hanchenye-llvm-project/clang/lib/CodeGen/CGClass.cpp

1487 lines
56 KiB
C++
Raw Normal View History

//===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code dealing with C++ code generation of classes
//
//===----------------------------------------------------------------------===//
#include "CGDebugInfo.h"
#include "CodeGenFunction.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtCXX.h"
#include "clang/Frontend/CodeGenOptions.h"
using namespace clang;
using namespace CodeGen;
static uint64_t
ComputeNonVirtualBaseClassOffset(ASTContext &Context,
const CXXRecordDecl *DerivedClass,
CastExpr::path_const_iterator Start,
CastExpr::path_const_iterator End) {
uint64_t Offset = 0;
const CXXRecordDecl *RD = DerivedClass;
for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
const CXXBaseSpecifier *Base = *I;
assert(!Base->isVirtual() && "Should not see virtual bases here!");
// Get the layout.
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
const CXXRecordDecl *BaseDecl =
cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
// Add the offset.
Offset += Layout.getBaseClassOffsetInBits(BaseDecl);
RD = BaseDecl;
}
// FIXME: We should not use / 8 here.
return Offset / 8;
}
llvm::Constant *
CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
CastExpr::path_const_iterator PathBegin,
CastExpr::path_const_iterator PathEnd) {
assert(PathBegin != PathEnd && "Base path should not be empty!");
uint64_t Offset =
ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl,
PathBegin, PathEnd);
if (!Offset)
return 0;
const llvm::Type *PtrDiffTy =
Types.ConvertType(getContext().getPointerDiffType());
return llvm::ConstantInt::get(PtrDiffTy, Offset);
}
/// Gets the address of a direct base class within a complete object.
/// This should only be used for (1) non-virtual bases or (2) virtual bases
/// when the type is known to be complete (e.g. in complete destructors).
///
/// The object pointed to by 'This' is assumed to be non-null.
llvm::Value *
CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This,
const CXXRecordDecl *Derived,
const CXXRecordDecl *Base,
bool BaseIsVirtual) {
// 'this' must be a pointer (in some address space) to Derived.
assert(This->getType()->isPointerTy() &&
cast<llvm::PointerType>(This->getType())->getElementType()
== ConvertType(Derived));
// Compute the offset of the virtual base.
uint64_t Offset;
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
if (BaseIsVirtual)
Offset = Layout.getVBaseClassOffsetInBits(Base);
else
Offset = Layout.getBaseClassOffsetInBits(Base);
// Shift and cast down to the base type.
// TODO: for complete types, this should be possible with a GEP.
llvm::Value *V = This;
if (Offset) {
const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(getLLVMContext());
V = Builder.CreateBitCast(V, Int8PtrTy);
V = Builder.CreateConstInBoundsGEP1_64(V, Offset / 8);
}
V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo());
return V;
}
static llvm::Value *
ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ThisPtr,
uint64_t NonVirtual, llvm::Value *Virtual) {
const llvm::Type *PtrDiffTy =
CGF.ConvertType(CGF.getContext().getPointerDiffType());
llvm::Value *NonVirtualOffset = 0;
if (NonVirtual)
NonVirtualOffset = llvm::ConstantInt::get(PtrDiffTy, NonVirtual);
llvm::Value *BaseOffset;
if (Virtual) {
if (NonVirtualOffset)
BaseOffset = CGF.Builder.CreateAdd(Virtual, NonVirtualOffset);
else
BaseOffset = Virtual;
} else
BaseOffset = NonVirtualOffset;
// Apply the base offset.
const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
ThisPtr = CGF.Builder.CreateBitCast(ThisPtr, Int8PtrTy);
ThisPtr = CGF.Builder.CreateGEP(ThisPtr, BaseOffset, "add.ptr");
return ThisPtr;
}
llvm::Value *
CodeGenFunction::GetAddressOfBaseClass(llvm::Value *Value,
const CXXRecordDecl *Derived,
CastExpr::path_const_iterator PathBegin,
CastExpr::path_const_iterator PathEnd,
bool NullCheckValue) {
assert(PathBegin != PathEnd && "Base path should not be empty!");
CastExpr::path_const_iterator Start = PathBegin;
const CXXRecordDecl *VBase = 0;
// Get the virtual base.
if ((*Start)->isVirtual()) {
VBase =
cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
++Start;
}
uint64_t NonVirtualOffset =
ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived,
Start, PathEnd);
// Get the base pointer type.
const llvm::Type *BasePtrTy =
ConvertType((PathEnd[-1])->getType())->getPointerTo();
if (!NonVirtualOffset && !VBase) {
// Just cast back.
return Builder.CreateBitCast(Value, BasePtrTy);
}
llvm::BasicBlock *CastNull = 0;
llvm::BasicBlock *CastNotNull = 0;
llvm::BasicBlock *CastEnd = 0;
if (NullCheckValue) {
CastNull = createBasicBlock("cast.null");
CastNotNull = createBasicBlock("cast.notnull");
CastEnd = createBasicBlock("cast.end");
llvm::Value *IsNull =
Builder.CreateICmpEQ(Value,
llvm::Constant::getNullValue(Value->getType()));
Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
EmitBlock(CastNotNull);
}
llvm::Value *VirtualOffset = 0;
if (VBase) {
if (Derived->hasAttr<FinalAttr>()) {
VirtualOffset = 0;
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
uint64_t VBaseOffset = Layout.getVBaseClassOffsetInBits(VBase);
NonVirtualOffset += VBaseOffset / 8;
} else
VirtualOffset = GetVirtualBaseClassOffset(Value, Derived, VBase);
}
// Apply the offsets.
Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
VirtualOffset);
// Cast back.
Value = Builder.CreateBitCast(Value, BasePtrTy);
if (NullCheckValue) {
Builder.CreateBr(CastEnd);
EmitBlock(CastNull);
Builder.CreateBr(CastEnd);
EmitBlock(CastEnd);
llvm::PHINode *PHI = Builder.CreatePHI(Value->getType());
PHI->reserveOperandSpace(2);
PHI->addIncoming(Value, CastNotNull);
PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
CastNull);
Value = PHI;
}
return Value;
}
llvm::Value *
CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value,
const CXXRecordDecl *Derived,
CastExpr::path_const_iterator PathBegin,
CastExpr::path_const_iterator PathEnd,
bool NullCheckValue) {
assert(PathBegin != PathEnd && "Base path should not be empty!");
QualType DerivedTy =
getContext().getCanonicalType(getContext().getTagDeclType(Derived));
const llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
llvm::Value *NonVirtualOffset =
CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
if (!NonVirtualOffset) {
// No offset, we can just cast back.
return Builder.CreateBitCast(Value, DerivedPtrTy);
}
llvm::BasicBlock *CastNull = 0;
llvm::BasicBlock *CastNotNull = 0;
llvm::BasicBlock *CastEnd = 0;
if (NullCheckValue) {
CastNull = createBasicBlock("cast.null");
CastNotNull = createBasicBlock("cast.notnull");
CastEnd = createBasicBlock("cast.end");
llvm::Value *IsNull =
Builder.CreateICmpEQ(Value,
llvm::Constant::getNullValue(Value->getType()));
Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
EmitBlock(CastNotNull);
}
// Apply the offset.
Value = Builder.CreatePtrToInt(Value, NonVirtualOffset->getType());
Value = Builder.CreateSub(Value, NonVirtualOffset);
Value = Builder.CreateIntToPtr(Value, DerivedPtrTy);
// Just cast.
Value = Builder.CreateBitCast(Value, DerivedPtrTy);
if (NullCheckValue) {
Builder.CreateBr(CastEnd);
EmitBlock(CastNull);
Builder.CreateBr(CastEnd);
EmitBlock(CastEnd);
llvm::PHINode *PHI = Builder.CreatePHI(Value->getType());
PHI->reserveOperandSpace(2);
PHI->addIncoming(Value, CastNotNull);
PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
CastNull);
Value = PHI;
}
return Value;
}
/// GetVTTParameter - Return the VTT parameter that should be passed to a
/// base constructor/destructor with virtual bases.
static llvm::Value *GetVTTParameter(CodeGenFunction &CGF, GlobalDecl GD,
bool ForVirtualBase) {
if (!CodeGenVTables::needsVTTParameter(GD)) {
// This constructor/destructor does not need a VTT parameter.
return 0;
}
const CXXRecordDecl *RD = cast<CXXMethodDecl>(CGF.CurFuncDecl)->getParent();
const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
llvm::Value *VTT;
uint64_t SubVTTIndex;
// If the record matches the base, this is the complete ctor/dtor
// variant calling the base variant in a class with virtual bases.
if (RD == Base) {
assert(!CodeGenVTables::needsVTTParameter(CGF.CurGD) &&
"doing no-op VTT offset in base dtor/ctor?");
assert(!ForVirtualBase && "Can't have same class as virtual base!");
SubVTTIndex = 0;
} else {
const ASTRecordLayout &Layout =
CGF.getContext().getASTRecordLayout(RD);
uint64_t BaseOffset = ForVirtualBase ?
Layout.getVBaseClassOffsetInBits(Base) :
Layout.getBaseClassOffsetInBits(Base);
SubVTTIndex =
CGF.CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
}
if (CodeGenVTables::needsVTTParameter(CGF.CurGD)) {
// A VTT parameter was passed to the constructor, use it.
VTT = CGF.LoadCXXVTT();
VTT = CGF.Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
} else {
// We're the complete constructor, so get the VTT by name.
