hanchenye-llvm-project/compiler-rt/lib/xray/xray_profiling.cpp

520 lines
18 KiB
C++
Raw Normal View History

//===-- xray_profiling.cpp --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// This is the implementation of a profiling handler.
//
//===----------------------------------------------------------------------===//
#include <memory>
#include <time.h>
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "xray/xray_interface.h"
#include "xray/xray_log_interface.h"
#include "xray_buffer_queue.h"
#include "xray_flags.h"
#include "xray_profile_collector.h"
#include "xray_profiling_flags.h"
#include "xray_recursion_guard.h"
#include "xray_tsc.h"
#include "xray_utils.h"
#include <pthread.h>
namespace __xray {
namespace {
static atomic_sint32_t ProfilerLogFlushStatus = {
XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING};
static atomic_sint32_t ProfilerLogStatus = {
XRayLogInitStatus::XRAY_LOG_UNINITIALIZED};
static SpinMutex ProfilerOptionsMutex;
struct ProfilingData {
atomic_uintptr_t Allocators;
atomic_uintptr_t FCT;
};
static pthread_key_t ProfilingKey;
// We use a global buffer queue, which gets initialized once at initialisation
// time, and gets reset when profiling is "done".
static std::aligned_storage<sizeof(BufferQueue), alignof(BufferQueue)>::type
BufferQueueStorage;
static BufferQueue *BQ = nullptr;
thread_local FunctionCallTrie::Allocators::Buffers ThreadBuffers;
thread_local std::aligned_storage<sizeof(FunctionCallTrie::Allocators),
alignof(FunctionCallTrie::Allocators)>::type
AllocatorsStorage;
thread_local std::aligned_storage<sizeof(FunctionCallTrie),
alignof(FunctionCallTrie)>::type
FunctionCallTrieStorage;
thread_local ProfilingData TLD{{0}, {0}};
thread_local atomic_uint8_t ReentranceGuard{0};
// We use a separate guard for ensuring that for this thread, if we're already
// cleaning up, that any signal handlers don't attempt to cleanup nor
// initialise.
thread_local atomic_uint8_t TLDInitGuard{0};
// We also use a separate latch to signal that the thread is exiting, and
// non-essential work should be ignored (things like recording events, etc.).
thread_local atomic_uint8_t ThreadExitingLatch{0};
static ProfilingData *getThreadLocalData() XRAY_NEVER_INSTRUMENT {
thread_local auto ThreadOnce = []() XRAY_NEVER_INSTRUMENT {
pthread_setspecific(ProfilingKey, &TLD);
[XRay][compiler-rt] Segmented Array: Simplify and Optimise Summary: This is a follow-on to D49217 which simplifies and optimises the implementation of the segmented array. In this patch we co-locate the book-keeping for segments in the `__xray::Array<T>` with the data it's managing. We take the chance in this patch to actually rename `Chunk` to `Segment` to better align with the high-level description of the segmented array. With measurements using benchmarks landed in D48879, we've identified that calls to `pthread_getspecific` started dominating the cycles, which led us to revert the change made in D49217 to use C++ thread_local initialisation instead (it reduces the cost by a huge margin, since we save one PLT-based call to pthread functions in the hot path). In particular, this is in `__xray::getThreadLocalData()`. We also took the opportunity to remove the least-common-multiple based calculation and instead pack as much data into segments of the array. This greatly simplifies the API of the container which hides as much of the implementation details as possible. For instance, we calculate the number of elements we need for the each segment internally in the Array instead of making it part of the type. With the changes here, we're able to get a measurable improvement on the performance of profiling mode on top of what D48879 already provides. Depends on D48879. Reviewers: kpw, eizan Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D49363 llvm-svn: 337343
2018-07-18 10:08:39 +08:00
return false;
}();
(void)ThreadOnce;
RecursionGuard TLDInit(TLDInitGuard);
if (!TLDInit)
return nullptr;
if (atomic_load_relaxed(&ThreadExitingLatch))
return nullptr;
uptr Allocators = 0;
if (atomic_compare_exchange_strong(&TLD.Allocators, &Allocators, 1,
memory_order_acq_rel)) {
bool Success = false;
auto AllocatorsUndo = at_scope_exit([&]() XRAY_NEVER_INSTRUMENT {
if (!Success)
atomic_store(&TLD.Allocators, 0, memory_order_release);
});
// Acquire a set of buffers for this thread.
