated(read_string.second);
formatters::StringPrinter::ReadBufferAndDumpToStream<
lldb_private::formatters::StringPrinter::StringElementType::ASCII>(
options);
return !error.Fail();
}
if (custom_format == eFormatEnum)
return false;
// this only works for arrays, because I have no way to know when
// the pointed memory ends, and no special \0 end of data marker
if (flags.Test(eTypeIsArray)) {
if ((custom_format == eFormatBytes) ||
(custom_format == eFormatBytesWithASCII)) {
const size_t count = GetNumChildren();
s << '[';
for (size_t low = 0; low < count; low++) {
if (low)
s << ',';
ValueObjectSP child = GetChildAtIndex(low, true);
if (!child.get()) {
s << "<invalid child>";
continue;
}
child->DumpPrintableRepresentation(
s, ValueObject::eValueObjectRepresentationStyleValue,
custom_format);
}
s << ']';
return true;
}
if ((custom_format == eFormatVectorOfChar) ||
(custom_format == eFormatVectorOfFloat32) ||
(custom_format == eFormatVectorOfFloat64) ||
(custom_format == eFormatVectorOfSInt16) ||
(custom_format == eFormatVectorOfSInt32) ||
(custom_format == eFormatVectorOfSInt64) ||
(custom_format == eFormatVectorOfSInt8) ||
(custom_format == eFormatVectorOfUInt128) ||
(custom_format == eFormatVectorOfUInt16) ||
(custom_format == eFormatVectorOfUInt32) ||
(custom_format == eFormatVectorOfUInt64) ||
(custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes
// with ASCII or any vector
// format should be printed
// directly
{
const size_t count = GetNumChildren();
Format format = FormatManager::GetSingleItemFormat(custom_format);
s << '[';
for (size_t low = 0; low < count; low++) {
if (low)
s << ',';
ValueObjectSP child = GetChildAtIndex(low, true);
if (!child.get()) {
s << "<invalid child>";
continue;
}
child->DumpPrintableRepresentation(
s, ValueObject::eValueObjectRepresentationStyleValue, format);
}
s << ']';
return true;
}
}
if ((custom_format == eFormatBoolean) ||
(custom_format == eFormatBinary) || (custom_format == eFormatChar) ||
(custom_format == eFormatCharPrintable) ||
(custom_format == eFormatComplexFloat) ||
(custom_format == eFormatDecimal) || (custom_format == eFormatHex) ||
(custom_format == eFormatHexUppercase) ||
(custom_format == eFormatFloat) || (custom_format == eFormatOctal) ||
(custom_format == eFormatOSType) ||
(custom_format == eFormatUnicode16) ||
(custom_format == eFormatUnicode32) ||
(custom_format == eFormatUnsigned) ||
(custom_format == eFormatPointer) ||
(custom_format == eFormatComplexInteger) ||
(custom_format == eFormatComplex) ||
(custom_format == eFormatDefault)) // use the [] operator
return false;
}
}
if (only_special)
return false;
bool var_success = false;
{
llvm::StringRef str;
// this is a local stream that we are using to ensure that the data pointed
// to by cstr survives long enough for us to copy it to its destination - it
// is necessary to have this temporary storage area for cases where our
// desired output is not backed by some other longer-term storage
StreamString strm;
if (custom_format != eFormatInvalid)
SetFormat(custom_format);
switch (val_obj_display) {
case eValueObjectRepresentationStyleValue:
str = GetValueAsCString();
break;
case eValueObjectRepresentationStyleSummary:
str = GetSummaryAsCString();
break;
case eValueObjectRepresentationStyleLanguageSpecific:
str = GetObjectDescription();
break;
case eValueObjectRepresentationStyleLocation:
str = GetLocationAsCString();
break;
case eValueObjectRepresentationStyleChildrenCount:
strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren());
str = strm.GetString();
break;
case eValueObjectRepresentationStyleType:
str = GetTypeName().GetStringRef();
break;
case eValueObjectRepresentationStyleName:
str = GetName().GetStringRef();
break;
case eValueObjectRepresentationStyleExpressionPath:
GetExpressionPath(strm, false);
str = strm.GetString();
break;
}
if (str.empty()) {
if (val_obj_display == eValueObjectRepresentationStyleValue)
str = GetSummaryAsCString();
else if (val_obj_display == eValueObjectRepresentationStyleSummary) {
if (!CanProvideValue()) {
strm.Printf("%s @ %s", GetTypeName().AsCString(),
GetLocationAsCString());
str = strm.GetString();
} else
str = GetValueAsCString();
}
}
if (!str.empty())
s << str;
else {
if (m_error.Fail()) {
if (do_dump_error)
s.Printf("<%s>", m_error.AsCString());
else
return false;
} else if (val_obj_display == eValueObjectRepresentationStyleSummary)
s.PutCString("<no summary available>");
else if (val_obj_display == eValueObjectRepresentationStyleValue)
s.PutCString("<no value available>");
else if (val_obj_display ==
eValueObjectRepresentationStyleLanguageSpecific)
s.PutCString("<not a valid Objective-C object>"); // edit this if we
// have other runtimes
// that support a
// description
else
s.PutCString("<no printable representation>");
}
// we should only return false here if we could not do *anything*
// even if we have an error message as output, that's a success
// from our callers' perspective, so return true
var_success = true;
if (custom_format != eFormatInvalid)
SetFormat(eFormatDefault);
}
return var_success;
}
addr_t ValueObject::GetAddressOf(bool scalar_is_load_address,
AddressType *address_type) {
// Can't take address of a bitfield
if (IsBitfield())
return LLDB_INVALID_ADDRESS;
if (!UpdateValueIfNeeded(false))
return LLDB_INVALID_ADDRESS;
switch (m_value.GetValueType()) {
case Value::eValueTypeScalar:
case Value::eValueTypeVector:
if (scalar_is_load_address) {
if (address_type)
*address_type = eAddressTypeLoad;
return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
}
break;
case Value::eValueTypeLoadAddress:
case Value::eValueTypeFileAddress: {
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-07 03:20:51 +08:00
if (address_type)
*address_type = m_value.GetValueAddressType();
return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
} break;
case Value::eValueTypeHostAddress: {
if (address_type)
*address_type = m_value.GetValueAddressType();
return LLDB_INVALID_ADDRESS;
} break;
}
if (address_type)
*address_type = eAddressTypeInvalid;
return LLDB_INVALID_ADDRESS;
}
addr_t ValueObject::GetPointerValue(AddressType *address_type) {
addr_t address = LLDB_INVALID_ADDRESS;
if (address_type)
*address_type = eAddressTypeInvalid;
Modified LLDB expressions to not have to JIT and run code just to see variable values or persistent expression variables. Now if an expression consists of a value that is a child of a variable, or of a persistent variable only, we will create a value object for it and make a ValueObjectConstResult from it to freeze the value (for program variables only, not persistent variables) and avoid running JITed code. For everything else we still parse up and JIT code and run it in the inferior. There was also a lot of clean up in the expression code. I made the ClangExpressionVariables be stored in collections of shared pointers instead of in collections of objects. This will help stop a lot of copy constructors on these large objects and also cleans up the code considerably. The persistent clang expression variables were moved over to the Target to ensure they persist across process executions. Added the ability for lldb_private::Target objects to evaluate expressions. We want to evaluate expressions at the target level in case we aren't running yet, or we have just completed running. We still want to be able to access the persistent expression variables between runs, and also evaluate constant expressions. Added extra logging to the dynamic loader plug-in for MacOSX. ModuleList objects can now dump their contents with the UUID, arch and full paths being logged with appropriate prefix values. Thread hardened the Communication class a bit by making the connection auto_ptr member into a shared pointer member and then making a local copy of the shared pointer in each method that uses it to make sure another thread can't nuke the connection object while it is being used by another thread. Added a new file to the lldb/test/load_unload test that causes the test a.out file to link to the libd.dylib file all the time. This will allow us to test using the DYLD_LIBRARY_PATH environment variable after moving libd.dylib somewhere else. llvm-svn: 121745
2010-12-14 10:59:59 +08:00
if (!UpdateValueIfNeeded(false))
return address;
switch (m_value.GetValueType()) {
case Value::eValueTypeScalar:
case Value::eValueTypeVector:
address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
break;
case Value::eValueTypeHostAddress:
case Value::eValueTypeLoadAddress:
case Value::eValueTypeFileAddress: {
lldb::offset_t data_offset = 0;
address = m_data.GetPointer(&data_offset);
} break;
}
if (address_type)
*address_type = GetAddressTypeOfChildren();
return address;
}
bool ValueObject::SetValueFromCString(const char *value_str, Status &error) {
error.Clear();
// Make sure our value is up to date first so that our location and location
// type is valid.
if (!UpdateValueIfNeeded(false)) {
error.SetErrorString("unable to read value");
return false;
}
uint64_t count = 0;
const Encoding encoding = GetCompilerType().GetEncoding(count);
const size_t byte_size = GetByteSize();
Value::ValueType value_type = m_value.GetValueType();
if (value_type == Value::eValueTypeScalar) {
// If the value is already a scalar, then let the scalar change itself:
m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size);
} else if (byte_size <= 16) {
// If the value fits in a scalar, then make a new scalar and again let the
// scalar code do the conversion, then figure out where to put the new
// value.