VTT = CGF.CGM.getVTables().GetAddrOfVTT(RD);
VTT = CGF.Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
}
return VTT;
}
namespace {
/// Call the destructor for a direct base class.
struct CallBaseDtor : EHScopeStack::Cleanup {
const CXXRecordDecl *BaseClass;
bool BaseIsVirtual;
CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
: BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
void Emit(CodeGenFunction &CGF, bool IsForEH) {
const CXXRecordDecl *DerivedClass =
cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
const CXXDestructorDecl *D = BaseClass->getDestructor();
llvm::Value *Addr =
CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(),
DerivedClass, BaseClass,
BaseIsVirtual);
CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, Addr);
}
};
/// A visitor which checks whether an initializer uses 'this' in a
/// way which requires the vtable to be properly set.
struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> {
typedef EvaluatedExprVisitor<DynamicThisUseChecker> super;
bool UsesThis;
DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {}
// Black-list all explicit and implicit references to 'this'.
//
// Do we need to worry about external references to 'this' derived
// from arbitrary code? If so, then anything which runs arbitrary
// external code might potentially access the vtable.
void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; }
};
}
static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
DynamicThisUseChecker Checker(C);
Checker.Visit(const_cast<Expr*>(Init));
return Checker.UsesThis;
}
static void EmitBaseInitializer(CodeGenFunction &CGF,
const CXXRecordDecl *ClassDecl,
CXXCtorInitializer *BaseInit,
CXXCtorType CtorType) {
assert(BaseInit->isBaseInitializer() &&
"Must have base initializer!");
llvm::Value *ThisPtr = CGF.LoadCXXThis();
const Type *BaseType = BaseInit->getBaseClass();
CXXRecordDecl *BaseClassDecl =
cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
bool isBaseVirtual = BaseInit->isBaseVirtual();
// The base constructor doesn't construct virtual bases.
if (CtorType == Ctor_Base && isBaseVirtual)
return;
// If the initializer for the base (other than the constructor
// itself) accesses 'this' in any way, we need to initialize the
// vtables.
if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
CGF.InitializeVTablePointers(ClassDecl);
// We can pretend to be a complete class because it only matters for
// virtual bases, and we only do virtual bases for complete ctors.
llvm::Value *V =
CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
BaseClassDecl,
isBaseVirtual);
AggValueSlot AggSlot = AggValueSlot::forAddr(V, false, /*Lifetime*/ true);
CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
if (CGF.CGM.getLangOptions().Exceptions &&
!BaseClassDecl->hasTrivialDestructor())
CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
isBaseVirtual);
}
Reimplement code generation for copying fields in the implicitly-generated copy constructor. Previously, Sema would perform some checking and instantiation to determine which copy constructors, etc., would be called, then CodeGen would attempt to figure out which copy constructor to call... but would get it wrong, or poke at an uninstantiated default argument, or fail in other ways. The new scheme is similar to what we now do for the implicit copy-assignment operator, where Sema performs all of the semantic analysis and builds specific ASTs that look similar to the ASTs we'd get from explicitly writing the copy constructor, so that CodeGen need only do a direct translation. However, it's not quite that simple because one cannot explicit write elementwise copy-construction of an array. So, I've extended CXXBaseOrMemberInitializer to contain a list of indexing variables used to copy-construct the elements. For example, if we have: struct A { A(const A&); }; struct B { A array[2][3]; }; then we generate an implicit copy assignment operator for B that looks something like this: B::B(const B &other) : array[i0][i1](other.array[i0][i1]) { } CodeGen will loop over the invented variables i0 and i1 to visit all elements in the array, so that each element in the destination array will be copy-constructed from the corresponding element in the source array. Of course, if we're dealing with arrays of scalars or class types with trivial copy-assignment operators, we just generate a memcpy rather than a loop. Fixes PR6928, PR5989, and PR6887. Boost.Regex now compiles and passes all of its regression tests. Conspicuously missing from this patch is handling for the exceptional case, where we need to destruct those objects that we have constructed. I'll address that case separately. llvm-svn: 103079
2010-05-05 13:51:00 +08:00
static void EmitAggMemberInitializer(CodeGenFunction &CGF,
LValue LHS,
llvm::Value *ArrayIndexVar,
CXXCtorInitializer *MemberInit,
Reimplement code generation for copying fields in the implicitly-generated copy constructor. Previously, Sema would perform some checking and instantiation to determine which copy constructors, etc., would be called, then CodeGen would attempt to figure out which copy constructor to call... but would get it wrong, or poke at an uninstantiated default argument, or fail in other ways. The new scheme is similar to what we now do for the implicit copy-assignment operator, where Sema performs all of the semantic analysis and builds specific ASTs that look similar to the ASTs we'd get from explicitly writing the copy constructor, so that CodeGen need only do a direct translation. However, it's not quite that simple because one cannot explicit write elementwise copy-construction of an array. So, I've extended CXXBaseOrMemberInitializer to contain a list of indexing variables used to copy-construct the elements. For example, if we have: struct A { A(const A&); }; struct B { A array[2][3]; }; then we generate an implicit copy assignment operator for B that looks something like this: B::B(const B &other) : array[i0][i1](other.array[i0][i1]) { } CodeGen will loop over the invented variables i0 and i1 to visit all elements in the array, so that each element in the destination array will be copy-constructed from the corresponding element in the source array. Of course, if we're dealing with arrays of scalars or class types with trivial copy-assignment operators, we just generate a memcpy rather than a loop. Fixes PR6928, PR5989, and PR6887. Boost.Regex now compiles and passes all of its regression tests. Conspicuously missing from this patch is handling for the exceptional case, where we need to destruct those objects that we have constructed. I'll address that case separately. llvm-svn: 103079
2010-05-05 13:51:00 +08:00
QualType T,
unsigned Index) {
if (Index == MemberInit->getNumArrayIndices()) {
CodeGenFunction::RunCleanupsScope Cleanups(CGF);
Reimplement code generation for copying fields in the implicitly-generated copy constructor. Previously, Sema would perform some checking and instantiation to determine which copy constructors, etc., would be called, then CodeGen would attempt to figure out which copy constructor to call... but would get it wrong, or poke at an uninstantiated default argument, or fail in other ways. The new scheme is similar to what we now do for the implicit copy-assignment operator, where Sema performs all of the semantic analysis and builds specific ASTs that look similar to the ASTs we'd get from explicitly writing the copy constructor, so that CodeGen need only do a direct translation. However, it's not quite that simple because one cannot explicit write elementwise copy-construction of an array. So, I've extended CXXBaseOrMemberInitializer to contain a list of indexing variables used to copy-construct the elements. For example, if we have: struct A { A(const A&); }; struct B { A array[2][3]; }; then we generate an implicit copy assignment operator for B that looks something like this: B::B(const B &other) : array[i0][i1](other.array[i0][i1]) { } CodeGen will loop over the invented variables i0 and i1 to visit all elements in the array, so that each element in the destination array will be copy-constructed from the corresponding element in the source array. Of course, if we're dealing with arrays of scalars or class types with trivial copy-assignment operators, we just generate a memcpy rather than a loop. Fixes PR6928, PR5989, and PR6887. Boost.Regex now compiles and passes all of its regression tests. Conspicuously missing from this patch is handling for the exceptional case, where we need to destruct those objects that we have constructed. I'll address that case separately. llvm-svn: 103079
2010-05-05 13:51:00 +08:00
llvm::Value *Dest = LHS.getAddress();
if (ArrayIndexVar) {
// If we have an array index variable, load it and use it as an offset.
// Then, increment the value.
llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
CGF.Builder.CreateStore(Next, ArrayIndexVar);
}
AggValueSlot Slot = AggValueSlot::forAddr(Dest, LHS.isVolatileQualified(),
/*Lifetime*/ true);
Reimplement code generation for copying fields in the implicitly-generated copy constructor. Previously, Sema would perform some checking and instantiation to determine which copy constructors, etc., would be called, then CodeGen would attempt to figure out which copy constructor to call... but would get it wrong, or poke at an uninstantiated default argument, or fail in other ways. The new scheme is similar to what we now do for the implicit copy-assignment operator, where Sema performs all of the semantic analysis and builds specific ASTs that look similar to the ASTs we'd get from explicitly writing the copy constructor, so that CodeGen need only do a direct translation. However, it's not quite that simple because one cannot explicit write elementwise copy-construction of an array. So, I've extended CXXBaseOrMemberInitializer to contain a list of indexing variables used to copy-construct the elements. For example, if we have: struct A { A(const A&); }; struct B { A array[2][3]; }; then we generate an implicit copy assignment operator for B that looks something like this: B::B(const B &other) : array[i0][i1](other.array[i0][i1]) { } CodeGen will loop over the invented variables i0 and i1 to visit all elements in the array, so that each element in the destination array will be copy-constructed from the corresponding element in the source array. Of course, if we're dealing with arrays of scalars or class types with trivial copy-assignment operators, we just generate a memcpy rather than a loop. Fixes PR6928, PR5989, and PR6887. Boost.Regex now compiles and passes all of its regression tests. Conspicuously missing from this patch is handling for the exceptional case, where we need to destruct those objects that we have constructed. I'll address that case separately. llvm-svn: 103079
2010-05-05 13:51:00 +08:00
CGF.EmitAggExpr(MemberInit->getInit(), Slot);
Reimplement code generation for copying fields in the implicitly-generated copy constructor. Previously, Sema would perform some checking and instantiation to determine which copy constructors, etc., would be called, then CodeGen would attempt to figure out which copy constructor to call... but would get it wrong, or poke at an uninstantiated default argument, or fail in other ways. The new scheme is similar to what we now do for the implicit copy-assignment operator, where Sema performs all of the semantic analysis and builds specific ASTs that look similar to the ASTs we'd get from explicitly writing the copy constructor, so that CodeGen need only do a direct translation. However, it's not quite that simple because one cannot explicit write elementwise copy-construction of an array. So, I've extended CXXBaseOrMemberInitializer to contain a list of indexing variables used to copy-construct the elements. For example, if we have: struct A { A(const A&); }; struct B { A array[2][3]; }; then we generate an implicit copy assignment operator for B that looks something like this: B::B(const B &other) : array[i0][i1](other.array[i0][i1]) { } CodeGen will loop over the invented variables i0 and i1 to visit all elements in the array, so that each element in the destination array will be copy-constructed from the corresponding element in the source array. Of course, if we're dealing with arrays of scalars or class types with trivial copy-assignment operators, we just generate a memcpy rather than a loop. Fixes PR6928, PR5989, and PR6887. Boost.Regex now compiles and passes all of its regression tests. Conspicuously missing from this patch is handling for the exceptional case, where we need to destruct those objects that we have constructed. I'll address that case separately. llvm-svn: 103079
2010-05-05 13:51:00 +08:00
return;
}
const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
assert(Array && "Array initialization without the array type?");
llvm::Value *IndexVar
= CGF.GetAddrOfLocalVar(MemberInit->getArrayIndex(Index));
assert(IndexVar && "Array index variable not loaded");
// Initialize this index variable to zero.