if (BQ == nullptr)
return nullptr;
if (BQ->getBuffer(ThreadBuffers.NodeBuffer) != BufferQueue::ErrorCode::Ok)
return nullptr;
auto NodeBufferUndo = at_scope_exit([&]() XRAY_NEVER_INSTRUMENT {
if (!Success)
BQ->releaseBuffer(ThreadBuffers.NodeBuffer);
});
if (BQ->getBuffer(ThreadBuffers.RootsBuffer) != BufferQueue::ErrorCode::Ok)
return nullptr;
auto RootsBufferUndo = at_scope_exit([&]() XRAY_NEVER_INSTRUMENT {
if (!Success)
BQ->releaseBuffer(ThreadBuffers.RootsBuffer);
});
if (BQ->getBuffer(ThreadBuffers.ShadowStackBuffer) !=
BufferQueue::ErrorCode::Ok)
return nullptr;
auto ShadowStackBufferUndo = at_scope_exit([&]() XRAY_NEVER_INSTRUMENT {
if (!Success)
BQ->releaseBuffer(ThreadBuffers.ShadowStackBuffer);
});
if (BQ->getBuffer(ThreadBuffers.NodeIdPairBuffer) !=
BufferQueue::ErrorCode::Ok)
return nullptr;
Success = true;
new (&AllocatorsStorage) FunctionCallTrie::Allocators(
FunctionCallTrie::InitAllocatorsFromBuffers(ThreadBuffers));
Allocators = reinterpret_cast<uptr>(
reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage));
atomic_store(&TLD.Allocators, Allocators, memory_order_release);
}
if (Allocators == 1)
return nullptr;
uptr FCT = 0;
if (atomic_compare_exchange_strong(&TLD.FCT, &FCT, 1, memory_order_acq_rel)) {
new (&FunctionCallTrieStorage)
FunctionCallTrie(*reinterpret_cast<FunctionCallTrie::Allocators *>(
atomic_load_relaxed(&TLD.Allocators)));
FCT = reinterpret_cast<uptr>(
reinterpret_cast<FunctionCallTrie *>(&FunctionCallTrieStorage));
atomic_store(&TLD.FCT, FCT, memory_order_release);
}
if (FCT == 1)
return nullptr;
return &TLD;
}
static void cleanupTLD() XRAY_NEVER_INSTRUMENT {
auto FCT = atomic_exchange(&TLD.FCT, 0, memory_order_acq_rel);
if (FCT == reinterpret_cast<uptr>(reinterpret_cast<FunctionCallTrie *>(
&FunctionCallTrieStorage)))
reinterpret_cast<FunctionCallTrie *>(FCT)->~FunctionCallTrie();
auto Allocators = atomic_exchange(&TLD.Allocators, 0, memory_order_acq_rel);
if (Allocators ==
reinterpret_cast<uptr>(
reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage)))
reinterpret_cast<FunctionCallTrie::Allocators *>(Allocators)->~Allocators();
}
static void postCurrentThreadFCT(ProfilingData &T) XRAY_NEVER_INSTRUMENT {
RecursionGuard TLDInit(TLDInitGuard);
if (!TLDInit)
return;
uptr P = atomic_exchange(&T.FCT, 0, memory_order_acq_rel);
if (P != reinterpret_cast<uptr>(
reinterpret_cast<FunctionCallTrie *>(&FunctionCallTrieStorage)))
return;
auto FCT = reinterpret_cast<FunctionCallTrie *>(P);
DCHECK_NE(FCT, nullptr);
uptr A = atomic_exchange(&T.Allocators, 0, memory_order_acq_rel);
if (A !=
reinterpret_cast<uptr>(
reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage)))
return;
auto Allocators = reinterpret_cast<FunctionCallTrie::Allocators *>(A);
DCHECK_NE(Allocators, nullptr);
// Always move the data into the profile collector.
profileCollectorService::post(BQ, std::move(*FCT), std::move(*Allocators),
std::move(ThreadBuffers), GetTid());
// Re-initialize the ThreadBuffers object to a known "default" state.