Scalar new_scalar;
error = new_scalar.SetValueFromCString(value_str, encoding, byte_size);
if (error.Success()) {
switch (value_type) {
case Value::eValueTypeLoadAddress: {
// If it is a load address, then the scalar value is the storage
// location
// of the data, and we have to shove this value down to that load
// location.
ExecutionContext exe_ctx(GetExecutionContextRef());
Process *process = exe_ctx.GetProcessPtr();
if (process) {
addr_t target_addr =
m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
size_t bytes_written = process->WriteScalarToMemory(
target_addr, new_scalar, byte_size, error);
if (!error.Success())
return false;
if (bytes_written != byte_size) {
error.SetErrorString("unable to write value to memory");
return false;
}
}
} break;
case Value::eValueTypeHostAddress: {
// If it is a host address, then we stuff the scalar as a DataBuffer
// into the Value's data.
DataExtractor new_data;
new_data.SetByteOrder(m_data.GetByteOrder());
DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0));
m_data.SetData(buffer_sp, 0);
bool success = new_scalar.GetData(new_data);
if (success) {
new_data.CopyByteOrderedData(
0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()),
byte_size, m_data.GetByteOrder());
}
m_value.GetScalar() = (uintptr_t)m_data.GetDataStart();
} break;
case Value::eValueTypeFileAddress:
case Value::eValueTypeScalar:
case Value::eValueTypeVector:
break;
}
} else {
return false;
}
} else {
// We don't support setting things bigger than a scalar at present.
error.SetErrorString("unable to write aggregate data type");
return false;
}
// If we have reached this point, then we have successfully changed the value.
SetNeedsUpdate();
return true;
}
bool ValueObject::GetDeclaration(Declaration &decl) {
decl.Clear();
return false;
Introduce the concept of a "display name" for types Rationale: Pretty simply, the idea is that sometimes type names are way too long and contain way too many details for the average developer to care about. For instance, a plain ol' vector of int might be shown as std::__1::vector<int, std::__1::allocator<.... rather than the much simpler std::vector<int> form, which is what most developers would actually type in their code Proposed solution: Introduce a notion of "display name" and a corresponding API GetDisplayTypeName() to return such a crafted for visual representation type name Obviously, the display name and the fully qualified (or "true") name are not necessarily the same - that's the whole point LLDB could choose to pick the "display name" as its one true notion of a type name, and if somebody really needs the fully qualified version of it, let them deal with the problem Or, LLDB could rename what it currently calls the "type name" to be the "display name", and add new APIs for the fully qualified name, making the display name the default choice The choice that I am making here is that the type name will keep meaning the same, and people who want a type name suited for display will explicitly ask for one It is the less risky/disruptive choice - and it should eventually make it fairly obvious when someone is asking for the wrong type Caveats: - for now, GetDisplayTypeName() == GetTypeName(), there is no logic to produce customized display type names yet. - while the fully-qualified type name is still the main key to the kingdom of data formatters, if we start showing custom names to people, those should match formatters llvm-svn: 209072
2014-05-18 03:14:17 +08:00
}
ConstString ValueObject::GetTypeName() {
return GetCompilerType().GetConstTypeName();
}
ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); }
ConstString ValueObject::GetQualifiedTypeName() {
return GetCompilerType().GetConstQualifiedTypeName();
}
LanguageType ValueObject::GetObjectRuntimeLanguage() {
return GetCompilerType().GetMinimumLanguage();
}
void ValueObject::AddSyntheticChild(const ConstString &key,
ValueObject *valobj) {
m_synthetic_children[key] = valobj;
}
ValueObjectSP ValueObject::GetSyntheticChild(const ConstString &key) const {
ValueObjectSP synthetic_child_sp;
std::map<ConstString, ValueObject *>::const_iterator pos =
m_synthetic_children.find(key);
if (pos != m_synthetic_children.end())
synthetic_child_sp = pos->second->GetSP();
return synthetic_child_sp;
}
uint32_t
ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) {
return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type);
}
bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); }
bool ValueObject::IsArrayType() {
return GetCompilerType().IsArrayType(NULL, NULL, NULL);
}
bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); }
bool ValueObject::IsIntegerType(bool &is_signed) {
return GetCompilerType().IsIntegerType(is_signed);
}
bool ValueObject::IsPointerOrReferenceType() {
return GetCompilerType().IsPointerOrReferenceType();
2011-05-30 08:49:24 +08:00
}
bool ValueObject::IsPossibleDynamicType() {
ExecutionContext exe_ctx(GetExecutionContextRef());
Process *process = exe_ctx.GetProcessPtr();
if (process)
return process->IsPossibleDynamicValue(*this);
else
return GetCompilerType().IsPossibleDynamicType(NULL, true, true);
}
bool ValueObject::IsRuntimeSupportValue() {
Process *process(GetProcessSP().get());
if (process) {
LanguageRuntime *runtime =
process->GetLanguageRuntime(GetObjectRuntimeLanguage());
if (!runtime)
runtime = process->GetObjCLanguageRuntime();
if (runtime)
return runtime->IsRuntimeSupportValue(*this);
}
return false;
}
bool ValueObject::IsNilReference() {
if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) {
return language->IsNilReference(*this);
}
return false;
}
bool ValueObject::IsUninitializedReference() {
if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) {
return language->IsUninitializedReference(*this);
}
return false;
}
// This allows you to create an array member using and index
// that doesn't not fall in the normal bounds of the array.
// Many times structure can be defined as:
// struct Collection
// {
// uint32_t item_count;
// Item item_array[0];
// };
// The size of the "item_array" is 1, but many times in practice
// there are more items in "item_array".
ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index,
bool can_create) {
ValueObjectSP synthetic_child_sp;
if (IsPointerType() || IsArrayType()) {
char index_str[64];
snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index);
ConstString index_const_str(index_str);
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild(index_const_str);
if (!synthetic_child_sp) {
ValueObject *synthetic_child;
// We haven't made a synthetic array member for INDEX yet, so
// lets make one and cache it for any future reference.
synthetic_child = CreateChildAtIndex(0, true, index);
// Cache the value if we got one back...
if (synthetic_child) {
AddSyntheticChild(index_const_str, synthetic_child);
synthetic_child_sp = synthetic_child->GetSP();
synthetic_child_sp->SetName(ConstString(index_str));
synthetic_child_sp->m_is_array_item_for_pointer = true;
}
}
}
return synthetic_child_sp;
}
ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to,
bool can_create) {
ValueObjectSP synthetic_child_sp;
if (IsScalarType()) {
char index_str[64];
snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to);
ConstString index_const_str(index_str);
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild(index_const_str);
if (!synthetic_child_sp) {
uint32_t bit_field_size = to - from + 1;
uint32_t bit_field_offset = from;
if (GetDataExtractor().GetByteOrder() == eByteOrderBig)
bit_field_offset =
GetByteSize() * 8 - bit_field_size - bit_field_offset;
// We haven't made a synthetic array member for INDEX yet, so
// lets make one and cache it for any future reference.
ValueObjectChild *synthetic_child = new ValueObjectChild(
*this, GetCompilerType(), index_const_str, GetByteSize(), 0,
bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid,
0);
// Cache the value if we got one back...