llvm::Value* Zero
= llvm::Constant::getNullValue(
CGF.ConvertType(CGF.getContext().getSizeType()));
CGF.Builder.CreateStore(Zero, IndexVar);
// Start the loop with a block that tests the condition.
llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
CGF.EmitBlock(CondBlock);
llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
// Generate: if (loop-index < number-of-elements) fall to the loop body,
// otherwise, go to the block after the for-loop.
uint64_t NumElements = Array->getSize().getZExtValue();
llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
llvm::Value *NumElementsPtr =
llvm::ConstantInt::get(Counter->getType(), NumElements);
Reimplement code generation for copying fields in the implicitly-generated copy constructor. Previously, Sema would perform some checking and instantiation to determine which copy constructors, etc., would be called, then CodeGen would attempt to figure out which copy constructor to call... but would get it wrong, or poke at an uninstantiated default argument, or fail in other ways. The new scheme is similar to what we now do for the implicit copy-assignment operator, where Sema performs all of the semantic analysis and builds specific ASTs that look similar to the ASTs we'd get from explicitly writing the copy constructor, so that CodeGen need only do a direct translation. However, it's not quite that simple because one cannot explicit write elementwise copy-construction of an array. So, I've extended CXXBaseOrMemberInitializer to contain a list of indexing variables used to copy-construct the elements. For example, if we have: struct A { A(const A&); }; struct B { A array[2][3]; }; then we generate an implicit copy assignment operator for B that looks something like this: B::B(const B &other) : array[i0][i1](other.array[i0][i1]) { } CodeGen will loop over the invented variables i0 and i1 to visit all elements in the array, so that each element in the destination array will be copy-constructed from the corresponding element in the source array. Of course, if we're dealing with arrays of scalars or class types with trivial copy-assignment operators, we just generate a memcpy rather than a loop. Fixes PR6928, PR5989, and PR6887. Boost.Regex now compiles and passes all of its regression tests. Conspicuously missing from this patch is handling for the exceptional case, where we need to destruct those objects that we have constructed. I'll address that case separately. llvm-svn: 103079
2010-05-05 13:51:00 +08:00
llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
"isless");
// If the condition is true, execute the body.
CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
CGF.EmitBlock(ForBody);
llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
{
CodeGenFunction::RunCleanupsScope Cleanups(CGF);
Reimplement code generation for copying fields in the implicitly-generated copy constructor. Previously, Sema would perform some checking and instantiation to determine which copy constructors, etc., would be called, then CodeGen would attempt to figure out which copy constructor to call... but would get it wrong, or poke at an uninstantiated default argument, or fail in other ways. The new scheme is similar to what we now do for the implicit copy-assignment operator, where Sema performs all of the semantic analysis and builds specific ASTs that look similar to the ASTs we'd get from explicitly writing the copy constructor, so that CodeGen need only do a direct translation. However, it's not quite that simple because one cannot explicit write elementwise copy-construction of an array. So, I've extended CXXBaseOrMemberInitializer to contain a list of indexing variables used to copy-construct the elements. For example, if we have: struct A { A(const A&); }; struct B { A array[2][3]; }; then we generate an implicit copy assignment operator for B that looks something like this: B::B(const B &other) : array[i0][i1](other.array[i0][i1]) { } CodeGen will loop over the invented variables i0 and i1 to visit all elements in the array, so that each element in the destination array will be copy-constructed from the corresponding element in the source array. Of course, if we're dealing with arrays of scalars or class types with trivial copy-assignment operators, we just generate a memcpy rather than a loop. Fixes PR6928, PR5989, and PR6887. Boost.Regex now compiles and passes all of its regression tests. Conspicuously missing from this patch is handling for the exceptional case, where we need to destruct those objects that we have constructed. I'll address that case separately. llvm-svn: 103079
2010-05-05 13:51:00 +08:00
// Inside the loop body recurse to emit the inner loop or, eventually, the
// constructor call.
EmitAggMemberInitializer(CGF, LHS, ArrayIndexVar, MemberInit,
Array->getElementType(), Index + 1);
}
CGF.EmitBlock(ContinueBlock);
// Emit the increment of the loop counter.
llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
Counter = CGF.Builder.CreateLoad(IndexVar);
NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
CGF.Builder.CreateStore(NextVal, IndexVar);
// Finally, branch back up to the condition for the next iteration.
CGF.EmitBranch(CondBlock);
// Emit the fall-through block.
CGF.EmitBlock(AfterFor, true);
}
namespace {
struct CallMemberDtor : EHScopeStack::Cleanup {
FieldDecl *Field;
CXXDestructorDecl *Dtor;
CallMemberDtor(FieldDecl *Field, CXXDestructorDecl *Dtor)
: Field(Field), Dtor(Dtor) {}
void Emit(CodeGenFunction &CGF, bool IsForEH) {
// FIXME: Is this OK for C++0x delegating constructors?
llvm::Value *ThisPtr = CGF.LoadCXXThis();
LValue LHS = CGF.EmitLValueForField(ThisPtr, Field, 0);
CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
LHS.getAddress());
}
};
}
Reimplement code generation for copying fields in the implicitly-generated copy constructor. Previously, Sema would perform some checking and instantiation to determine which copy constructors, etc., would be called, then CodeGen would attempt to figure out which copy constructor to call... but would get it wrong, or poke at an uninstantiated default argument, or fail in other ways. The new scheme is similar to what we now do for the implicit copy-assignment operator, where Sema performs all of the semantic analysis and builds specific ASTs that look similar to the ASTs we'd get from explicitly writing the copy constructor, so that CodeGen need only do a direct translation. However, it's not quite that simple because one cannot explicit write elementwise copy-construction of an array. So, I've extended CXXBaseOrMemberInitializer to contain a list of indexing variables used to copy-construct the elements. For example, if we have: struct A { A(const A&); }; struct B { A array[2][3]; }; then we generate an implicit copy assignment operator for B that looks something like this: B::B(const B &other) : array[i0][i1](other.array[i0][i1]) { } CodeGen will loop over the invented variables i0 and i1 to visit all elements in the array, so that each element in the destination array will be copy-constructed from the corresponding element in the source array. Of course, if we're dealing with arrays of scalars or class types with trivial copy-assignment operators, we just generate a memcpy rather than a loop. Fixes PR6928, PR5989, and PR6887. Boost.Regex now compiles and passes all of its regression tests. Conspicuously missing from this patch is handling for the exceptional case, where we need to destruct those objects that we have constructed. I'll address that case separately. llvm-svn: 103079
2010-05-05 13:51:00 +08:00
static void EmitMemberInitializer(CodeGenFunction &CGF,
const CXXRecordDecl *ClassDecl,
CXXCtorInitializer *MemberInit,
Reimplement code generation for copying fields in the implicitly-generated copy constructor. Previously, Sema would perform some checking and instantiation to determine which copy constructors, etc., would be called, then CodeGen would attempt to figure out which copy constructor to call... but would get it wrong, or poke at an uninstantiated default argument, or fail in other ways. The new scheme is similar to what we now do for the implicit copy-assignment operator, where Sema performs all of the semantic analysis and builds specific ASTs that look similar to the ASTs we'd get from explicitly writing the copy constructor, so that CodeGen need only do a direct translation. However, it's not quite that simple because one cannot explicit write elementwise copy-construction of an array. So, I've extended CXXBaseOrMemberInitializer to contain a list of indexing variables used to copy-construct the elements. For example, if we have: struct A { A(const A&); }; struct B { A array[2][3]; }; then we generate an implicit copy assignment operator for B that looks something like this: B::B(const B &other) : array[i0][i1](other.array[i0][i1]) { } CodeGen will loop over the invented variables i0 and i1 to visit all elements in the array, so that each element in the destination array will be copy-constructed from the corresponding element in the source array. Of course, if we're dealing with arrays of scalars or class types with trivial copy-assignment operators, we just generate a memcpy rather than a loop. Fixes PR6928, PR5989, and PR6887. Boost.Regex now compiles and passes all of its regression tests. Conspicuously missing from this patch is handling for the exceptional case, where we need to destruct those objects that we have constructed. I'll address that case separately. llvm-svn: 103079
2010-05-05 13:51:00 +08:00
const CXXConstructorDecl *Constructor,
FunctionArgList &Args) {
assert(MemberInit->isAnyMemberInitializer() &&
"Must have member initializer!");
// non-static data member initializers.