ThreadBuffers = FunctionCallTrie::Allocators::Buffers{};
}
} // namespace
const char *profilingCompilerDefinedFlags() XRAY_NEVER_INSTRUMENT {
#ifdef XRAY_PROFILER_DEFAULT_OPTIONS
return SANITIZER_STRINGIFY(XRAY_PROFILER_DEFAULT_OPTIONS);
#else
return "";
#endif
}
XRayLogFlushStatus profilingFlush() XRAY_NEVER_INSTRUMENT {
if (atomic_load(&ProfilerLogStatus, memory_order_acquire) !=
XRayLogInitStatus::XRAY_LOG_FINALIZED) {
if (Verbosity())
Report("Not flushing profiles, profiling not been finalized.\n");
return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
}
RecursionGuard SignalGuard(ReentranceGuard);
if (!SignalGuard) {
if (Verbosity())
Report("Cannot finalize properly inside a signal handler!\n");
atomic_store(&ProfilerLogFlushStatus,
XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING,
memory_order_release);
return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
}
s32 Previous = atomic_exchange(&ProfilerLogFlushStatus,
XRayLogFlushStatus::XRAY_LOG_FLUSHING,
memory_order_acq_rel);
if (Previous == XRayLogFlushStatus::XRAY_LOG_FLUSHING) {
if (Verbosity())
Report("Not flushing profiles, implementation still flushing.\n");
return XRayLogFlushStatus::XRAY_LOG_FLUSHING;
}
// At this point, we'll create the file that will contain the profile, but
// only if the options say so.
if (!profilingFlags()->no_flush) {
// First check whether we have data in the profile collector service
// before we try and write anything down.
XRayBuffer B = profileCollectorService::nextBuffer({nullptr, 0});
if (B.Data == nullptr) {
if (Verbosity())
Report("profiling: No data to flush.\n");
} else {
LogWriter *LW = LogWriter::Open();
if (LW == nullptr) {
if (Verbosity())
Report("profiling: Failed to flush to file, dropping data.\n");
} else {
// Now for each of the buffers, write out the profile data as we would
// see it in memory, verbatim.
while (B.Data != nullptr && B.Size != 0) {
LW->WriteAll(reinterpret_cast<const char *>(B.Data),
reinterpret_cast<const char *>(B.Data) + B.Size);
B = profileCollectorService::nextBuffer(B);
}
}
LogWriter::Close(LW);
}
}
profileCollectorService::reset();
atomic_store(&ProfilerLogFlushStatus, XRayLogFlushStatus::XRAY_LOG_FLUSHED,
memory_order_release);
atomic_store(&ProfilerLogStatus, XRayLogInitStatus::XRAY_LOG_UNINITIALIZED,
memory_order_release);
return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
}
void profilingHandleArg0(int32_t FuncId,
XRayEntryType Entry) XRAY_NEVER_INSTRUMENT {
unsigned char CPU;
auto TSC = readTSC(CPU);
RecursionGuard G(ReentranceGuard);
if (!G)
return;
auto Status = atomic_load(&ProfilerLogStatus, memory_order_acquire);
if (UNLIKELY(Status == XRayLogInitStatus::XRAY_LOG_UNINITIALIZED ||
Status == XRayLogInitStatus::XRAY_LOG_INITIALIZING))
return;
if (UNLIKELY(Status == XRayLogInitStatus::XRAY_LOG_FINALIZED ||
Status == XRayLogInitStatus::XRAY_LOG_FINALIZING)) {
postCurrentThreadFCT(TLD);
return;
}
auto T = getThreadLocalData();
if (T == nullptr)
return;
auto FCT = reinterpret_cast<FunctionCallTrie *>(atomic_load_relaxed(&T->FCT));
switch (Entry) {
case XRayEntryType::ENTRY:
case XRayEntryType::LOG_ARGS_ENTRY:
FCT->enterFunction(FuncId, TSC, CPU);
break;
case XRayEntryType::EXIT:
case XRayEntryType::TAIL:
FCT->exitFunction(FuncId, TSC, CPU);
break;
default:
// FIXME: Handle bugs.