if (synthetic_child) {
AddSyntheticChild(index_const_str, synthetic_child);
synthetic_child_sp = synthetic_child->GetSP();
synthetic_child_sp->SetName(ConstString(index_str));
synthetic_child_sp->m_is_bitfield_for_scalar = true;
}
}
}
return synthetic_child_sp;
}
ValueObjectSP ValueObject::GetSyntheticChildAtOffset(
uint32_t offset, const CompilerType &type, bool can_create,
ConstString name_const_str) {
ValueObjectSP synthetic_child_sp;
if (name_const_str.IsEmpty()) {
char name_str[64];
snprintf(name_str, sizeof(name_str), "@%i", offset);
name_const_str.SetCString(name_str);
}
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild(name_const_str);
if (synthetic_child_sp.get())
return synthetic_child_sp;
if (!can_create)
return ValueObjectSP();
ExecutionContext exe_ctx(GetExecutionContextRef());
ValueObjectChild *synthetic_child = new ValueObjectChild(
*this, type, name_const_str,
type.GetByteSize(exe_ctx.GetBestExecutionContextScope()), offset, 0, 0,
false, false, eAddressTypeInvalid, 0);
if (synthetic_child) {
AddSyntheticChild(name_const_str, synthetic_child);
synthetic_child_sp = synthetic_child->GetSP();
synthetic_child_sp->SetName(name_const_str);
synthetic_child_sp->m_is_child_at_offset = true;
}
return synthetic_child_sp;
}
ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset,
const CompilerType &type,
bool can_create,
ConstString name_const_str) {
ValueObjectSP synthetic_child_sp;
if (name_const_str.IsEmpty()) {
char name_str[128];
snprintf(name_str, sizeof(name_str), "base%s@%i",
type.GetTypeName().AsCString("<unknown>"), offset);
name_const_str.SetCString(name_str);
}
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild(name_const_str);
if (synthetic_child_sp.get())
return synthetic_child_sp;
if (!can_create)
return ValueObjectSP();
const bool is_base_class = true;
ExecutionContext exe_ctx(GetExecutionContextRef());
ValueObjectChild *synthetic_child = new ValueObjectChild(
*this, type, name_const_str,
type.GetByteSize(exe_ctx.GetBestExecutionContextScope()), offset, 0, 0,
is_base_class, false, eAddressTypeInvalid, 0);
if (synthetic_child) {
AddSyntheticChild(name_const_str, synthetic_child);
synthetic_child_sp = synthetic_child->GetSP();
synthetic_child_sp->SetName(name_const_str);
}
return synthetic_child_sp;
}
// your expression path needs to have a leading . or ->
// (unless it somehow "looks like" an array, in which case it has
// a leading [ symbol). while the [ is meaningful and should be shown
// to the user, . and -> are just parser design, but by no means
// added information for the user.. strip them off
static const char *SkipLeadingExpressionPathSeparators(const char *expression) {
if (!expression || !expression[0])
return expression;
if (expression[0] == '.')
return expression + 1;
if (expression[0] == '-' && expression[1] == '>')
return expression + 2;
return expression;
}
ValueObjectSP
ValueObject::GetSyntheticExpressionPathChild(const char *expression,
bool can_create) {
ValueObjectSP synthetic_child_sp;
ConstString name_const_string(expression);
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild(name_const_string);
if (!synthetic_child_sp) {
// We haven't made a synthetic array member for expression yet, so
// lets make one and cache it for any future reference.
synthetic_child_sp = GetValueForExpressionPath(
expression, NULL, NULL,
GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal(
GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
None));
// Cache the value if we got one back...
if (synthetic_child_sp.get()) {
// FIXME: this causes a "real" child to end up with its name changed to
// the contents of expression
AddSyntheticChild(name_const_string, synthetic_child_sp.get());
synthetic_child_sp->SetName(
ConstString(SkipLeadingExpressionPathSeparators(expression)));
}
}
return synthetic_child_sp;
}
void ValueObject::CalculateSyntheticValue(bool use_synthetic) {
if (use_synthetic == false)
return;
TargetSP target_sp(GetTargetSP());
if (target_sp && target_sp->GetEnableSyntheticValue() == false) {
m_synthetic_value = NULL;
return;
}
lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp);
if (!UpdateFormatsIfNeeded() && m_synthetic_value)
return;
if (m_synthetic_children_sp.get() == NULL)
return;
if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value)
return;
m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp);
}
void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) {
if (use_dynamic == eNoDynamicValues)
return;
if (!m_dynamic_value && !IsDynamic()) {
ExecutionContext exe_ctx(GetExecutionContextRef());
Process *process = exe_ctx.GetProcessPtr();
if (process && process->IsPossibleDynamicValue(*this)) {
ClearDynamicTypeInformation();
m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic);
}
}
}
ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) {
if (use_dynamic == eNoDynamicValues)
return ValueObjectSP();
if (!IsDynamic() && m_dynamic_value == NULL) {
CalculateDynamicValue(use_dynamic);
}
if (m_dynamic_value)
return m_dynamic_value->GetSP();
else
return ValueObjectSP();
}
ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); }
lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); }
ValueObjectSP ValueObject::GetSyntheticValue(bool use_synthetic) {
if (use_synthetic == false)
return ValueObjectSP();
CalculateSyntheticValue(use_synthetic);
if (m_synthetic_value)
return m_synthetic_value->GetSP();
else
return ValueObjectSP();
}
bool ValueObject::HasSyntheticValue() {
UpdateFormatsIfNeeded();
if (m_synthetic_children_sp.get() == NULL)
return false;
CalculateSyntheticValue(true);
if (m_synthetic_value)
return true;
else
return false;
}
bool ValueObject::GetBaseClassPath(Stream &s) {
if (IsBaseClass()) {
bool parent_had_base_class =
GetParent() && GetParent()->GetBaseClassPath(s);
CompilerType compiler_type = GetCompilerType();
std::string cxx_class_name;
bool this_had_base_class =
ClangASTContext::GetCXXClassName(compiler_type, cxx_class_name);
if (this_had_base_class) {
if (parent_had_base_class)
s.PutCString("::");
s.PutCString(cxx_class_name);
}
return parent_had_base_class || this_had_base_class;
}
return false;
}
ValueObject *ValueObject::GetNonBaseClassParent() {
if (GetParent()) {
if (GetParent()->IsBaseClass())
return GetParent()->GetNonBaseClassParent();
else
return GetParent();
}
return NULL;
}
bool ValueObject::IsBaseClass(uint32_t &depth) {
if (!IsBaseClass()) {
depth = 0;
return false;
}
if (GetParent()) {
GetParent()->IsBaseClass(depth);
depth = depth + 1;
return true;
}
// TODO: a base of no parent? weird..
depth = 1;
return true;
}
void ValueObject::GetExpressionPath(Stream &s, bool qualify_cxx_base_classes,
GetExpressionPathFormat epformat) {
// synthetic children do not actually "exist" as part of the hierarchy, and
// sometimes they are consed up in ways
// that don't make sense from an underlying language/API standpoint. So, use a
// special code path here to return
// something that can hopefully be used in expression
if (m_is_synthetic_children_generated) {
UpdateValueIfNeeded();
if (m_value.GetValueType() == Value::eValueTypeLoadAddress) {
if (IsPointerOrReferenceType()) {
s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"),
GetValueAsUnsigned(0));
return;
} else {
uint64_t load_addr =
m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
if (load_addr != LLDB_INVALID_ADDRESS) {
s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"),
load_addr);
return;
}
}
}
if (CanProvideValue()) {
s.Printf("((%s)%s)", GetTypeName().AsCString("void"),
GetValueAsCString());
return;
}
return;
}
const bool is_deref_of_parent = IsDereferenceOfParent();
if (is_deref_of_parent &&
epformat == eGetExpressionPathFormatDereferencePointers) {
// this is the original format of GetExpressionPath() producing code like
// *(a_ptr).memberName, which is entirely
// fine, until you put this into
// StackFrame::GetValueForVariableExpressionPath() which prefers to see
// a_ptr->memberName.