FieldDecl *Field = MemberInit->getAnyMember();
QualType FieldType = CGF.getContext().getCanonicalType(Field->getType());
llvm::Value *ThisPtr = CGF.LoadCXXThis();
LValue LHS;
// If we are initializing an anonymous union field, drill down to the field.
if (MemberInit->isIndirectMemberInitializer()) {
LHS = CGF.EmitLValueForAnonRecordField(ThisPtr,
MemberInit->getIndirectMember(), 0);
FieldType = MemberInit->getIndirectMember()->getAnonField()->getType();
} else {
LHS = CGF.EmitLValueForFieldInitialization(ThisPtr, Field, 0);
}
// FIXME: If there's no initializer and the CXXCtorInitializer
Rework base and member initialization in constructors, with several (necessarily simultaneous) changes: - CXXBaseOrMemberInitializer now contains only a single initializer rather than a set of initialiation arguments + a constructor. The single initializer covers all aspects of initialization, including constructor calls as necessary but also cleanup of temporaries created by the initializer (which we never handled before!). - Rework + simplify code generation for CXXBaseOrMemberInitializers, since we can now just emit the initializer as an initializer. - Switched base and member initialization over to the new initialization code (InitializationSequence), so that it - Improved diagnostics for the new initialization code when initializing bases and members, to match the diagnostics produced by the previous (special-purpose) code. - Simplify the representation of type-checked constructor initializers in templates; instead of keeping the fully-type-checked AST, which is rather hard to undo at template instantiation time, throw away the type-checked AST and store the raw expressions in the AST. This simplifies instantiation, but loses a little but of information in the AST. - When type-checking implicit base or member initializers within a dependent context, don't add the generated initializers into the AST, because they'll look like they were explicit. - Record in CXXConstructExpr when the constructor call is to initialize a base class, so that CodeGen does not have to infer it from context. This ensures that we call the right kind of constructor. There are also a few "opportunity" fixes here that were needed to not regress, for example: - Diagnose default-initialization of a const-qualified class that does not have a user-declared default constructor. We had this diagnostic specifically for bases and members, but missed it for variables. That's fixed now. - When defining the implicit constructors, destructor, and copy-assignment operator, set the CurContext to that constructor when we're defining the body. llvm-svn: 94952
2010-01-31 17:12:51 +08:00
// was implicitly generated, we shouldn't be zeroing memory.
RValue RHS;
if (FieldType->isReferenceType()) {
RHS = CGF.EmitReferenceBindingToExpr(MemberInit->getInit(), Field);
CGF.EmitStoreThroughLValue(RHS, LHS, FieldType);
} else if (FieldType->isArrayType() && !MemberInit->getInit()) {
CGF.EmitNullInitialization(LHS.getAddress(), Field->getType());
Rework base and member initialization in constructors, with several (necessarily simultaneous) changes: - CXXBaseOrMemberInitializer now contains only a single initializer rather than a set of initialiation arguments + a constructor. The single initializer covers all aspects of initialization, including constructor calls as necessary but also cleanup of temporaries created by the initializer (which we never handled before!). - Rework + simplify code generation for CXXBaseOrMemberInitializers, since we can now just emit the initializer as an initializer. - Switched base and member initialization over to the new initialization code (InitializationSequence), so that it - Improved diagnostics for the new initialization code when initializing bases and members, to match the diagnostics produced by the previous (special-purpose) code. - Simplify the representation of type-checked constructor initializers in templates; instead of keeping the fully-type-checked AST, which is rather hard to undo at template instantiation time, throw away the type-checked AST and store the raw expressions in the AST. This simplifies instantiation, but loses a little but of information in the AST. - When type-checking implicit base or member initializers within a dependent context, don't add the generated initializers into the AST, because they'll look like they were explicit. - Record in CXXConstructExpr when the constructor call is to initialize a base class, so that CodeGen does not have to infer it from context. This ensures that we call the right kind of constructor. There are also a few "opportunity" fixes here that were needed to not regress, for example: - Diagnose default-initialization of a const-qualified class that does not have a user-declared default constructor. We had this diagnostic specifically for bases and members, but missed it for variables. That's fixed now. - When defining the implicit constructors, destructor, and copy-assignment operator, set the CurContext to that constructor when we're defining the body. llvm-svn: 94952
2010-01-31 17:12:51 +08:00
} else if (!CGF.hasAggregateLLVMType(Field->getType())) {
RHS = RValue::get(CGF.EmitScalarExpr(MemberInit->getInit()));
CGF.EmitStoreThroughLValue(RHS, LHS, FieldType);
Rework base and member initialization in constructors, with several (necessarily simultaneous) changes: - CXXBaseOrMemberInitializer now contains only a single initializer rather than a set of initialiation arguments + a constructor. The single initializer covers all aspects of initialization, including constructor calls as necessary but also cleanup of temporaries created by the initializer (which we never handled before!). - Rework + simplify code generation for CXXBaseOrMemberInitializers, since we can now just emit the initializer as an initializer. - Switched base and member initialization over to the new initialization code (InitializationSequence), so that it - Improved diagnostics for the new initialization code when initializing bases and members, to match the diagnostics produced by the previous (special-purpose) code. - Simplify the representation of type-checked constructor initializers in templates; instead of keeping the fully-type-checked AST, which is rather hard to undo at template instantiation time, throw away the type-checked AST and store the raw expressions in the AST. This simplifies instantiation, but loses a little but of information in the AST. - When type-checking implicit base or member initializers within a dependent context, don't add the generated initializers into the AST, because they'll look like they were explicit. - Record in CXXConstructExpr when the constructor call is to initialize a base class, so that CodeGen does not have to infer it from context. This ensures that we call the right kind of constructor. There are also a few "opportunity" fixes here that were needed to not regress, for example: - Diagnose default-initialization of a const-qualified class that does not have a user-declared default constructor. We had this diagnostic specifically for bases and members, but missed it for variables. That's fixed now. - When defining the implicit constructors, destructor, and copy-assignment operator, set the CurContext to that constructor when we're defining the body. llvm-svn: 94952
2010-01-31 17:12:51 +08:00
} else if (MemberInit->getInit()->getType()->isAnyComplexType()) {
CGF.EmitComplexExprIntoAddr(MemberInit->getInit(), LHS.getAddress(),
LHS.isVolatileQualified());
} else {
Reimplement code generation for copying fields in the implicitly-generated copy constructor. Previously, Sema would perform some checking and instantiation to determine which copy constructors, etc., would be called, then CodeGen would attempt to figure out which copy constructor to call... but would get it wrong, or poke at an uninstantiated default argument, or fail in other ways. The new scheme is similar to what we now do for the implicit copy-assignment operator, where Sema performs all of the semantic analysis and builds specific ASTs that look similar to the ASTs we'd get from explicitly writing the copy constructor, so that CodeGen need only do a direct translation. However, it's not quite that simple because one cannot explicit write elementwise copy-construction of an array. So, I've extended CXXBaseOrMemberInitializer to contain a list of indexing variables used to copy-construct the elements. For example, if we have: struct A { A(const A&); }; struct B { A array[2][3]; }; then we generate an implicit copy assignment operator for B that looks something like this: B::B(const B &other) : array[i0][i1](other.array[i0][i1]) { } CodeGen will loop over the invented variables i0 and i1 to visit all elements in the array, so that each element in the destination array will be copy-constructed from the corresponding element in the source array. Of course, if we're dealing with arrays of scalars or class types with trivial copy-assignment operators, we just generate a memcpy rather than a loop. Fixes PR6928, PR5989, and PR6887. Boost.Regex now compiles and passes all of its regression tests. Conspicuously missing from this patch is handling for the exceptional case, where we need to destruct those objects that we have constructed. I'll address that case separately. llvm-svn: 103079
2010-05-05 13:51:00 +08:00
llvm::Value *ArrayIndexVar = 0;
const ConstantArrayType *Array
= CGF.getContext().getAsConstantArrayType(FieldType);
if (Array && Constructor->isImplicit() &&
Constructor->isCopyConstructor()) {
const llvm::Type *SizeTy
= CGF.ConvertType(CGF.getContext().getSizeType());
// The LHS is a pointer to the first object we'll be constructing, as
// a flat array.
QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
const llvm::Type *BasePtr = CGF.ConvertType(BaseElementTy);
BasePtr = llvm::PointerType::getUnqual(BasePtr);
llvm::Value *BaseAddrPtr = CGF.Builder.CreateBitCast(LHS.getAddress(),
BasePtr);
LHS = CGF.MakeAddrLValue(BaseAddrPtr, BaseElementTy);
Reimplement code generation for copying fields in the implicitly-generated copy constructor. Previously, Sema would perform some checking and instantiation to determine which copy constructors, etc., would be called, then CodeGen would attempt to figure out which copy constructor to call... but would get it wrong, or poke at an uninstantiated default argument, or fail in other ways. The new scheme is similar to what we now do for the implicit copy-assignment operator, where Sema performs all of the semantic analysis and builds specific ASTs that look similar to the ASTs we'd get from explicitly writing the copy constructor, so that CodeGen need only do a direct translation. However, it's not quite that simple because one cannot explicit write elementwise copy-construction of an array. So, I've extended CXXBaseOrMemberInitializer to contain a list of indexing variables used to copy-construct the elements. For example, if we have: struct A { A(const A&); }; struct B { A array[2][3]; }; then we generate an implicit copy assignment operator for B that looks something like this: B::B(const B &other) : array[i0][i1](other.array[i0][i1]) { } CodeGen will loop over the invented variables i0 and i1 to visit all elements in the array, so that each element in the destination array will be copy-constructed from the corresponding element in the source array. Of course, if we're dealing with arrays of scalars or class types with trivial copy-assignment operators, we just generate a memcpy rather than a loop. Fixes PR6928, PR5989, and PR6887. Boost.Regex now compiles and passes all of its regression tests. Conspicuously missing from this patch is handling for the exceptional case, where we need to destruct those objects that we have constructed. I'll address that case separately. llvm-svn: 103079
2010-05-05 13:51:00 +08:00
// Create an array index that will be used to walk over all of the
// objects we're constructing.