break;
}
}
void profilingHandleArg1(int32_t FuncId, XRayEntryType Entry,
uint64_t) XRAY_NEVER_INSTRUMENT {
return profilingHandleArg0(FuncId, Entry);
}
XRayLogInitStatus profilingFinalize() XRAY_NEVER_INSTRUMENT {
s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_INITIALIZED;
if (!atomic_compare_exchange_strong(&ProfilerLogStatus, &CurrentStatus,
XRayLogInitStatus::XRAY_LOG_FINALIZING,
memory_order_release)) {
if (Verbosity())
Report("Cannot finalize profile, the profiling is not initialized.\n");
return static_cast<XRayLogInitStatus>(CurrentStatus);
}
// Mark then finalize the current generation of buffers. This allows us to let
// the threads currently holding onto new buffers still use them, but let the
// last reference do the memory cleanup.
DCHECK_NE(BQ, nullptr);
BQ->finalize();
// Wait a grace period to allow threads to see that we're finalizing.
SleepForMillis(profilingFlags()->grace_period_ms);
// If we for some reason are entering this function from an instrumented
// handler, we bail out.
RecursionGuard G(ReentranceGuard);
if (!G)
return static_cast<XRayLogInitStatus>(CurrentStatus);
// Post the current thread's data if we have any.
postCurrentThreadFCT(TLD);
// Then we force serialize the log data.
profileCollectorService::serialize();
atomic_store(&ProfilerLogStatus, XRayLogInitStatus::XRAY_LOG_FINALIZED,
memory_order_release);
return XRayLogInitStatus::XRAY_LOG_FINALIZED;
}
XRayLogInitStatus
profilingLoggingInit(size_t, size_t, void *Options,
size_t OptionsSize) XRAY_NEVER_INSTRUMENT {
RecursionGuard G(ReentranceGuard);
if (!G)
return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
if (!atomic_compare_exchange_strong(&ProfilerLogStatus, &CurrentStatus,
XRayLogInitStatus::XRAY_LOG_INITIALIZING,
memory_order_acq_rel)) {
if (Verbosity())
Report("Cannot initialize already initialised profiling "
"implementation.\n");
return static_cast<XRayLogInitStatus>(CurrentStatus);
}
{
SpinMutexLock Lock(&ProfilerOptionsMutex);
FlagParser ConfigParser;
ProfilerFlags Flags;
Flags.setDefaults();
registerProfilerFlags(&ConfigParser, &Flags);
ConfigParser.ParseString(profilingCompilerDefinedFlags());
const char *Env = GetEnv("XRAY_PROFILING_OPTIONS");
if (Env == nullptr)
Env = "";
ConfigParser.ParseString(Env);
// Then parse the configuration string provided.
ConfigParser.ParseString(static_cast<const char *>(Options));
if (Verbosity())
ReportUnrecognizedFlags();
*profilingFlags() = Flags;
}
// We need to reset the profile data collection implementation now.
profileCollectorService::reset();
// Then also reset the buffer queue implementation.
if (BQ == nullptr) {
bool Success = false;
new (&BufferQueueStorage)
BufferQueue(profilingFlags()->per_thread_allocator_max,
profilingFlags()->buffers_max, Success);
if (!Success) {
if (Verbosity())
Report("Failed to initialize preallocated memory buffers!");
atomic_store(&ProfilerLogStatus,
XRayLogInitStatus::XRAY_LOG_UNINITIALIZED,
memory_order_release);
return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
}
// If we've succeded, set the global pointer to the initialised storage.