// the eHonorPointers mode is meant to produce strings in this latter format
s.PutCString("*(");
}
ValueObject *parent = GetParent();
if (parent)
parent->GetExpressionPath(s, qualify_cxx_base_classes, epformat);
// if we are a deref_of_parent just because we are synthetic array
// members made up to allow ptr[%d] syntax to work in variable
// printing, then add our name ([%d]) to the expression path
if (m_is_array_item_for_pointer &&
epformat == eGetExpressionPathFormatHonorPointers)
s.PutCString(m_name.AsCString());
if (!IsBaseClass()) {
if (!is_deref_of_parent) {
ValueObject *non_base_class_parent = GetNonBaseClassParent();
if (non_base_class_parent &&
!non_base_class_parent->GetName().IsEmpty()) {
CompilerType non_base_class_parent_compiler_type =
non_base_class_parent->GetCompilerType();
if (non_base_class_parent_compiler_type) {
if (parent && parent->IsDereferenceOfParent() &&
epformat == eGetExpressionPathFormatHonorPointers) {
s.PutCString("->");
} else {
const uint32_t non_base_class_parent_type_info =
non_base_class_parent_compiler_type.GetTypeInfo();
if (non_base_class_parent_type_info & eTypeIsPointer) {
s.PutCString("->");
} else if ((non_base_class_parent_type_info & eTypeHasChildren) &&
!(non_base_class_parent_type_info & eTypeIsArray)) {
s.PutChar('.');
Fixed an expression parsing issue where if you were stopped somewhere without debug information and you evaluated an expression, a crash would occur as a result of an unchecked pointer. Added the ability to get the expression path for a ValueObject. For a rectangle point child "x" the expression path would be something like: "rect.top_left.x". This will allow GUI and command lines to get ahold of the expression path for a value object without having to explicitly know about the hierarchy. This means the ValueObject base class now has a "ValueObject *m_parent;" member. All ValueObject subclasses now correctly track their lineage and are able to provide value expression paths as well. Added a new "--flat" option to the "frame variable" to allow for flat variable output. An example of the current and new outputs: (lldb) frame variable argc = 1 argv = 0x00007fff5fbffe80 pt = { x = 2 y = 3 } rect = { bottom_left = { x = 1 y = 2 } top_right = { x = 3 y = 4 } } (lldb) frame variable --flat argc = 1 argv = 0x00007fff5fbffe80 pt.x = 2 pt.y = 3 rect.bottom_left.x = 1 rect.bottom_left.y = 2 rect.top_right.x = 3 rect.top_right.y = 4 As you can see when there is a lot of hierarchy it can help flatten things out. Also if you want to use a member in an expression, you can copy the text from the "--flat" output and not have to piece it together manually. This can help when you want to use parts of the STL in expressions: (lldb) frame variable --flat argc = 1 argv = 0x00007fff5fbffea8 hello_world._M_dataplus._M_p = 0x0000000000000000 (lldb) expr hello_world._M_dataplus._M_p[0] == '\0' llvm-svn: 116532
2010-10-15 06:52:14 +08:00
}
}
}
}
const char *name = GetName().GetCString();
if (name) {
if (qualify_cxx_base_classes) {
if (GetBaseClassPath(s))
s.PutCString("::");
}
s.PutCString(name);
}
}
}
if (is_deref_of_parent &&
epformat == eGetExpressionPathFormatDereferencePointers) {
s.PutChar(')');
}
}
ValueObjectSP ValueObject::GetValueForExpressionPath(
llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop,
ExpressionPathEndResultType *final_value_type,
const GetValueForExpressionPathOptions &options,
ExpressionPathAftermath *final_task_on_target) {
ExpressionPathScanEndReason dummy_reason_to_stop =
ValueObject::eExpressionPathScanEndReasonUnknown;
ExpressionPathEndResultType dummy_final_value_type =
ValueObject::eExpressionPathEndResultTypeInvalid;
ExpressionPathAftermath dummy_final_task_on_target =
ValueObject::eExpressionPathAftermathNothing;
ValueObjectSP ret_val = GetValueForExpressionPath_Impl(
expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop,
final_value_type ? final_value_type : &dummy_final_value_type, options,
final_task_on_target ? final_task_on_target
: &dummy_final_task_on_target);
if (!final_task_on_target ||
*final_task_on_target == ValueObject::eExpressionPathAftermathNothing)
return ret_val;
if (ret_val.get() &&
((final_value_type ? *final_value_type : dummy_final_value_type) ==
eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress
// of plain objects
{
if ((final_task_on_target ? *final_task_on_target
: dummy_final_task_on_target) ==
ValueObject::eExpressionPathAftermathDereference) {
Status error;
ValueObjectSP final_value = ret_val->Dereference(error);
if (error.Fail() || !final_value.get()) {
if (reason_to_stop)
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
if (final_value_type)
*final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
} else {
if (final_task_on_target)
*final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
return final_value;
}
}
if (*final_task_on_target ==
ValueObject::eExpressionPathAftermathTakeAddress) {
Status error;
ValueObjectSP final_value = ret_val->AddressOf(error);
if (error.Fail() || !final_value.get()) {
if (reason_to_stop)
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonTakingAddressFailed;
if (final_value_type)
*final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
} else {
if (final_task_on_target)
*final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
return final_value;
}
}
}
return ret_val; // final_task_on_target will still have its original value, so
// you know I did not do it
}
ValueObjectSP ValueObject::GetValueForExpressionPath_Impl(
llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop,
ExpressionPathEndResultType *final_result,
const GetValueForExpressionPathOptions &options,
ExpressionPathAftermath *what_next) {
ValueObjectSP root = GetSP();
if (!root)
return nullptr;
llvm::StringRef remainder = expression;
while (true) {
llvm::StringRef temp_expression = remainder;
CompilerType root_compiler_type = root->GetCompilerType();
CompilerType pointee_compiler_type;
Flags pointee_compiler_type_info;
Flags root_compiler_type_info(
root_compiler_type.GetTypeInfo(&pointee_compiler_type));
if (pointee_compiler_type)
pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo());
if (temp_expression.empty()) {
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString;
return root;
}
switch (temp_expression.front()) {
case '-': {
temp_expression = temp_expression.drop_front();
if (options.m_check_dot_vs_arrow_syntax &&
root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to
// use -> on a
// non-pointer and I
// must catch the error
{
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to
// extract an ObjC IVar
// when this is forbidden
root_compiler_type_info.Test(eTypeIsPointer) &&
options.m_no_fragile_ivar) {
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
if (!temp_expression.startswith(">")) {
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
}
LLVM_FALLTHROUGH;
case '.': // or fallthrough from ->
{
if (options.m_check_dot_vs_arrow_syntax &&
temp_expression.front() == '.' &&
root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to
// use . on a pointer
// and I must catch the
// error
{
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return nullptr;
}
temp_expression = temp_expression.drop_front(); // skip . or >
size_t next_sep_pos = temp_expression.find_first_of("-.[", 1);
ConstString child_name;
if (next_sep_pos == llvm::StringRef::npos) // if no other separator just
// expand this last layer
{
child_name.SetString(temp_expression);
ValueObjectSP child_valobj_sp =
root->GetChildMemberWithName(child_name, true);
if (child_valobj_sp.get()) // we know we are done, so just return
{
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonEndOfString;
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
return child_valobj_sp;
} else {
switch (options.m_synthetic_children_traversal) {
case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
None:
break;
case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
FromSynthetic:
if (root->IsSynthetic()) {
child_valobj_sp = root->GetNonSyntheticValue();
if (child_valobj_sp.get())
child_valobj_sp =
child_valobj_sp->GetChildMemberWithName(child_name, true);
}
break;
case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
ToSynthetic:
if (!root->IsSynthetic()) {
child_valobj_sp = root->GetSyntheticValue();
if (child_valobj_sp.get())
child_valobj_sp =
child_valobj_sp->GetChildMemberWithName(child_name, true);
}
break;
case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
Both:
if (root->IsSynthetic()) {
child_valobj_sp = root->GetNonSyntheticValue();
if (child_valobj_sp.get())
child_valobj_sp =
child_valobj_sp->GetChildMemberWithName(child_name, true);
} else {
child_valobj_sp = root->GetSyntheticValue();
if (child_valobj_sp.get())
child_valobj_sp =
child_valobj_sp->GetChildMemberWithName(child_name, true);
}
break;
}
}
// if we are here and options.m_no_synthetic_children is true,
// child_valobj_sp is going to be a NULL SP,
// so we hit the "else" branch, and return an error
if (child_valobj_sp.get()) // if it worked, just return
{
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonEndOfString;
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
return child_valobj_sp;
} else {
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return nullptr;
}
} else // other layers do expand
{
llvm::StringRef next_separator = temp_expression.substr(next_sep_pos);
child_name.SetString(temp_expression.slice(0, next_sep_pos));
ValueObjectSP child_valobj_sp =
root->GetChildMemberWithName(child_name, true);
if (child_valobj_sp.get()) // store the new root and move on
{
root = child_valobj_sp;
remainder = next_separator;
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
continue;
} else {
switch (options.m_synthetic_children_traversal) {
case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
None:
break;
case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
FromSynthetic:
if (root->IsSynthetic()) {
child_valobj_sp = root->GetNonSyntheticValue();
if (child_valobj_sp.get())
child_valobj_sp =
child_valobj_sp->GetChildMemberWithName(child_name, true);
}
break;
case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
ToSynthetic:
if (!root->IsSynthetic()) {
child_valobj_sp = root->GetSyntheticValue();
if (child_valobj_sp.get())
child_valobj_sp =
child_valobj_sp->GetChildMemberWithName(child_name, true);
}
break;
case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
Both:
if (root->IsSynthetic()) {
child_valobj_sp = root->GetNonSyntheticValue();
if (child_valobj_sp.get())
child_valobj_sp =
child_valobj_sp->GetChildMemberWithName(child_name, true);
} else {
child_valobj_sp = root->GetSyntheticValue();
if (child_valobj_sp.get())
child_valobj_sp =
child_valobj_sp->GetChildMemberWithName(child_name, true);
}
break;
}
}
// if we are here and options.m_no_synthetic_children is true,
// child_valobj_sp is going to be a NULL SP,
// so we hit the "else" branch, and return an error
if (child_valobj_sp.get()) // if it worked, move on
{
root = child_valobj_sp;
remainder = next_separator;
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
continue;
} else {
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return nullptr;
}
}
break;
}
case '[': {
if (!root_compiler_type_info.Test(eTypeIsArray) &&
!root_compiler_type_info.Test(eTypeIsPointer) &&
!root_compiler_type_info.Test(
eTypeIsVector)) // if this is not a T[] nor a T*
{
if (!root_compiler_type_info.Test(
eTypeIsScalar)) // if this is not even a scalar...