ArrayIndexVar = CGF.CreateTempAlloca(SizeTy, "object.index");
llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
CGF.Builder.CreateStore(Zero, ArrayIndexVar);
// If we are copying an array of scalars or classes with trivial copy
// constructors, perform a single aggregate copy.
const RecordType *Record = BaseElementTy->getAs<RecordType>();
if (!Record ||
cast<CXXRecordDecl>(Record->getDecl())->hasTrivialCopyConstructor()) {
// Find the source pointer. We knows it's the last argument because
// we know we're in a copy constructor.
unsigned SrcArgIndex = Args.size() - 1;
llvm::Value *SrcPtr
= CGF.Builder.CreateLoad(
CGF.GetAddrOfLocalVar(Args[SrcArgIndex].first));
LValue Src = CGF.EmitLValueForFieldInitialization(SrcPtr, Field, 0);
// Copy the aggregate.
CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
LHS.isVolatileQualified());
return;
}
// Emit the block variables for the array indices, if any.
for (unsigned I = 0, N = MemberInit->getNumArrayIndices(); I != N; ++I)
CGF.EmitAutoVarDecl(*MemberInit->getArrayIndex(I));
Reimplement code generation for copying fields in the implicitly-generated copy constructor. Previously, Sema would perform some checking and instantiation to determine which copy constructors, etc., would be called, then CodeGen would attempt to figure out which copy constructor to call... but would get it wrong, or poke at an uninstantiated default argument, or fail in other ways. The new scheme is similar to what we now do for the implicit copy-assignment operator, where Sema performs all of the semantic analysis and builds specific ASTs that look similar to the ASTs we'd get from explicitly writing the copy constructor, so that CodeGen need only do a direct translation. However, it's not quite that simple because one cannot explicit write elementwise copy-construction of an array. So, I've extended CXXBaseOrMemberInitializer to contain a list of indexing variables used to copy-construct the elements. For example, if we have: struct A { A(const A&); }; struct B { A array[2][3]; }; then we generate an implicit copy assignment operator for B that looks something like this: B::B(const B &other) : array[i0][i1](other.array[i0][i1]) { } CodeGen will loop over the invented variables i0 and i1 to visit all elements in the array, so that each element in the destination array will be copy-constructed from the corresponding element in the source array. Of course, if we're dealing with arrays of scalars or class types with trivial copy-assignment operators, we just generate a memcpy rather than a loop. Fixes PR6928, PR5989, and PR6887. Boost.Regex now compiles and passes all of its regression tests. Conspicuously missing from this patch is handling for the exceptional case, where we need to destruct those objects that we have constructed. I'll address that case separately. llvm-svn: 103079
2010-05-05 13:51:00 +08:00
}
EmitAggMemberInitializer(CGF, LHS, ArrayIndexVar, MemberInit, FieldType, 0);
if (!CGF.CGM.getLangOptions().Exceptions)
return;
Reimplement code generation for copying fields in the implicitly-generated copy constructor. Previously, Sema would perform some checking and instantiation to determine which copy constructors, etc., would be called, then CodeGen would attempt to figure out which copy constructor to call... but would get it wrong, or poke at an uninstantiated default argument, or fail in other ways. The new scheme is similar to what we now do for the implicit copy-assignment operator, where Sema performs all of the semantic analysis and builds specific ASTs that look similar to the ASTs we'd get from explicitly writing the copy constructor, so that CodeGen need only do a direct translation. However, it's not quite that simple because one cannot explicit write elementwise copy-construction of an array. So, I've extended CXXBaseOrMemberInitializer to contain a list of indexing variables used to copy-construct the elements. For example, if we have: struct A { A(const A&); }; struct B { A array[2][3]; }; then we generate an implicit copy assignment operator for B that looks something like this: B::B(const B &other) : array[i0][i1](other.array[i0][i1]) { } CodeGen will loop over the invented variables i0 and i1 to visit all elements in the array, so that each element in the destination array will be copy-constructed from the corresponding element in the source array. Of course, if we're dealing with arrays of scalars or class types with trivial copy-assignment operators, we just generate a memcpy rather than a loop. Fixes PR6928, PR5989, and PR6887. Boost.Regex now compiles and passes all of its regression tests. Conspicuously missing from this patch is handling for the exceptional case, where we need to destruct those objects that we have constructed. I'll address that case separately. llvm-svn: 103079
2010-05-05 13:51:00 +08:00
// FIXME: If we have an array of classes w/ non-trivial destructors,
// we need to destroy in reverse order of construction along the exception
// path.
const RecordType *RT = FieldType->getAs<RecordType>();
if (!RT)
return;
CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
if (!RD->hasTrivialDestructor())
CGF.EHStack.pushCleanup<CallMemberDtor>(EHCleanup, Field,
RD->getDestructor());
}
}
/// Checks whether the given constructor is a valid subject for the
/// complete-to-base constructor delegation optimization, i.e.
/// emitting the complete constructor as a simple call to the base
/// constructor.
static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
// Currently we disable the optimization for classes with virtual
// bases because (1) the addresses of parameter variables need to be
// consistent across all initializers but (2) the delegate function
// call necessarily creates a second copy of the parameter variable.
//
// The limiting example (purely theoretical AFAIK):
// struct A { A(int &c) { c++; } };
// struct B : virtual A {
// B(int count) : A(count) { printf("%d\n", count); }
// };
// ...although even this example could in principle be emitted as a
// delegation since the address of the parameter doesn't escape.
if (Ctor->getParent()->getNumVBases()) {
// TODO: white-list trivial vbase initializers. This case wouldn't
// be subject to the restrictions below.
// TODO: white-list cases where:
// - there are no non-reference parameters to the constructor
// - the initializers don't access any non-reference parameters
// - the initializers don't take the address of non-reference
// parameters
// - etc.
// If we ever add any of the above cases, remember that:
// - function-try-blocks will always blacklist this optimization
// - we need to perform the constructor prologue and cleanup in
// EmitConstructorBody.
return false;
}
// We also disable the optimization for variadic functions because
// it's impossible to "re-pass" varargs.
if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
return false;
return true;
}
/// EmitConstructorBody - Emits the body of the current constructor.
void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
CXXCtorType CtorType = CurGD.getCtorType();
// Before we go any further, try the complete->base constructor
// delegation optimization.
if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor)) {
if (CGDebugInfo *DI = getDebugInfo())
DI->EmitStopPoint(Builder);
EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args);
return;
}
Stmt *Body = Ctor->getBody();
// Enter the function-try-block before the constructor prologue if
// applicable.
bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
if (IsTryBody)
EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
EHScopeStack::stable_iterator CleanupDepth = EHStack.stable_begin();
// Emit the constructor prologue, i.e. the base and member
// initializers.
Reimplement code generation for copying fields in the implicitly-generated copy constructor. Previously, Sema would perform some checking and instantiation to determine which copy constructors, etc., would be called, then CodeGen would attempt to figure out which copy constructor to call... but would get it wrong, or poke at an uninstantiated default argument, or fail in other ways. The new scheme is similar to what we now do for the implicit copy-assignment operator, where Sema performs all of the semantic analysis and builds specific ASTs that look similar to the ASTs we'd get from explicitly writing the copy constructor, so that CodeGen need only do a direct translation. However, it's not quite that simple because one cannot explicit write elementwise copy-construction of an array. So, I've extended CXXBaseOrMemberInitializer to contain a list of indexing variables used to copy-construct the elements. For example, if we have: struct A { A(const A&); }; struct B { A array[2][3]; }; then we generate an implicit copy assignment operator for B that looks something like this: B::B(const B &other) : array[i0][i1](other.array[i0][i1]) { } CodeGen will loop over the invented variables i0 and i1 to visit all elements in the array, so that each element in the destination array will be copy-constructed from the corresponding element in the source array. Of course, if we're dealing with arrays of scalars or class types with trivial copy-assignment operators, we just generate a memcpy rather than a loop. Fixes PR6928, PR5989, and PR6887. Boost.Regex now compiles and passes all of its regression tests. Conspicuously missing from this patch is handling for the exceptional case, where we need to destruct those objects that we have constructed. I'll address that case separately. llvm-svn: 103079
2010-05-05 13:51:00 +08:00
EmitCtorPrologue(Ctor, CtorType, Args);
// Emit the body of the statement.
if (IsTryBody)
EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
else if (Body)
EmitStmt(Body);
// Emit any cleanup blocks associated with the member or base
// initializers, which includes (along the exceptional path) the
// destructors for those members and bases that were fully
// constructed.