BQ = reinterpret_cast<BufferQueue *>(&BufferQueueStorage);
} else {
BQ->finalize();
auto InitStatus = BQ->init(profilingFlags()->per_thread_allocator_max,
profilingFlags()->buffers_max);
if (InitStatus != BufferQueue::ErrorCode::Ok) {
if (Verbosity())
Report("Failed to initialize preallocated memory buffers; error: %s",
BufferQueue::getErrorString(InitStatus));
atomic_store(&ProfilerLogStatus,
XRayLogInitStatus::XRAY_LOG_UNINITIALIZED,
memory_order_release);
return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
}
DCHECK(!BQ->finalizing());
}
// We need to set up the exit handlers.
static pthread_once_t Once = PTHREAD_ONCE_INIT;
pthread_once(
&Once, +[] {
pthread_key_create(
&ProfilingKey, +[](void *P) XRAY_NEVER_INSTRUMENT {
if (atomic_exchange(&ThreadExitingLatch, 1, memory_order_acq_rel))
return;
if (P == nullptr)
return;
auto T = reinterpret_cast<ProfilingData *>(P);
if (atomic_load_relaxed(&T->Allocators) == 0)
return;
{
// If we're somehow executing this while inside a
// non-reentrant-friendly context, we skip attempting to post
// the current thread's data.
RecursionGuard G(ReentranceGuard);
if (!G)
return;
postCurrentThreadFCT(*T);
}
});
// We also need to set up an exit handler, so that we can get the
// profile information at exit time. We use the C API to do this, to not
// rely on C++ ABI functions for registering exit handlers.
Atexit(+[]() XRAY_NEVER_INSTRUMENT {
if (atomic_exchange(&ThreadExitingLatch, 1, memory_order_acq_rel))
return;
auto Cleanup =
at_scope_exit([]() XRAY_NEVER_INSTRUMENT { cleanupTLD(); });
// Finalize and flush.
if (profilingFinalize() != XRAY_LOG_FINALIZED ||
profilingFlush() != XRAY_LOG_FLUSHED)
return;
if (Verbosity())
Report("XRay Profile flushed at exit.");
});
});
__xray_log_set_buffer_iterator(profileCollectorService::nextBuffer);
__xray_set_handler(profilingHandleArg0);
__xray_set_handler_arg1(profilingHandleArg1);
atomic_store(&ProfilerLogStatus, XRayLogInitStatus::XRAY_LOG_INITIALIZED,
memory_order_release);
if (Verbosity())
Report("XRay Profiling init successful.\n");
return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
}
bool profilingDynamicInitializer() XRAY_NEVER_INSTRUMENT {
// Set up the flag defaults from the static defaults and the
// compiler-provided defaults.
{
SpinMutexLock Lock(&ProfilerOptionsMutex);
auto *F = profilingFlags();
F->setDefaults();
FlagParser ProfilingParser;
registerProfilerFlags(&ProfilingParser, F);
ProfilingParser.ParseString(profilingCompilerDefinedFlags());
}
XRayLogImpl Impl{
profilingLoggingInit,
profilingFinalize,
profilingHandleArg0,
profilingFlush,
};
auto RegistrationResult = __xray_log_register_mode("xray-profiling", Impl);
if (RegistrationResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK) {
if (Verbosity())
Report("Cannot register XRay Profiling mode to 'xray-profiling'; error = "
"%d\n",
RegistrationResult);
return false;
}
if (!internal_strcmp(flags()->xray_mode, "xray-profiling"))
__xray_log_select_mode("xray_profiling");
return true;
}
} // namespace __xray
static auto UNUSED Unused = __xray::profilingDynamicInitializer();