{
if (options.m_synthetic_children_traversal ==
GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
None) // ...only chance left is synthetic
{
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
} else if (!options.m_allow_bitfields_syntax) // if this is a scalar,
// check that we can
// expand bitfields
{
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
}
if (temp_expression[1] ==
']') // if this is an unbounded range it only works for arrays
{
if (!root_compiler_type_info.Test(eTypeIsArray)) {
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return nullptr;
} else // even if something follows, we cannot expand unbounded ranges,
// just let the caller do it
{
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet;
*final_result =
ValueObject::eExpressionPathEndResultTypeUnboundedRange;
return root;
}
}
size_t close_bracket_position = temp_expression.find(']', 1);
if (close_bracket_position ==
llvm::StringRef::npos) // if there is no ], this is a syntax error
{
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return nullptr;
}
llvm::StringRef bracket_expr =
temp_expression.slice(1, close_bracket_position);
// If this was an empty expression it would have been caught by the if
// above.
assert(!bracket_expr.empty());
if (!bracket_expr.contains('-')) {
// if no separator, this is of the form [N]. Note that this cannot
// be an unbounded range of the form [], because that case was handled
// above with an unconditional return.
unsigned long index = 0;
if (bracket_expr.getAsInteger(0, index)) {
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return nullptr;
}
// from here on we do have a valid index
if (root_compiler_type_info.Test(eTypeIsArray)) {
ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true);
if (!child_valobj_sp)
child_valobj_sp = root->GetSyntheticArrayMember(index, true);
if (!child_valobj_sp)
if (root->HasSyntheticValue() &&
root->GetSyntheticValue()->GetNumChildren() > index)
child_valobj_sp =
root->GetSyntheticValue()->GetChildAtIndex(index, true);
if (child_valobj_sp) {
root = child_valobj_sp;
remainder =
temp_expression.substr(close_bracket_position + 1); // skip ]
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
continue;
} else {
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return nullptr;
}
} else if (root_compiler_type_info.Test(eTypeIsPointer)) {
if (*what_next ==
ValueObject::
eExpressionPathAftermathDereference && // if this is a
// ptr-to-scalar, I
// am accessing it
// by index and I
// would have
// deref'ed anyway,
// then do it now
// and use this as
// a bitfield
pointee_compiler_type_info.Test(eTypeIsScalar)) {
Status error;
root = root->Dereference(error);
if (error.Fail() || !root) {
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return nullptr;
} else {
*what_next = eExpressionPathAftermathNothing;
continue;
}
} else {
if (root->GetCompilerType().GetMinimumLanguage() ==
eLanguageTypeObjC &&
pointee_compiler_type_info.AllClear(eTypeIsPointer) &&
root->HasSyntheticValue() &&
(options.m_synthetic_children_traversal ==
GetValueForExpressionPathOptions::
SyntheticChildrenTraversal::ToSynthetic ||
options.m_synthetic_children_traversal ==
GetValueForExpressionPathOptions::
SyntheticChildrenTraversal::Both)) {
root = root->GetSyntheticValue()->GetChildAtIndex(index, true);
} else
root = root->GetSyntheticArrayMember(index, true);
if (!root) {
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return nullptr;
} else {
remainder =
temp_expression.substr(close_bracket_position + 1); // skip ]
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
continue;
}
}
} else if (root_compiler_type_info.Test(eTypeIsScalar)) {
root = root->GetSyntheticBitFieldChild(index, index, true);
if (!root) {
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return nullptr;
} else // we do not know how to expand members of bitfields, so we
// just return and let the caller do any further processing
{
*reason_to_stop = ValueObject::
eExpressionPathScanEndReasonBitfieldRangeOperatorMet;
*final_result = ValueObject::eExpressionPathEndResultTypeBitfield;
return root;
}
} else if (root_compiler_type_info.Test(eTypeIsVector)) {
root = root->GetChildAtIndex(index, true);
if (!root) {
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
} else {
remainder =
temp_expression.substr(close_bracket_position + 1); // skip ]
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
continue;
}
} else if (options.m_synthetic_children_traversal ==
GetValueForExpressionPathOptions::
SyntheticChildrenTraversal::ToSynthetic ||
options.m_synthetic_children_traversal ==
GetValueForExpressionPathOptions::
SyntheticChildrenTraversal::Both) {
if (root->HasSyntheticValue())
root = root->GetSyntheticValue();
else if (!root->IsSynthetic()) {
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return nullptr;
}
// if we are here, then root itself is a synthetic VO.. should be good
// to go
if (!root) {
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return nullptr;
}
root = root->GetChildAtIndex(index, true);
if (!root) {
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return nullptr;
} else {
remainder =
temp_expression.substr(close_bracket_position + 1); // skip ]
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
continue;
}
} else {
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return nullptr;
}
} else {
// we have a low and a high index
llvm::StringRef sleft, sright;
unsigned long low_index, high_index;
std::tie(sleft, sright) = bracket_expr.split('-');
if (sleft.getAsInteger(0, low_index) ||
sright.getAsInteger(0, high_index)) {
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return nullptr;
}
if (low_index > high_index) // swap indices if required
std::swap(low_index, high_index);
if (root_compiler_type_info.Test(
eTypeIsScalar)) // expansion only works for scalars
{
root = root->GetSyntheticBitFieldChild(low_index, high_index, true);
if (!root) {
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return nullptr;
} else {
*reason_to_stop = ValueObject::
eExpressionPathScanEndReasonBitfieldRangeOperatorMet;
*final_result = ValueObject::eExpressionPathEndResultTypeBitfield;
return root;
}
} else if (root_compiler_type_info.Test(
eTypeIsPointer) && // if this is a ptr-to-scalar, I am
// accessing it by index and I would
// have deref'ed anyway, then do it
// now and use this as a bitfield
*what_next ==
ValueObject::eExpressionPathAftermathDereference &&
pointee_compiler_type_info.Test(eTypeIsScalar)) {
Status error;
root = root->Dereference(error);
if (error.Fail() || !root) {
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return nullptr;
} else {
*what_next = ValueObject::eExpressionPathAftermathNothing;
continue;
}
} else {
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet;
*final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange;
return root;
}
}
break;
}
default: // some non-separator is in the way
{
*reason_to_stop =
ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return nullptr;
}
}
}
}
void ValueObject::LogValueObject(Log *log) {
if (log)
return LogValueObject(log, DumpValueObjectOptions(*this));
}
void ValueObject::LogValueObject(Log *log,
const DumpValueObjectOptions &options) {
if (log) {
StreamString s;
Dump(s, options);
if (s.GetSize())
log->PutCString(s.GetData());
}
}
void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); }
void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) {
ValueObjectPrinter printer(this, &s, options);
printer.PrintValueObject();
}
ValueObjectSP ValueObject::CreateConstantValue(const ConstString &name) {
ValueObjectSP valobj_sp;
if (UpdateValueIfNeeded(false) && m_error.Success()) {
ExecutionContext exe_ctx(GetExecutionContextRef());
Modified LLDB expressions to not have to JIT and run code just to see variable values or persistent expression variables. Now if an expression consists of a value that is a child of a variable, or of a persistent variable only, we will create a value object for it and make a ValueObjectConstResult from it to freeze the value (for program variables only, not persistent variables) and avoid running JITed code. For everything else we still parse up and JIT code and run it in the inferior. There was also a lot of clean up in the expression code. I made the ClangExpressionVariables be stored in collections of shared pointers instead of in collections of objects. This will help stop a lot of copy constructors on these large objects and also cleans up the code considerably. The persistent clang expression variables were moved over to the Target to ensure they persist across process executions. Added the ability for lldb_private::Target objects to evaluate expressions. We want to evaluate expressions at the target level in case we aren't running yet, or we have just completed running. We still want to be able to access the persistent expression variables between runs, and also evaluate constant expressions. Added extra logging to the dynamic loader plug-in for MacOSX. ModuleList objects can now dump their contents with the UUID, arch and full paths being logged with appropriate prefix values. Thread hardened the Communication class a bit by making the connection auto_ptr member into a shared pointer member and then making a local copy of the shared pointer in each method that uses it to make sure another thread can't nuke the connection object while it is being used by another thread. Added a new file to the lldb/test/load_unload test that causes the test a.out file to link to the libd.dylib file all the time. This will allow us to test using the DYLD_LIBRARY_PATH environment variable after moving libd.dylib somewhere else. llvm-svn: 121745
2010-12-14 10:59:59 +08:00
DataExtractor data;