PopCleanupBlocks(CleanupDepth);
if (IsTryBody)
ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
}
/// EmitCtorPrologue - This routine generates necessary code to initialize
/// base classes and non-static data members belonging to this constructor.
void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
Reimplement code generation for copying fields in the implicitly-generated copy constructor. Previously, Sema would perform some checking and instantiation to determine which copy constructors, etc., would be called, then CodeGen would attempt to figure out which copy constructor to call... but would get it wrong, or poke at an uninstantiated default argument, or fail in other ways. The new scheme is similar to what we now do for the implicit copy-assignment operator, where Sema performs all of the semantic analysis and builds specific ASTs that look similar to the ASTs we'd get from explicitly writing the copy constructor, so that CodeGen need only do a direct translation. However, it's not quite that simple because one cannot explicit write elementwise copy-construction of an array. So, I've extended CXXBaseOrMemberInitializer to contain a list of indexing variables used to copy-construct the elements. For example, if we have: struct A { A(const A&); }; struct B { A array[2][3]; }; then we generate an implicit copy assignment operator for B that looks something like this: B::B(const B &other) : array[i0][i1](other.array[i0][i1]) { } CodeGen will loop over the invented variables i0 and i1 to visit all elements in the array, so that each element in the destination array will be copy-constructed from the corresponding element in the source array. Of course, if we're dealing with arrays of scalars or class types with trivial copy-assignment operators, we just generate a memcpy rather than a loop. Fixes PR6928, PR5989, and PR6887. Boost.Regex now compiles and passes all of its regression tests. Conspicuously missing from this patch is handling for the exceptional case, where we need to destruct those objects that we have constructed. I'll address that case separately. llvm-svn: 103079
2010-05-05 13:51:00 +08:00
CXXCtorType CtorType,
FunctionArgList &Args) {
const CXXRecordDecl *ClassDecl = CD->getParent();
llvm::SmallVector<CXXCtorInitializer *, 8> MemberInitializers;
for (CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
E = CD->init_end();
B != E; ++B) {
CXXCtorInitializer *Member = (*B);
if (Member->isBaseInitializer())
EmitBaseInitializer(*this, ClassDecl, Member, CtorType);
else
MemberInitializers.push_back(Member);
}
InitializeVTablePointers(ClassDecl);
for (unsigned I = 0, E = MemberInitializers.size(); I != E; ++I)
Reimplement code generation for copying fields in the implicitly-generated copy constructor. Previously, Sema would perform some checking and instantiation to determine which copy constructors, etc., would be called, then CodeGen would attempt to figure out which copy constructor to call... but would get it wrong, or poke at an uninstantiated default argument, or fail in other ways. The new scheme is similar to what we now do for the implicit copy-assignment operator, where Sema performs all of the semantic analysis and builds specific ASTs that look similar to the ASTs we'd get from explicitly writing the copy constructor, so that CodeGen need only do a direct translation. However, it's not quite that simple because one cannot explicit write elementwise copy-construction of an array. So, I've extended CXXBaseOrMemberInitializer to contain a list of indexing variables used to copy-construct the elements. For example, if we have: struct A { A(const A&); }; struct B { A array[2][3]; }; then we generate an implicit copy assignment operator for B that looks something like this: B::B(const B &other) : array[i0][i1](other.array[i0][i1]) { } CodeGen will loop over the invented variables i0 and i1 to visit all elements in the array, so that each element in the destination array will be copy-constructed from the corresponding element in the source array. Of course, if we're dealing with arrays of scalars or class types with trivial copy-assignment operators, we just generate a memcpy rather than a loop. Fixes PR6928, PR5989, and PR6887. Boost.Regex now compiles and passes all of its regression tests. Conspicuously missing from this patch is handling for the exceptional case, where we need to destruct those objects that we have constructed. I'll address that case separately. llvm-svn: 103079
2010-05-05 13:51:00 +08:00
EmitMemberInitializer(*this, ClassDecl, MemberInitializers[I], CD, Args);
}
/// EmitDestructorBody - Emits the body of the current destructor.
void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
CXXDtorType DtorType = CurGD.getDtorType();
// The call to operator delete in a deleting destructor happens
// outside of the function-try-block, which means it's always
// possible to delegate the destructor body to the complete
// destructor. Do so.
if (DtorType == Dtor_Deleting) {
EnterDtorCleanups(Dtor, Dtor_Deleting);
EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
LoadCXXThis());
PopCleanupBlock();
return;
}
Stmt *Body = Dtor->getBody();
// If the body is a function-try-block, enter the try before
// anything else.
bool isTryBody = (Body && isa<CXXTryStmt>(Body));
if (isTryBody)
EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
// Enter the epilogue cleanups.
RunCleanupsScope DtorEpilogue(*this);
// If this is the complete variant, just invoke the base variant;
// the epilogue will destruct the virtual bases. But we can't do
// this optimization if the body is a function-try-block, because
// we'd introduce *two* handler blocks.
switch (DtorType) {
case Dtor_Deleting: llvm_unreachable("already handled deleting case");
case Dtor_Complete:
// Enter the cleanup scopes for virtual bases.
EnterDtorCleanups(Dtor, Dtor_Complete);
if (!isTryBody) {
EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
LoadCXXThis());
break;
}
// Fallthrough: act like we're in the base variant.
case Dtor_Base:
// Enter the cleanup scopes for fields and non-virtual bases.
EnterDtorCleanups(Dtor, Dtor_Base);
// Initialize the vtable pointers before entering the body.
InitializeVTablePointers(Dtor->getParent());
if (isTryBody)
EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
else if (Body)
EmitStmt(Body);
else {
assert(Dtor->isImplicit() && "bodyless dtor not implicit");
// nothing to do besides what's in the epilogue
}
// -fapple-kext must inline any call to this dtor into
// the caller's body.
if (getContext().getLangOptions().AppleKext)
CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
break;
}
// Jump out through the epilogue cleanups.
DtorEpilogue.ForceCleanup();
// Exit the try if applicable.
if (isTryBody)
ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
}
namespace {
/// Call the operator delete associated with the current destructor.
struct CallDtorDelete : EHScopeStack::Cleanup {
CallDtorDelete() {}
void Emit(CodeGenFunction &CGF, bool IsForEH) {
const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
const CXXRecordDecl *ClassDecl = Dtor->getParent();
CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
CGF.getContext().getTagDeclType(ClassDecl));
}
};
struct CallArrayFieldDtor : EHScopeStack::Cleanup {
const FieldDecl *Field;
CallArrayFieldDtor(const FieldDecl *Field) : Field(Field) {}
void Emit(CodeGenFunction &CGF, bool IsForEH) {
QualType FieldType = Field->getType();
const ConstantArrayType *Array =
CGF.getContext().getAsConstantArrayType(FieldType);
QualType BaseType =
CGF.getContext().getBaseElementType(Array->getElementType());
const CXXRecordDecl *FieldClassDecl = BaseType->getAsCXXRecordDecl();
llvm::Value *ThisPtr = CGF.LoadCXXThis();
LValue LHS = CGF.EmitLValueForField(ThisPtr, Field,
// FIXME: Qualifiers?
/*CVRQualifiers=*/0);
const llvm::Type *BasePtr = CGF.ConvertType(BaseType)->getPointerTo();
llvm::Value *BaseAddrPtr =
CGF.Builder.CreateBitCast(LHS.getAddress(), BasePtr);
CGF.EmitCXXAggrDestructorCall(FieldClassDecl->getDestructor(),
Array, BaseAddrPtr);
}
};
struct CallFieldDtor : EHScopeStack::Cleanup {
const FieldDecl *Field;
CallFieldDtor(const FieldDecl *Field) : Field(Field) {}
void Emit(CodeGenFunction &CGF, bool IsForEH) {
const CXXRecordDecl *FieldClassDecl =
Field->getType()->getAsCXXRecordDecl();
llvm::Value *ThisPtr = CGF.LoadCXXThis();
LValue LHS = CGF.EmitLValueForField(ThisPtr, Field,
// FIXME: Qualifiers?
/*CVRQualifiers=*/0);
CGF.EmitCXXDestructorCall(FieldClassDecl->getDestructor(),
Dtor_Complete, /*ForVirtualBase=*/false,
LHS.getAddress());
}
};
}
/// EmitDtorEpilogue - Emit all code that comes at the end of class's
/// destructor. This is to call destructors on members and base classes
/// in reverse order of their construction.
void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
CXXDtorType DtorType) {
assert(!DD->isTrivial() &&
"Should not emit dtor epilogue for trivial dtor!");
// The deleting-destructor phase just needs to call the appropriate
// operator delete that Sema picked up.
if (DtorType == Dtor_Deleting) {
assert(DD->getOperatorDelete() &&
"operator delete missing - EmitDtorEpilogue");
EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
return;
}
const CXXRecordDecl *ClassDecl = DD->getParent();
// The complete-destructor phase just destructs all the virtual bases.
if (DtorType == Dtor_Complete) {
// We push them in the forward order so that they'll be popped in
// the reverse order.
for (CXXRecordDecl::base_class_const_iterator I =
ClassDecl->vbases_begin(), E = ClassDecl->vbases_end();
I != E; ++I) {
const CXXBaseSpecifier &Base = *I;
CXXRecordDecl *BaseClassDecl
= cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
// Ignore trivial destructors.
if (BaseClassDecl->hasTrivialDestructor())
continue;
EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
BaseClassDecl,
/*BaseIsVirtual*/ true);
}
return;
}
assert(DtorType == Dtor_Base);
// Destroy non-virtual bases.
for (CXXRecordDecl::base_class_const_iterator I =
ClassDecl->bases_begin(), E = ClassDecl->bases_end(); I != E; ++I) {
const CXXBaseSpecifier &Base = *I;
// Ignore virtual bases.
if (Base.isVirtual())
continue;
CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
// Ignore trivial destructors.
if (BaseClassDecl->hasTrivialDestructor())
continue;
EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
BaseClassDecl,
/*BaseIsVirtual*/ false);
}
// Destroy direct fields.
llvm::SmallVector<const FieldDecl *, 16> FieldDecls;
for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
E = ClassDecl->field_end(); I != E; ++I) {
const FieldDecl *Field = *I;
QualType FieldType = getContext().getCanonicalType(Field->getType());
const ConstantArrayType *Array =
getContext().getAsConstantArrayType(FieldType);
if (Array)
FieldType = getContext().getBaseElementType(Array->getElementType());
const RecordType *RT = FieldType->getAs<RecordType>();
if (!RT)
continue;
CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
if (FieldClassDecl->hasTrivialDestructor())
continue;
if (Array)
EHStack.pushCleanup<CallArrayFieldDtor>(NormalAndEHCleanup, Field);
else
EHStack.pushCleanup<CallFieldDtor>(NormalAndEHCleanup, Field);
}
}
/// EmitCXXAggrConstructorCall - This routine essentially creates a (nested)
/// for-loop to call the default constructor on individual members of the
/// array.
/// 'D' is the default constructor for elements of the array, 'ArrayTy' is the
/// array type and 'ArrayPtr' points to the beginning fo the array.
/// It is assumed that all relevant checks have been made by the caller.
///
/// \param ZeroInitialization True if each element should be zero-initialized
/// before it is constructed.
void
CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
const ConstantArrayType *ArrayTy,
llvm::Value *ArrayPtr,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd,
bool ZeroInitialization) {
const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
llvm::Value * NumElements =
llvm::ConstantInt::get(SizeTy,
getContext().getConstantArrayElementCount(ArrayTy));
EmitCXXAggrConstructorCall(D, NumElements, ArrayPtr, ArgBeg, ArgEnd,
ZeroInitialization);
}
void
CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
llvm::Value *NumElements,
llvm::Value *ArrayPtr,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd,
bool ZeroInitialization) {
const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
// Create a temporary for the loop index and initialize it with 0.
llvm::Value *IndexPtr = CreateTempAlloca(SizeTy, "loop.index");
llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
Builder.CreateStore(Zero, IndexPtr);
// Start the loop with a block that tests the condition.
llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
llvm::BasicBlock *AfterFor = createBasicBlock("for.end");
EmitBlock(CondBlock);
llvm::BasicBlock *ForBody = createBasicBlock("for.body");
// Generate: if (loop-index < number-of-elements fall to the loop body,
// otherwise, go to the block after the for-loop.
llvm::Value *Counter = Builder.CreateLoad(IndexPtr);
llvm::Value *IsLess = Builder.CreateICmpULT(Counter, NumElements, "isless");
// If the condition is true, execute the body.
Builder.CreateCondBr(IsLess, ForBody, AfterFor);
EmitBlock(ForBody);
llvm::BasicBlock *ContinueBlock = createBasicBlock("for.inc");
// Inside the loop body, emit the constructor call on the array element.
Counter = Builder.CreateLoad(IndexPtr);
llvm::Value *Address = Builder.CreateInBoundsGEP(ArrayPtr, Counter,
"arrayidx");
// Zero initialize the storage, if requested.
if (ZeroInitialization)
EmitNullInitialization(Address,
getContext().getTypeDeclType(D->getParent()));
// C++ [class.temporary]p4:
// There are two contexts in which temporaries are destroyed at a different
// point than the end of the full-expression. The first context is when a
// default constructor is called to initialize an element of an array.
// If the constructor has one or more default arguments, the destruction of
// every temporary created in a default argument expression is sequenced
// before the construction of the next array element, if any.
// Keep track of the current number of live temporaries.
{
RunCleanupsScope Scope(*this);
EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase=*/false, Address,
ArgBeg, ArgEnd);
}
EmitBlock(ContinueBlock);
// Emit the increment of the loop counter.
llvm::Value *NextVal = llvm::ConstantInt::get(SizeTy, 1);
Counter = Builder.CreateLoad(IndexPtr);
NextVal = Builder.CreateAdd(Counter, NextVal, "inc");
Builder.CreateStore(NextVal, IndexPtr);
// Finally, branch back up to the condition for the next iteration.
EmitBranch(CondBlock);
// Emit the fall-through block.
EmitBlock(AfterFor, true);
}
/// EmitCXXAggrDestructorCall - calls the default destructor on array
/// elements in reverse order of construction.
void
CodeGenFunction::EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
const ArrayType *Array,
llvm::Value *This) {
const ConstantArrayType *CA = dyn_cast<ConstantArrayType>(Array);
assert(CA && "Do we support VLA for destruction ?");
uint64_t ElementCount = getContext().getConstantArrayElementCount(CA);
const llvm::Type *SizeLTy = ConvertType(getContext().getSizeType());
llvm::Value* ElementCountPtr = llvm::ConstantInt::get(SizeLTy, ElementCount);
EmitCXXAggrDestructorCall(D, ElementCountPtr, This);
}
/// EmitCXXAggrDestructorCall - calls the default destructor on array
/// elements in reverse order of construction.
void
CodeGenFunction::EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
llvm::Value *UpperCount,
llvm::Value *This) {
const llvm::Type *SizeLTy = ConvertType(getContext().getSizeType());
llvm::Value *One = llvm::ConstantInt::get(SizeLTy, 1);
// Create a temporary for the loop index and initialize it with count of
// array elements.
llvm::Value *IndexPtr = CreateTempAlloca(SizeLTy, "loop.index");
// Store the number of elements in the index pointer.
Builder.CreateStore(UpperCount, IndexPtr);
// Start the loop with a block that tests the condition.
llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
llvm::BasicBlock *AfterFor = createBasicBlock("for.end");
EmitBlock(CondBlock);
llvm::BasicBlock *ForBody = createBasicBlock("for.body");
// Generate: if (loop-index != 0 fall to the loop body,
// otherwise, go to the block after the for-loop.
llvm::Value* zeroConstant =
llvm::Constant::getNullValue(SizeLTy);
llvm::Value *Counter = Builder.CreateLoad(IndexPtr);
llvm::Value *IsNE = Builder.CreateICmpNE(Counter, zeroConstant,
"isne");
// If the condition is true, execute the body.
Builder.CreateCondBr(IsNE, ForBody, AfterFor);
EmitBlock(ForBody);
llvm::BasicBlock *ContinueBlock = createBasicBlock("for.inc");
// Inside the loop body, emit the constructor call on the array element.
Counter = Builder.CreateLoad(IndexPtr);
Counter = Builder.CreateSub(Counter, One);
llvm::Value *Address = Builder.CreateInBoundsGEP(This, Counter, "arrayidx");
EmitCXXDestructorCall(D, Dtor_Complete, /*ForVirtualBase=*/false, Address);
EmitBlock(ContinueBlock);
// Emit the decrement of the loop counter.
Counter = Builder.CreateLoad(IndexPtr);
Counter = Builder.CreateSub(Counter, One, "dec");
Builder.CreateStore(Counter, IndexPtr);
// Finally, branch back up to the condition for the next iteration.
EmitBranch(CondBlock);
// Emit the fall-through block.
EmitBlock(AfterFor, true);
}
void
CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
CXXCtorType Type, bool ForVirtualBase,
llvm::Value *This,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd) {
CGDebugInfo *DI = getDebugInfo();
if (DI && CGM.getCodeGenOpts().LimitDebugInfo) {
// If debug info for this class has been emitted then this is the right time
// to do so.
const CXXRecordDecl *Parent = D->getParent();
DI->getOrCreateRecordType(CGM.getContext().getTypeDeclType(Parent),
Parent->getLocation());
}
if (D->isTrivial()) {
if (ArgBeg == ArgEnd) {
// Trivial default constructor, no codegen required.
assert(D->isDefaultConstructor() &&
"trivial 0-arg ctor not a default ctor");
return;
}
assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
assert(D->isCopyConstructor() && "trivial 1-arg ctor not a copy ctor");
const Expr *E = (*ArgBeg);
QualType Ty = E->getType();
llvm::Value *Src = EmitLValue(E).getAddress();
EmitAggregateCopy(This, Src, Ty);
return;
}
llvm::Value *VTT = GetVTTParameter(*this, GlobalDecl(D, Type), ForVirtualBase);
llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, Type);
EmitCXXMemberCall(D, Callee, ReturnValueSlot(), This, VTT, ArgBeg, ArgEnd);
}
void
CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
llvm::Value *This, llvm::Value *Src,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd) {
if (D->isTrivial()) {
assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
assert(D->isCopyConstructor() && "trivial 1-arg ctor not a copy ctor");
EmitAggregateCopy(This, Src, (*ArgBeg)->getType());
return;
}
llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D,
clang::Ctor_Complete);
assert(D->isInstance() &&
"Trying to emit a member call expr on a static method!");
const FunctionProtoType *FPT = D->getType()->getAs<FunctionProtoType>();
CallArgList Args;
// Push the this ptr.
Args.push_back(std::make_pair(RValue::get(This),
D->getThisType(getContext())));
// Push the src ptr.
QualType QT = *(FPT->arg_type_begin());
const llvm::Type *t = CGM.getTypes().ConvertType(QT);
Src = Builder.CreateBitCast(Src, t);
Args.push_back(std::make_pair(RValue::get(Src), QT));
// Skip over first argument (Src).