data.SetByteOrder(m_data.GetByteOrder());
data.SetAddressByteSize(m_data.GetAddressByteSize());
Modified LLDB expressions to not have to JIT and run code just to see variable values or persistent expression variables. Now if an expression consists of a value that is a child of a variable, or of a persistent variable only, we will create a value object for it and make a ValueObjectConstResult from it to freeze the value (for program variables only, not persistent variables) and avoid running JITed code. For everything else we still parse up and JIT code and run it in the inferior. There was also a lot of clean up in the expression code. I made the ClangExpressionVariables be stored in collections of shared pointers instead of in collections of objects. This will help stop a lot of copy constructors on these large objects and also cleans up the code considerably. The persistent clang expression variables were moved over to the Target to ensure they persist across process executions. Added the ability for lldb_private::Target objects to evaluate expressions. We want to evaluate expressions at the target level in case we aren't running yet, or we have just completed running. We still want to be able to access the persistent expression variables between runs, and also evaluate constant expressions. Added extra logging to the dynamic loader plug-in for MacOSX. ModuleList objects can now dump their contents with the UUID, arch and full paths being logged with appropriate prefix values. Thread hardened the Communication class a bit by making the connection auto_ptr member into a shared pointer member and then making a local copy of the shared pointer in each method that uses it to make sure another thread can't nuke the connection object while it is being used by another thread. Added a new file to the lldb/test/load_unload test that causes the test a.out file to link to the libd.dylib file all the time. This will allow us to test using the DYLD_LIBRARY_PATH environment variable after moving libd.dylib somewhere else. llvm-svn: 121745
2010-12-14 10:59:59 +08:00
if (IsBitfield()) {
Value v(Scalar(GetValueAsUnsigned(UINT64_MAX)));
m_error = v.GetValueAsData(&exe_ctx, data, 0, GetModule().get());
} else
m_error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get());
valobj_sp = ValueObjectConstResult::Create(
exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data,
GetAddressOf());
}
if (!valobj_sp) {
ExecutionContext exe_ctx(GetExecutionContextRef());
valobj_sp = ValueObjectConstResult::Create(
exe_ctx.GetBestExecutionContextScope(), m_error);
}
return valobj_sp;
}
ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable(
lldb::DynamicValueType dynValue, bool synthValue) {
ValueObjectSP result_sp(GetSP());
switch (dynValue) {
case lldb::eDynamicCanRunTarget:
case lldb::eDynamicDontRunTarget: {
if (!result_sp->IsDynamic()) {
if (result_sp->GetDynamicValue(dynValue))
result_sp = result_sp->GetDynamicValue(dynValue);
Modified LLDB expressions to not have to JIT and run code just to see variable values or persistent expression variables. Now if an expression consists of a value that is a child of a variable, or of a persistent variable only, we will create a value object for it and make a ValueObjectConstResult from it to freeze the value (for program variables only, not persistent variables) and avoid running JITed code. For everything else we still parse up and JIT code and run it in the inferior. There was also a lot of clean up in the expression code. I made the ClangExpressionVariables be stored in collections of shared pointers instead of in collections of objects. This will help stop a lot of copy constructors on these large objects and also cleans up the code considerably. The persistent clang expression variables were moved over to the Target to ensure they persist across process executions. Added the ability for lldb_private::Target objects to evaluate expressions. We want to evaluate expressions at the target level in case we aren't running yet, or we have just completed running. We still want to be able to access the persistent expression variables between runs, and also evaluate constant expressions. Added extra logging to the dynamic loader plug-in for MacOSX. ModuleList objects can now dump their contents with the UUID, arch and full paths being logged with appropriate prefix values. Thread hardened the Communication class a bit by making the connection auto_ptr member into a shared pointer member and then making a local copy of the shared pointer in each method that uses it to make sure another thread can't nuke the connection object while it is being used by another thread. Added a new file to the lldb/test/load_unload test that causes the test a.out file to link to the libd.dylib file all the time. This will allow us to test using the DYLD_LIBRARY_PATH environment variable after moving libd.dylib somewhere else. llvm-svn: 121745
2010-12-14 10:59:59 +08:00
}
} break;
case lldb::eNoDynamicValues: {
if (result_sp->IsDynamic()) {
if (result_sp->GetStaticValue())
result_sp = result_sp->GetStaticValue();
}
} break;
}
if (synthValue) {
if (!result_sp->IsSynthetic()) {
if (result_sp->GetSyntheticValue())
result_sp = result_sp->GetSyntheticValue();
Modified LLDB expressions to not have to JIT and run code just to see variable values or persistent expression variables. Now if an expression consists of a value that is a child of a variable, or of a persistent variable only, we will create a value object for it and make a ValueObjectConstResult from it to freeze the value (for program variables only, not persistent variables) and avoid running JITed code. For everything else we still parse up and JIT code and run it in the inferior. There was also a lot of clean up in the expression code. I made the ClangExpressionVariables be stored in collections of shared pointers instead of in collections of objects. This will help stop a lot of copy constructors on these large objects and also cleans up the code considerably. The persistent clang expression variables were moved over to the Target to ensure they persist across process executions. Added the ability for lldb_private::Target objects to evaluate expressions. We want to evaluate expressions at the target level in case we aren't running yet, or we have just completed running. We still want to be able to access the persistent expression variables between runs, and also evaluate constant expressions. Added extra logging to the dynamic loader plug-in for MacOSX. ModuleList objects can now dump their contents with the UUID, arch and full paths being logged with appropriate prefix values. Thread hardened the Communication class a bit by making the connection auto_ptr member into a shared pointer member and then making a local copy of the shared pointer in each method that uses it to make sure another thread can't nuke the connection object while it is being used by another thread. Added a new file to the lldb/test/load_unload test that causes the test a.out file to link to the libd.dylib file all the time. This will allow us to test using the DYLD_LIBRARY_PATH environment variable after moving libd.dylib somewhere else. llvm-svn: 121745
2010-12-14 10:59:59 +08:00
}
} else {
if (result_sp->IsSynthetic()) {
if (result_sp->GetNonSyntheticValue())
result_sp = result_sp->GetNonSyntheticValue();
Modified LLDB expressions to not have to JIT and run code just to see variable values or persistent expression variables. Now if an expression consists of a value that is a child of a variable, or of a persistent variable only, we will create a value object for it and make a ValueObjectConstResult from it to freeze the value (for program variables only, not persistent variables) and avoid running JITed code. For everything else we still parse up and JIT code and run it in the inferior. There was also a lot of clean up in the expression code. I made the ClangExpressionVariables be stored in collections of shared pointers instead of in collections of objects. This will help stop a lot of copy constructors on these large objects and also cleans up the code considerably. The persistent clang expression variables were moved over to the Target to ensure they persist across process executions. Added the ability for lldb_private::Target objects to evaluate expressions. We want to evaluate expressions at the target level in case we aren't running yet, or we have just completed running. We still want to be able to access the persistent expression variables between runs, and also evaluate constant expressions. Added extra logging to the dynamic loader plug-in for MacOSX. ModuleList objects can now dump their contents with the UUID, arch and full paths being logged with appropriate prefix values. Thread hardened the Communication class a bit by making the connection auto_ptr member into a shared pointer member and then making a local copy of the shared pointer in each method that uses it to make sure another thread can't nuke the connection object while it is being used by another thread. Added a new file to the lldb/test/load_unload test that causes the test a.out file to link to the libd.dylib file all the time. This will allow us to test using the DYLD_LIBRARY_PATH environment variable after moving libd.dylib somewhere else. llvm-svn: 121745
2010-12-14 10:59:59 +08:00
}
}