++ArgBeg;
CallExpr::const_arg_iterator Arg = ArgBeg;
for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin()+1,
E = FPT->arg_type_end(); I != E; ++I, ++Arg) {
assert(Arg != ArgEnd && "Running over edge of argument list!");
QualType ArgType = *I;
Args.push_back(std::make_pair(EmitCallArg(*Arg, ArgType),
ArgType));
}
// Either we've emitted all the call args, or we have a call to a
// variadic function.
assert((Arg == ArgEnd || FPT->isVariadic()) &&
"Extra arguments in non-variadic function!");
// If we still have any arguments, emit them using the type of the argument.
for (; Arg != ArgEnd; ++Arg) {
QualType ArgType = Arg->getType();
Args.push_back(std::make_pair(EmitCallArg(*Arg, ArgType),
ArgType));
}
QualType ResultType = FPT->getResultType();
EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args,
FPT->getExtInfo()),
Callee, ReturnValueSlot(), Args, D);
}
void
CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
CXXCtorType CtorType,
const FunctionArgList &Args) {
CallArgList DelegateArgs;
FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
assert(I != E && "no parameters to constructor");
// this
DelegateArgs.push_back(std::make_pair(RValue::get(LoadCXXThis()),
I->second));
++I;
// vtt
if (llvm::Value *VTT = GetVTTParameter(*this, GlobalDecl(Ctor, CtorType),
/*ForVirtualBase=*/false)) {
QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
DelegateArgs.push_back(std::make_pair(RValue::get(VTT), VoidPP));
if (CodeGenVTables::needsVTTParameter(CurGD)) {
assert(I != E && "cannot skip vtt parameter, already done with args");
assert(I->second == VoidPP && "skipping parameter not of vtt type");
++I;
}
}
// Explicit arguments.
for (; I != E; ++I) {
const VarDecl *Param = I->first;
QualType ArgType = Param->getType(); // because we're passing it to itself
RValue Arg = EmitDelegateCallArg(Param);
DelegateArgs.push_back(std::make_pair(Arg, ArgType));
}
EmitCall(CGM.getTypes().getFunctionInfo(Ctor, CtorType),
CGM.GetAddrOfCXXConstructor(Ctor, CtorType),
ReturnValueSlot(), DelegateArgs, Ctor);
}
void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
CXXDtorType Type,
bool ForVirtualBase,
llvm::Value *This) {
llvm::Value *VTT = GetVTTParameter(*this, GlobalDecl(DD, Type),
ForVirtualBase);
llvm::Value *Callee = 0;
if (getContext().getLangOptions().AppleKext)
Callee = BuildAppleKextVirtualDestructorCall(DD, Type,
DD->getParent());
if (!Callee)
Callee = CGM.GetAddrOfCXXDestructor(DD, Type);
EmitCXXMemberCall(DD, Callee, ReturnValueSlot(), This, VTT, 0, 0);
}
namespace {
struct CallLocalDtor : EHScopeStack::Cleanup {
const CXXDestructorDecl *Dtor;
llvm::Value *Addr;
CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr)
: Dtor(D), Addr(Addr) {}
void Emit(CodeGenFunction &CGF, bool IsForEH) {
CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
/*ForVirtualBase=*/false, Addr);
}
};
}
void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
llvm::Value *Addr) {
EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
}
void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) {
CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
if (!ClassDecl) return;
if (ClassDecl->hasTrivialDestructor()) return;
const CXXDestructorDecl *D = ClassDecl->getDestructor();
PushDestructorCleanup(D, Addr);
}
llvm::Value *
CodeGenFunction::GetVirtualBaseClassOffset(llvm::Value *This,
const CXXRecordDecl *ClassDecl,
const CXXRecordDecl *BaseClassDecl) {
llvm::Value *VTablePtr = GetVTablePtr(This, Int8PtrTy);
int64_t VBaseOffsetOffset =
CGM.getVTables().getVirtualBaseOffsetOffset(ClassDecl, BaseClassDecl);
llvm::Value *VBaseOffsetPtr =
Builder.CreateConstGEP1_64(VTablePtr, VBaseOffsetOffset, "vbase.offset.ptr");
const llvm::Type *PtrDiffTy =
ConvertType(getContext().getPointerDiffType());
VBaseOffsetPtr = Builder.CreateBitCast(VBaseOffsetPtr,
PtrDiffTy->getPointerTo());
llvm::Value *VBaseOffset = Builder.CreateLoad(VBaseOffsetPtr, "vbase.offset");
return VBaseOffset;
}
void
CodeGenFunction::InitializeVTablePointer(BaseSubobject Base,
const CXXRecordDecl *NearestVBase,
uint64_t OffsetFromNearestVBase,
llvm::Constant *VTable,
const CXXRecordDecl *VTableClass) {
const CXXRecordDecl *RD = Base.getBase();
// Compute the address point.
llvm::Value *VTableAddressPoint;
// Check if we need to use a vtable from the VTT.
if (CodeGenVTables::needsVTTParameter(CurGD) &&
(RD->getNumVBases() || NearestVBase)) {
// Get the secondary vpointer index.
uint64_t VirtualPointerIndex =
CGM.getVTables().getSecondaryVirtualPointerIndex(VTableClass, Base);
/// Load the VTT.
llvm::Value *VTT = LoadCXXVTT();
if (VirtualPointerIndex)
VTT = Builder.CreateConstInBoundsGEP1_64(VTT, VirtualPointerIndex);
// And load the address point from the VTT.
VTableAddressPoint = Builder.CreateLoad(VTT);
} else {
uint64_t AddressPoint = CGM.getVTables().getAddressPoint(Base, VTableClass);
VTableAddressPoint =
Builder.CreateConstInBoundsGEP2_64(VTable, 0, AddressPoint);
}
// Compute where to store the address point.
llvm::Value *VirtualOffset = 0;
uint64_t NonVirtualOffset = 0;
if (CodeGenVTables::needsVTTParameter(CurGD) && NearestVBase) {
// We need to use the virtual base offset offset because the virtual base
// might have a different offset in the most derived class.
VirtualOffset = GetVirtualBaseClassOffset(LoadCXXThis(), VTableClass,
NearestVBase);
NonVirtualOffset = OffsetFromNearestVBase / 8;
} else {
// We can just use the base offset in the complete class.
NonVirtualOffset = Base.getBaseOffset() / 8;
}
// Apply the offsets.
llvm::Value *VTableField = LoadCXXThis();
if (NonVirtualOffset || VirtualOffset)
VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField,
NonVirtualOffset,
VirtualOffset);
// Finally, store the address point.
const llvm::Type *AddressPointPtrTy =
VTableAddressPoint->getType()->getPointerTo();
VTableField = Builder.CreateBitCast(VTableField, AddressPointPtrTy);
Builder.CreateStore(VTableAddressPoint, VTableField);
}
void
CodeGenFunction::InitializeVTablePointers(BaseSubobject Base,
const CXXRecordDecl *NearestVBase,
uint64_t OffsetFromNearestVBase,
bool BaseIsNonVirtualPrimaryBase,
llvm::Constant *VTable,
const CXXRecordDecl *VTableClass,
VisitedVirtualBasesSetTy& VBases) {
// If this base is a non-virtual primary base the address point has already
// been set.
if (!BaseIsNonVirtualPrimaryBase) {
// Initialize the vtable pointer for this base.
InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase,
VTable, VTableClass);
}
const CXXRecordDecl *RD = Base.getBase();
// Traverse bases.
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
E = RD->bases_end(); I != E; ++I) {
CXXRecordDecl *BaseDecl
= cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
// Ignore classes without a vtable.
if (!BaseDecl->isDynamicClass())
continue;
uint64_t BaseOffset;
uint64_t BaseOffsetFromNearestVBase;
bool BaseDeclIsNonVirtualPrimaryBase;
if (I->isVirtual()) {
// Check if we've visited this virtual base before.
if (!VBases.insert(BaseDecl))
continue;
const ASTRecordLayout &Layout =
getContext().getASTRecordLayout(VTableClass);
BaseOffset = Layout.getVBaseClassOffsetInBits(BaseDecl);
BaseOffsetFromNearestVBase = 0;
BaseDeclIsNonVirtualPrimaryBase = false;
} else {
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
BaseOffset =
Base.getBaseOffset() + Layout.getBaseClassOffsetInBits(BaseDecl);
BaseOffsetFromNearestVBase =
OffsetFromNearestVBase + Layout.getBaseClassOffsetInBits(BaseDecl);
BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
}
InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset),
I->isVirtual() ? BaseDecl : NearestVBase,
BaseOffsetFromNearestVBase,
BaseDeclIsNonVirtualPrimaryBase,
VTable, VTableClass, VBases);
}
}
void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
// Ignore classes without a vtable.
if (!RD->isDynamicClass())
return;
// Get the VTable.
llvm::Constant *VTable = CGM.getVTables().GetAddrOfVTable(RD);
// Initialize the vtable pointers for this class and all of its bases.
VisitedVirtualBasesSetTy VBases;
InitializeVTablePointers(BaseSubobject(RD, 0), /*NearestVBase=*/0,
/*OffsetFromNearestVBase=*/0,
/*BaseIsNonVirtualPrimaryBase=*/false,
VTable, RD, VBases);
}
llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This,
const llvm::Type *Ty) {
llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo());
return Builder.CreateLoad(VTablePtrSrc, "vtable");
}