Modified LLDB expressions to not have to JIT and run code just to see variable values or persistent expression variables. Now if an expression consists of a value that is a child of a variable, or of a persistent variable only, we will create a value object for it and make a ValueObjectConstResult from it to freeze the value (for program variables only, not persistent variables) and avoid running JITed code. For everything else we still parse up and JIT code and run it in the inferior. There was also a lot of clean up in the expression code. I made the ClangExpressionVariables be stored in collections of shared pointers instead of in collections of objects. This will help stop a lot of copy constructors on these large objects and also cleans up the code considerably. The persistent clang expression variables were moved over to the Target to ensure they persist across process executions. Added the ability for lldb_private::Target objects to evaluate expressions. We want to evaluate expressions at the target level in case we aren't running yet, or we have just completed running. We still want to be able to access the persistent expression variables between runs, and also evaluate constant expressions. Added extra logging to the dynamic loader plug-in for MacOSX. ModuleList objects can now dump their contents with the UUID, arch and full paths being logged with appropriate prefix values. Thread hardened the Communication class a bit by making the connection auto_ptr member into a shared pointer member and then making a local copy of the shared pointer in each method that uses it to make sure another thread can't nuke the connection object while it is being used by another thread. Added a new file to the lldb/test/load_unload test that causes the test a.out file to link to the libd.dylib file all the time. This will allow us to test using the DYLD_LIBRARY_PATH environment variable after moving libd.dylib somewhere else. llvm-svn: 121745
2010-12-14 10:59:59 +08:00
return result_sp;
}
lldb::addr_t ValueObject::GetCPPVTableAddress(AddressType &address_type) {
CompilerType pointee_type;
CompilerType this_type(GetCompilerType());
uint32_t type_info = this_type.GetTypeInfo(&pointee_type);
if (type_info) {
bool ptr_or_ref = false;
if (type_info & (eTypeIsPointer | eTypeIsReference)) {
ptr_or_ref = true;
type_info = pointee_type.GetTypeInfo();
}
const uint32_t cpp_class = eTypeIsClass | eTypeIsCPlusPlus;
if ((type_info & cpp_class) == cpp_class) {
if (ptr_or_ref) {
address_type = GetAddressTypeOfChildren();
return GetValueAsUnsigned(LLDB_INVALID_ADDRESS);
} else
return GetAddressOf(false, &address_type);
}
}
address_type = eAddressTypeInvalid;
return LLDB_INVALID_ADDRESS;
}
ValueObjectSP ValueObject::Dereference(Status &error) {
if (m_deref_valobj)
return m_deref_valobj->GetSP();
const bool is_pointer_or_reference_type = IsPointerOrReferenceType();
if (is_pointer_or_reference_type) {
bool omit_empty_base_classes = true;
bool ignore_array_bounds = false;
std::string child_name_str;
uint32_t child_byte_size = 0;
int32_t child_byte_offset = 0;
uint32_t child_bitfield_bit_size = 0;
uint32_t child_bitfield_bit_offset = 0;
bool child_is_base_class = false;
bool child_is_deref_of_parent = false;
const bool transparent_pointers = false;
CompilerType compiler_type = GetCompilerType();
CompilerType child_compiler_type;
uint64_t language_flags;
ExecutionContext exe_ctx(GetExecutionContextRef());
child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex(
&exe_ctx, 0, transparent_pointers, omit_empty_base_classes,
ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset,
child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class,
child_is_deref_of_parent, this, language_flags);
if (child_compiler_type && child_byte_size) {
ConstString child_name;
if (!child_name_str.empty())
child_name.SetCString(child_name_str.c_str());
m_deref_valobj = new ValueObjectChild(
*this, child_compiler_type, child_name, child_byte_size,
child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset,
child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid,
language_flags);
}
} else if (HasSyntheticValue()) {
m_deref_valobj =
GetSyntheticValue()
->GetChildMemberWithName(ConstString("$$dereference$$"), true)
.get();
}
if (m_deref_valobj) {
error.Clear();
return m_deref_valobj->GetSP();
} else {
StreamString strm;
GetExpressionPath(strm, true);
if (is_pointer_or_reference_type)
error.SetErrorStringWithFormat("dereference failed: (%s) %s",
GetTypeName().AsCString("<invalid type>"),
strm.GetData());
else
error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s",
GetTypeName().AsCString("<invalid type>"),
strm.GetData());
return ValueObjectSP();
}
}
ValueObjectSP ValueObject::AddressOf(Status &error) {
if (m_addr_of_valobj_sp)
return m_addr_of_valobj_sp;
AddressType address_type = eAddressTypeInvalid;
const bool scalar_is_load_address = false;
addr_t addr = GetAddressOf(scalar_is_load_address, &address_type);
error.Clear();
if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) {
switch (address_type) {
case eAddressTypeInvalid: {
StreamString expr_path_strm;
GetExpressionPath(expr_path_strm, true);
error.SetErrorStringWithFormat("'%s' is not in memory",
expr_path_strm.GetData());
} break;
case eAddressTypeFile:
case eAddressTypeLoad: {
CompilerType compiler_type = GetCompilerType();
if (compiler_type) {
std::string name(1, '&');
name.append(m_name.AsCString(""));
ExecutionContext exe_ctx(GetExecutionContextRef());
m_addr_of_valobj_sp = ValueObjectConstResult::Create(
exe_ctx.GetBestExecutionContextScope(),
compiler_type.GetPointerType(), ConstString(name.c_str()), addr,
eAddressTypeInvalid, m_data.GetAddressByteSize());
}
} break;
default:
break;
}
} else {
StreamString expr_path_strm;
GetExpressionPath(expr_path_strm, true);
error.SetErrorStringWithFormat("'%s' doesn't have a valid address",
expr_path_strm.GetData());
}
return m_addr_of_valobj_sp;
}
ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) {
return ValueObjectCast::Create(*this, GetName(), compiler_type);
}
lldb::ValueObjectSP ValueObject::Clone(const ConstString &new_name) {
return ValueObjectCast::Create(*this, new_name, GetCompilerType());
}
ValueObjectSP ValueObject::CastPointerType(const char *name,
CompilerType &compiler_type) {
ValueObjectSP valobj_sp;
AddressType address_type;
addr_t ptr_value = GetPointerValue(&address_type);
if (ptr_value != LLDB_INVALID_ADDRESS) {
Address ptr_addr(ptr_value);
ExecutionContext exe_ctx(GetExecutionContextRef());
valobj_sp = ValueObjectMemory::Create(
exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type);
}
return valobj_sp;
}
ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) {
ValueObjectSP valobj_sp;
AddressType address_type;
addr_t ptr_value = GetPointerValue(&address_type);
if (ptr_value != LLDB_INVALID_ADDRESS) {
Address ptr_addr(ptr_value);
ExecutionContext exe_ctx(GetExecutionContextRef());
valobj_sp = ValueObjectMemory::Create(
exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp);
}
return valobj_sp;
}
ValueObject::EvaluationPoint::EvaluationPoint()
: m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {}
ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope,
bool use_selected)
: m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {
ExecutionContext exe_ctx(exe_scope);
TargetSP target_sp(exe_ctx.GetTargetSP());
if (target_sp) {
m_exe_ctx_ref.SetTargetSP(target_sp);
ProcessSP process_sp(exe_ctx.GetProcessSP());
if (!process_sp)
process_sp = target_sp->GetProcessSP();
if (process_sp) {
m_mod_id = process_sp->GetModID();
m_exe_ctx_ref.SetProcessSP(process_sp);
ThreadSP thread_sp(exe_ctx.GetThreadSP());
if (!thread_sp) {
if (use_selected)
thread_sp = process_sp->GetThreadList().GetSelectedThread();
}
if (thread_sp) {
m_exe_ctx_ref.SetThreadSP(thread_sp);
StackFrameSP frame_sp(exe_ctx.GetFrameSP());
if (!frame_sp) {
if (use_selected)
frame_sp = thread_sp->GetSelectedFrame();
}
if (frame_sp)
m_exe_ctx_ref.SetFrameSP(frame_sp);
}
}
}
}
ValueObject::EvaluationPoint::EvaluationPoint(
const ValueObject::EvaluationPoint &rhs)
: m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {}
ValueObject::EvaluationPoint::~EvaluationPoint() {}
// This function checks the EvaluationPoint against the current process state.
// If the current
// state matches the evaluation point, or the evaluation point is already
// invalid, then we return
// false, meaning "no change". If the current state is different, we update our
// state, and return
// true meaning "yes, change". If we did see a change, we also set
// m_needs_update to true, so
// future calls to NeedsUpdate will return true.
// exe_scope will be set to the current execution context scope.
bool ValueObject::EvaluationPoint::SyncWithProcessState(
bool accept_invalid_exe_ctx) {
// Start with the target, if it is NULL, then we're obviously not going to get
// any further:
const bool thread_and_frame_only_if_stopped = true;
ExecutionContext exe_ctx(
m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped));
if (exe_ctx.GetTargetPtr() == NULL)
return false;
// If we don't have a process nothing can change.
Process *process = exe_ctx.GetProcessPtr();
if (process == NULL)
return false;
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-07 03:20:51 +08:00
// If our stop id is the current stop ID, nothing has changed:
ProcessModID current_mod_id = process->GetModID();
// If the current stop id is 0, either we haven't run yet, or the process
// state has been cleared.
// In either case, we aren't going to be able to sync with the process state.
if (current_mod_id.GetStopID() == 0)
return false;
bool changed = false;
const bool was_valid = m_mod_id.IsValid();
if (was_valid) {
if (m_mod_id == current_mod_id) {
// Everything is already up to date in this object, no need to
// update the execution context scope.
changed = false;
} else {
m_mod_id = current_mod_id;
m_needs_update = true;
changed = true;
}
}
// Now re-look up the thread and frame in case the underlying objects have
// gone away & been recreated.
// That way we'll be sure to return a valid exe_scope.
// If we used to have a thread or a frame but can't find it anymore, then mark
// ourselves as invalid.
if (!accept_invalid_exe_ctx) {
if (m_exe_ctx_ref.HasThreadRef()) {
ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP());
if (thread_sp) {
if (m_exe_ctx_ref.HasFrameRef()) {
StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP());
if (!frame_sp) {
// We used to have a frame, but now it is gone
SetInvalid();
changed = was_valid;
}
}
} else {
// We used to have a thread, but now it is gone
SetInvalid();
changed = was_valid;
}
}
}
return changed;
}
void ValueObject::EvaluationPoint::SetUpdated() {
ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP());
if (process_sp)
m_mod_id = process_sp->GetModID();
m_needs_update = false;
}
void ValueObject::ClearUserVisibleData(uint32_t clear_mask) {
if ((clear_mask & eClearUserVisibleDataItemsValue) ==
eClearUserVisibleDataItemsValue)
m_value_str.clear();
if ((clear_mask & eClearUserVisibleDataItemsLocation) ==
eClearUserVisibleDataItemsLocation)
m_location_str.clear();
if ((clear_mask & eClearUserVisibleDataItemsSummary) ==
eClearUserVisibleDataItemsSummary)
m_summary_str.clear();
if ((clear_mask & eClearUserVisibleDataItemsDescription) ==
eClearUserVisibleDataItemsDescription)
m_object_desc_str.clear();
if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) ==
eClearUserVisibleDataItemsSyntheticChildren) {
if (m_synthetic_value)
m_synthetic_value = NULL;
}
if ((clear_mask & eClearUserVisibleDataItemsValidator) ==
eClearUserVisibleDataItemsValidator)
m_validation_result.reset();
}
SymbolContextScope *ValueObject::GetSymbolContextScope() {
if (m_parent) {
if (!m_parent->IsPointerOrReferenceType())
return m_parent->GetSymbolContextScope();
}
return NULL;
}
lldb::ValueObjectSP
ValueObject::CreateValueObjectFromExpression(llvm::StringRef name,
llvm::StringRef expression,
const ExecutionContext &exe_ctx) {
return CreateValueObjectFromExpression(name, expression, exe_ctx,
EvaluateExpressionOptions());
}
lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression(
llvm::StringRef name, llvm::StringRef expression,
const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) {
lldb::ValueObjectSP retval_sp;
lldb::TargetSP target_sp(exe_ctx.GetTargetSP());
if (!target_sp)
return retval_sp;
if (expression.empty())
return retval_sp;
target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(),
retval_sp, options);
if (retval_sp && !name.empty())
retval_sp->SetName(ConstString(name));
return retval_sp;
}
lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress(
llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx,
CompilerType type) {
if (type) {
CompilerType pointer_type(type.GetPointerType());
if (pointer_type) {
lldb::DataBufferSP buffer(
new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t)));
lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create(
exe_ctx.GetBestExecutionContextScope(), pointer_type,
ConstString(name), buffer, exe_ctx.GetByteOrder(),
exe_ctx.GetAddressByteSize()));
if (ptr_result_valobj_sp) {
ptr_result_valobj_sp->GetValue().SetValueType(
Value::eValueTypeLoadAddress);
Status err;
ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err);
if (ptr_result_valobj_sp && !name.empty())
ptr_result_valobj_sp->SetName(ConstString(name));
}
return ptr_result_valobj_sp;
}
}
return lldb::ValueObjectSP();
}
lldb::ValueObjectSP ValueObject::CreateValueObjectFromData(
llvm::StringRef name, const DataExtractor &data,
const ExecutionContext &exe_ctx, CompilerType type) {
lldb::ValueObjectSP new_value_sp;
new_value_sp = ValueObjectConstResult::Create(
exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data,
LLDB_INVALID_ADDRESS);
new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad);
if (new_value_sp && !name.empty())
new_value_sp->SetName(ConstString(name));
return new_value_sp;
}
ModuleSP ValueObject::GetModule() {
ValueObject *root(GetRoot());
if (root != this)
return root->GetModule();
return lldb::ModuleSP();
}
ValueObject *ValueObject::GetRoot() {
if (m_root)
return m_root;
return (m_root = FollowParentChain([](ValueObject *vo) -> bool {
return (vo->m_parent != nullptr);
}));
}
ValueObject *
ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) {
ValueObject *vo = this;
while (vo) {
if (f(vo) == false)
break;
vo = vo->m_parent;
}
return vo;
}
AddressType ValueObject::GetAddressTypeOfChildren() {
if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) {
ValueObject *root(GetRoot());
if (root != this)
return root->GetAddressTypeOfChildren();
}
return m_address_type_of_ptr_or_ref_children;
}
lldb::DynamicValueType ValueObject::GetDynamicValueType() {
ValueObject *with_dv_info = this;
while (with_dv_info) {
if (with_dv_info->HasDynamicValueTypeInfo())
return with_dv_info->GetDynamicValueTypeImpl();
with_dv_info = with_dv_info->m_parent;
}
return lldb::eNoDynamicValues;
}
lldb::Format ValueObject::GetFormat() const {
const ValueObject *with_fmt_info = this;
while (with_fmt_info) {
if (with_fmt_info->m_format != lldb::eFormatDefault)
return with_fmt_info->m_format;
with_fmt_info = with_fmt_info->m_parent;
}
return m_format;
}
lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() {
lldb::LanguageType type = m_preferred_display_language;
if (m_preferred_display_language == lldb::eLanguageTypeUnknown) {
if (GetRoot()) {
if (GetRoot() == this) {
if (StackFrameSP frame_sp = GetFrameSP()) {
const SymbolContext &sc(
frame_sp->GetSymbolContext(eSymbolContextCompUnit));
if (CompileUnit *cu = sc.comp_unit)
type = cu->GetLanguage();
}
} else {
type = GetRoot()->GetPreferredDisplayLanguage();
}
}
}
return (m_preferred_display_language = type); // only compute it once
}
void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) {
m_preferred_display_language = lt;
}
2013-06-01 01:43:40 +08:00
void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) {
if (m_preferred_display_language == lldb::eLanguageTypeUnknown)
SetPreferredDisplayLanguage(lt);
}
bool ValueObject::CanProvideValue() {
// we need to support invalid types as providers of values because some
// bare-board
// debugging scenarios have no notion of types, but still manage to have raw
// numeric
// values for things like registers. sigh.
const CompilerType &type(GetCompilerType());
return (false == type.IsValid()) ||
(0 != (type.GetTypeInfo() & eTypeHasValue));
}
bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); }
ValueObjectSP ValueObject::Persist() {
if (!UpdateValueIfNeeded())
return nullptr;
TargetSP target_sp(GetTargetSP());
if (!target_sp)
return nullptr;
PersistentExpressionState *persistent_state =
target_sp->GetPersistentExpressionStateForLanguage(
GetPreferredDisplayLanguage());
if (!persistent_state)
return nullptr;
ConstString name(persistent_state->GetNextPersistentVariableName());
ValueObjectSP const_result_sp =
ValueObjectConstResult::Create(target_sp.get(), GetValue(), name);
ExpressionVariableSP clang_var_sp =
persistent_state->CreatePersistentVariable(const_result_sp);
clang_var_sp->m_live_sp = clang_var_sp->m_frozen_sp;
clang_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference;
return clang_var_sp->GetValueObject();
}
bool ValueObject::IsSyntheticChildrenGenerated() {
return m_is_synthetic_children_generated;
}
void ValueObject::SetSyntheticChildrenGenerated(bool b) {
m_is_synthetic_children_generated = b;
}
uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; }
void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; }
ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp,
lldb::DynamicValueType use_dynamic,
bool use_synthetic) : m_root_valobj_sp(),
m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX),
m_use_synthetic(use_synthetic) {
if (!in_valobj_sp)
return;
// If the user passes in a value object that is dynamic or synthetic, then
// water it down to the static type.
m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false);
}
bool ValueObjectManager::IsValid() const {
if (!m_root_valobj_sp)
return false;
lldb::TargetSP target_sp = GetTargetSP();
if (target_sp)
return target_sp->IsValid();
return false;
}
lldb::ValueObjectSP ValueObjectManager::GetSP() {
lldb::ProcessSP process_sp = GetProcessSP();
if (!process_sp)
return lldb::ValueObjectSP();
const uint32_t current_stop_id = process_sp->GetLastNaturalStopID();
if (current_stop_id == m_stop_id)
return m_user_valobj_sp;
m_stop_id = current_stop_id;
if (!m_root_valobj_sp) {
m_user_valobj_sp.reset();
return m_root_valobj_sp;
}
m_user_valobj_sp = m_root_valobj_sp;
if (m_use_dynamic != lldb::eNoDynamicValues) {
lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic);
if (dynamic_sp)
m_user_valobj_sp = dynamic_sp;
}
if (m_use_synthetic) {
lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(m_use_synthetic);
if (synthetic_sp)
m_user_valobj_sp = synthetic_sp;
}
return m_user_valobj_sp;
}
void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) {
if (use_dynamic != m_use_dynamic) {
m_use_dynamic = use_dynamic;
m_user_valobj_sp.reset();
m_stop_id = UINT32_MAX;
}
}
void ValueObjectManager::SetUseSynthetic(bool use_synthetic) {
if (m_use_synthetic != use_synthetic) {
m_use_synthetic = use_synthetic;
m_user_valobj_sp.reset();
m_stop_id = UINT32_MAX;
}
}
lldb::TargetSP ValueObjectManager::GetTargetSP() const {
if (!m_root_valobj_sp)
return m_root_valobj_sp->GetTargetSP();
return lldb::TargetSP();
}
lldb::ProcessSP ValueObjectManager::GetProcessSP() const {
if (m_root_valobj_sp)
return m_root_valobj_sp->GetProcessSP();
return lldb::ProcessSP();
}
lldb::ThreadSP ValueObjectManager::GetThreadSP() const {
if (m_root_valobj_sp)
return m_root_valobj_sp->GetThreadSP();
return lldb::ThreadSP();
}
lldb::StackFrameSP ValueObjectManager::GetFrameSP() const {
if (m_root_valobj_sp)
return m_root_valobj_sp->GetFrameSP();
return lldb::StackFrameSP();
}